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In [3], Benson first studied Problem (MPX) in general form and proposed the branch
and bound algorithm for solving it. As far as we know, recently there are two efficient
algorithms to solve globally Problem (MPX) in general form, which are the branch and
bound algorithm [3] and the outcome-space outer approximation algorithm [1]. In [3], the
author used the branch and bound technique associated with rectangular partitioning in Rs

to solve a problem that is equivalent to Problem (MPX) and the required upper bounds are
determined by solving ordinary convex programming problems. On the other hand, the au-
thors in [1] solve Problem (MPX) by solving instead an equivalent semi-infinite optimization
problem. The resulting problem is solved by outer approximation algorithm in the outcome
space R2s+1. In each typical iteration, the cutting hyperplane is determined by solving a
generalized concave maximizing problem and a min-max extremum problem.

In this paper, we present an outer approximation algorithm in the outcome space Rs+1

for solving a problem which is equivalent to Problem (MPX). The outer approximation
method used here is similar to the algorithm [1]. However, in each iteration of the algorithm,
the cutting hyperplane is easily determined by solving a problem of maximizing a convex
function φ over the vertex set of a polytope and finding a nonnegative solution of a linear
equation system. This result is obtained based on the relationship between the normal cones
to the feasible convex set X ⊂ Rn and the normal vectors of the supporting hyperplane to
the set Y ⊂ Rs+1, where Y is the image of X under f and f : Rn → Rs+1 is the vector value
function defined in Section 2. Because the outcome space Rs+1 typically has much smaller
dimension than the desision space Rn (see [2]), we expect potentially that considerable
computational savings could be obtained.

The paper is organized as follows. In Section 2, we first introduce some notations, then we
show how to convert the generalized concave multiplicative programming problem (MPX)
into the problem of maximizing a convex function φ over the weakly efficient set W (Y ) of
Y which is equivalent to Problem (MPX). Theoretical prerequisites for the algorithm are
given in Section 3. The algorithm is described in detail and the convergence of the algorithm
is shown in Section 4. Some illustrative examples are reported in Section 5. We draw some
conclusions in Section 6.

2 The Problem in Outcome Space

Let

f1(x) = f1(x), fi+1(x) =
√
f2i(x)f2i+1(x), i = 1, . . . , s,

and

p = s+ 1.

Then the functions fj(x), j = 1, . . . , p are also concave on X (see Proposition 2.7 in [16]).
It is clear that

h(x) = f1(x) +

p∑
j=2

f2
j (x).

For each x ∈ X, let f(x) = (f1(x), . . . , fp(x))
T
. Since f is positive over X, the function

h is rewritten as the composition h(x) = φ(f(x)), where φ : intRp
+ → R is given by

φ(y) = y1 +

p∑
i=2

y2j .
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It is clear that φ is positive and increasing over Rp
+. It means that for any two vectors

y1, y2 ∈ Y , if y1 ≥ y2 and y1 ̸= y2 then φ(y1) > φ(y2). Futhermore, by the definition, φ is
a quadratic convex function on Rp

+.
Below we show how to convert problem (MPX) to a problem (WPY ) in outcome space

Rp, where the objective function is the quadratic convex function φ and the feasible solution
set is the weakly efficient set of Y , where

Y = {y ∈ Rp | y = f(x), x ∈ X}

is the image of X under f and is called the outcome set of problem (MPX). According to
(1.1), we have

Y ⊆ intRp
+. (2.1)

First, let us recall that a point q0 ∈ Rp is called an efficient point of a nonempty set
Q ⊂ Rp when q0 ∈ Q and there exists no point q ∈ Q such that q ≥ q0 and q ̸= q0. Similarly,
a point q0 ∈ Rp is called an weakly efficient point of a nonempty set Q ⊂ Rp when q0 ∈ Q
and there exists no point q ∈ Q such that q ≫ q0. Here for any two vectors a, b ∈ Rp,
the notations a ≥ b and a ≫ b mean a − b ∈ Rp

+ and a − b ∈ intRp
+ respectively, where

Rp
+ = {x ∈ Rp | xi ≥ 0, i = 1, . . . , p} is the nonnegative orthant of Rp and intRp

+ is the
interior of Rp

+. The set of all efficient points and the set of all weakly efficient points of a
nonempty set Q ⊂ Rp are denoted E(Q) and W (Q), respectively. By definition, we have

E(Q) ⊆ W (Q) ⊆ Q. (2.2)

Consider the outcome-space problem

maxφ(y) s.t. y ∈ Y. (MPY )

The following results give some properties of problem (MPY ) and shows that we can obtain
a global optimal solution to problem (MPY ) from a global optimal solution to problem
(WPY ).

Proposition 2.1. If y∗ is a global optimal solution to problem (MPY ) then y∗ ∈ E(Y ).

Proof. Let y∗ be a global optimal solution to Problem (MPY ), i.e. φ(y∗) ≥ φ(y) for all
y ∈ Y . On the contrary, suppose that y∗ ̸∈ E(Y ). It means that there is a point ȳ ∈ Y
such that ȳ ≥ y∗, ȳ ̸= y∗. By the increasing monotonicity of the function φ, it follows that
φ(ȳ) > φ(y∗), which contradicts the assumption.

Proposition 2.2. If y∗ is a global optimal solution to problem (MPY ) then any x∗ ∈ X
such that f(x∗) ≥ y∗ is a global optimal solution to problem (MPX) and the optimal value
of problem (MPX) is h(x∗) = φ(y∗).

Proof. Suppose that y∗ is a global optimal solution to problem (MPY ) and x∗ ∈ X such
that f(x∗) ≥ y∗. Therefore, f(x∗) ∈ y∗ + Rp

+. From Proposition 2.1, we also have y∗ ∈
E(Y ). Combining this fact with the definition of efficient points, we derive y∗ = f(x∗)
and h(x∗) = φ(f(x∗)) = φ(y∗). Moreover, since y∗ is a global optimal solution to problem
(MPY ), one has φ(y∗) ≥ φ(y) for all y ∈ Y . This shows that h(x∗) ≥ h(x) for all x ∈ X,
i.e. x∗ is an optimal solution of Problem (MPX).

Consider the following problem

maxφ(y) s.t. y ∈ W (Y ). (WPY )

From (2.2) and Proposition 2.1, it is easily seen that the optimal solution sets of problem
(MPY ) and the problem (WPY ) are the same. Here, we establish a new outer approximation
algorithm for solving problem (WPY ) to solve globally problem (MPX).



214 T. N. THANG, N. T. BACH KIM AND D. X. HUNG

3 Bases of the Algorithm

For each j = 1, ..., p, let zIj ∈ Rp denote the optimal value of the convex programming

max fj(x) s.t. x ∈ X, (IPj)

and let zI = (zI1 , . . . , z
I
p)

T . Let

P 0 = Rp
+ ∩ (zI − Rp

+) = {z ∈ Rp|0 ≤ z ≤ zI} ⊆ Rp
+. (3.1)

It is clear that the box P 0 containing Y ⊃ W (Y ) and the vertex set V (P 0) can be easily
determined. Starting with the box P 0, the algorithm will iteratively generate a sequence of
nonempty polyhedra {P k}, k = 0, 1, 2, . . . such that

P 0 ⊃ P 1 ⊃ · · · ⊃ P k ⊃ · · · ⊃ Y ⊃ W (Y ).

It is clear that for each k = 0, 1, 2, . . . , the optimal value βk of the problem

max φ(y) s.t. y ∈ P k (Q(P k))

is an upper bound of problem (WPY ) . Since φ is a convex function and P k is a polytope,
it is well known that φ achieves its maximum over P k at a vertex of P k. It means that

βk = max{φ(y) s.t. y ∈ V (P k)}

where V (P k) denotes the vertex set of the polypote P k.
Let ε be a given sufficiently small positive number. Let y∗ ∈ W (Y ). The point y∗ is said

to be an ε- optimal solution to problem (WPY ) if there is an upper bound β∗ for problem
(WPY ) such that β∗ − φ(y∗) < ε(|φ(y∗)| + 1). Then, any x∗ ∈ X such that f(x∗) ≥ y∗ is
called an approximate optimal solution to problem (MPX).

The steps of the outer approximation procedure for solving problem (WPY ) may be
described as follows

• Step 0. Choose a sufficiently small number ε ≥ 0. Construct a nonempty polytope P 0

containing W (Y ) (see (3.1)). Determine the vertex set V (P 0) of the polytope P 0. Set
α0 = 0 (initial lower bound - see (1.1)). Set k = 0.

• Step 1. Set βk = max{φ(y) | y ∈ V (P k)} (currently best upper bound) and let vk

denote any element of the vertex set V (P k) for which φ(vk) = βk.

• Step 2. Find a weakly efficient point yk ∈ W (Y ) and a point xk ∈ X such that
f(xk) ≥ yk.

• Step 3. If φ(yk) > αk Then Update αk = φ(yk) (currently best lower bound);
ybest = yk (currently best feasible point); xbest = xk.

• Step 4. If βk − αk ≤ ε(|αk|+ 1) Then Terminate the algorithm (ybest is an ε-optimal
solution to problem (WPY ) and xbest is an approximate optimal solution to problem
(MPX)).

• Step 5. Set
P k+1 = P k ∩ {y ∈ Rp|⟨ξk, y⟩ ≤ ⟨ξk, yk⟩},

where ξk is a nonzero vector of Rp
+ and ⟨ξk, vk⟩ > ⟨ξk, yk⟩. Using the vertex set

V (P k) and the definition of P k+1, determine the vertex set V (P k+1). Let αk+1 = αk,
k := k + 1 and go to Step 1.
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For each k = 0, 1, 2, . . . , the hyperplane

H(yk) = {y ∈ Rp|⟨ξk, y⟩ = ⟨ξk, yk⟩}

is called a cutting hyperplane. Each such cutting hyperplane H(yk) is a supporting hyper-
plane of Y at yk ∈ W (Y ), i.e.

⟨ξk, y⟩ ≤ ⟨ξk, yk⟩ ∀y ∈ Y

and it is constructed so that P k+1 ”cut off” a portion of P k containing vk in such a way
that

P k ⊃ P k+1 ⊃ Y ⊃ W (Y ).

Therefore the sequence of upper bounds {βk} is monotonously decreasing.
Finding a weakly efficient point yk in Step 2 and a point xk ∈ X such that f(xk) ≥ yk will

be presented in Subsection 3.1. Determining a normal vector ξk of the cutting hyperplane
H(yk) is showed in Subsection 3.2. Using V (P k) and the definition of P k+1 given in Step
5, the vertex set V (P k+1) can be determined via one of several special techniques from the
global optimization literature; see, for instance, [4, 6, 15].

3.1 Generating a weakly efficient point of Y

Define the set Z by

Z = (Y − Rp
+) = {z ∈ Rp|y ≥ z for some y ∈ Y }.

It is easy to show that Z is the nonempty full-dimensional convex set in Rp. Let ∂Z denote
the boundary of Z.

Proposition 3.1. i) Every boundary point of Z belongs to W (Z).

ii) Assume that z∗ is a point on the boundary of Z and y∗ ∈ Y such that y∗ ≥ z∗. Then
y∗ is a weakly efficient point of Y .

Proof. i) Let z∗ be an arbitrary boundary point of Z. Assume the contrary, that z∗ /∈ W (Z).
Then, there is a point z0 ∈ Z such that z0 ≫ z∗. It means that z∗ ∈ (z0 − intRp

+), i.e., z
∗ is

an interior point of (z0 −Rp
+). By definition, we have (z0 −Rp

+) ⊂ Z. Then z∗ is an interior
point of Z. This contradicts the fact that z∗ belongs to the boundary of Z.

ii) According (i), we have z∗ is a weakly efficient of Z because z∗ is the boundary point
of Z. It is well known (see for instance [11, p. 91, Theorem 2.10]) that the point z∗ of the
convex set Z is a weakly efficient if and only if there exists a nonzero vector ξ ∈ Rp

+ such
that

⟨ξ, z∗⟩ ≥ ⟨ξ, z⟩ for all z ∈ Z.

Since Y ⊂ Z, it implies that

⟨ξ, z∗⟩ ≥ ⟨ξ, z⟩ for all z ∈ Y.

Moreover, we have ⟨ξ, y∗⟩ ≥ ⟨ξ, z∗⟩ because y∗ ≥ z∗ and ξ ≥ 0. Therefore, one has

⟨ξ, y∗⟩ ≥ ⟨ξ, y⟩ for all y ∈ Y.

Now, suppose the contrary that y∗ is not a weakly efficient of Y . By the definition, there is
a point ȳ ∈ Y such that ȳ ≫ y∗. Combining this fact and ξ ≥ 0, we have ⟨ξ, ȳ⟩ > ⟨ξ, y∗⟩
and we obtain a contradiction. Thus, y∗ ∈ W (Y ).
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Figure 1: Generating a weakly efficient point of Y .

Remark 3.2. Let d̂ ∈ Rp be a negative vector, i.e., d̂ ∈ −intRp
+ . In a typical iteration k, we

have vk ∈ (Rp
+ \Z)∩P 0, where vk is the optimal solution of problem max{φ(y)|y ∈ V (P k)}.

Let zk denote the unique point on the boundary of the closed convex set Z that belongs to
the ray emanating from vk along the direction of d̂ (see Figure 1). Let (xk, tk) and tk be
the optimal solution and the optimal value of the convex programming, respectively,

min t

s.t. f(x) ≥ vk + td̂
x ∈ X, t ≥ 0.

(P (vk))

Then two points z∗ ∈ ∂Z and y∗ ∈ W (Y ) described in the Proposition 3.1(ii) can be
determined by z∗ = zk, y∗ = yk, where

zk = vk + tkd̂ and yk = f(xk),

respectively. For convenience, the point xk is called a feasible solution of problem (MPX)
with respect to the weakly point yk ∈ W (Y ).

3.2 Determining a cutting hyperplane

In the paper, we will assume henceforth that

X = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}, (3.2)

where, for each i = 1, . . . ,m, gi : Rn → R is a finite, convex, differentiable function. Recall
that the (inner) normal cone to X at x̄, denoted by NX(x̄), is defined by

NX(x̄) = {v ∈ Rp| ⟨v, x̄⟩ ≤ ⟨v, x⟩ for all x ∈ X}.

When X is a polyhedron, a formula to calculate the normal cone NX(x0) was given in [13,
Theorem 6.46] and [8, Lemma 3.1]. A formula to calculate the normal cone to X at x̄ ∈ X,
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where X is convex set determined by (3.2), is described in Proposition 3.3 and is given with
full proof for the reader’s convenience.

For a system of vectors {v1, . . . , vh} ⊂ Rn, the cone generated by this system, denoted by

cone{v1, . . . , vh}, consists of all nonnegative combinations
∑h

i=1 tiv
i with ti ≥ 0, i = 1, . . . , h.

Let x̄ ∈ X. Denote by I(x̄) the set of active indices at x̄ ∈ X, i.e.

I(x̄) = {i ∈ {1, . . . ,m} | gi(x̄) = 0}.

Proposition 3.3. Let X ⊂ Rn be a nonempty convex set defined by (3.2) and x̄ ∈ X.
Assume that the Slater condition is satisfied, i.e., there exists a point x̄ ∈ X such that
gi(x̄) < 0 for all i = 1, . . . ,m. Then, we have

NX(x̄) = cone{−∇gi(x̄), i ∈ I(x̄)}.

Proof. Let v∗ ∈ NX(x̄). Then ⟨v∗, x̄⟩ ≤ ⟨v∗, x⟩ for all x ∈ X by definition. In other words,
x̄ ∈ X is an optimal solution to the following convex programming problem satisfying the
Slater condition

min ⟨v∗, x⟩
s.t. gi(x) ≤ 0, i = 1, . . . ,m.

(SP )

By applying Karush-Kuhn-Tucker necessary condition for problem (SP ), we derive that the
following system is consistent 

v∗ +
m∑
i=1

ηi∇gi(x̄) = 0

ηigi(x̄) = 0, i = 1, . . . ,m
ηi ≥ 0, i = 1, . . . ,m.

For each i /∈ I(x̄), we have ηi = 0 because gi(x̄) ̸= 0. Thus

v∗ = −
∑

i∈I(x̄)

ηi∇gi(x̄), where ηi ≥ 0, i ∈ I(x̄).

Consequently, v∗ ∈ cone{−∇gi(x̄), i ∈ I(x̄)}.
Conversely, let v∗ ∈ cone{−∇gi(x̄), i ∈ I(x̄)}. By definition, there exists ηi ≥ 0, i ∈ I(x̄)

such that
v∗ = −

∑
i∈I(x̄)

ηi∇gi(x̄).

Let ηi = 0 for all i /∈ I(x̄). Then it is clear that the following system is consistent
v∗ +

m∑
i=1

ηi∇gi(x̄) = 0

ηigi(x̄) = 0, i = 1, . . . ,m

ηi ≥ 0, i = 1, . . . ,m.

By Karush-Kuhn-Tucker sufficient condition, it implies that x̄ is an optimal solution of (SP ).
Therefore, v∗ ∈ NX(x̄) and the proof is complete.

Proposition 3.4. Assume that z̄ is a boundary point of the set Z and a point x̄ ∈ X such
that f(x̄) ≥ z̄. Then
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i) The following system is consistent

−
p∑

j=1

ξj∇fj(x̄) +
∑

i∈I(x̄)

ηi∇gi(x̄) = 0

ηi ≥ 0, i ∈ I(x̄)
ξj ≥ 0, j = 1, . . . , p
p∑

j=1

ξj = 1

⟨ξ, z̄ − f(x̄)⟩ = 0.

(3.3)

ii) If (ξ, η) is a solution of system (3.3) then ξ is the normal vector of the cutting hyper-
plane H(ȳ), where ȳ = f(x̄) ∈ W (Y ), as well as is the normal vector of the supporting
hyperplane to the set Z at the point z̄.

Proof. i) By Proposition 3.1(i), we have z̄ ∈ W (Z) because z̄ is a boundary point of the
closed convex set Z. By using analogous arguments in the proof of Proposition 3.1(ii), there
exists a vector ξ = (ξ1, . . . , ξp) ≥ 0, ξ ̸= 0 such that

⟨ξ, z⟩ ≤ ⟨ξ, z̄⟩ for all z ∈ Z. (3.4)

From replacing z by f(x̄) ∈ Z in (3.4), one has

⟨ξ, f(x̄)⟩ ≤ ⟨ξ, z̄⟩, i.e. ⟨ξ, f(x̄)− z̄⟩ ≤ 0. (3.5)

Since ξ ≥ 0 and f(x̄)− z̄ ≥ 0, we get

⟨ξ, f(x̄)− z̄⟩ ≥ 0. (3.6)

Combining (3.5) and (3.6), we have ⟨ξ, z̄ − f(x̄)⟩ = 0. It means that the last equality of
system (3.3) is satisfied.

Combining the fact that Y ⊂ Z with (3.4) and (3.6), we have ⟨ξ, y⟩ ≤ ⟨ξ, f(x̄)⟩ for all
y ∈ Y . It implies that ⟨ξ, f(x)⟩ ≤ ⟨ξ, f(x̄)⟩ for all x ∈ X. Hence

⟨ξ, f(x)− f(x̄)⟩ ≤ 0

Let x be an arbitrary point of X. Since x̄+ t(x− x̄) ∈ X for 0 < t ≤ 1, we have

⟨ξ, f(x̄+ t(x− x̄))− f(x̄)⟩ ≤ 0

i.e.
p∑

j=1

ξj (fj(x̄+ t(x− x̄))− fj(x̄)) ≤ 0.

Combining this fact and the differentiability of the function fj , it is clear that

lim
t→0+

fj(x̄+ t(x− x̄))− fj(x̄)

t
= f ′

j(x̄, x− x̄) = ⟨∇fj(x̄), x− x̄⟩ ≤ 0, ∀ j = 1, . . . , p,

where f ′
j(a, v) denotes the directional derivative of fj at the point a ∈ Rn in the direction

v ∈ Rn. Hence,

p∑
j=1

ξj ⟨∇fj(x̄), x− x̄⟩ =

⟨
p∑

j=1

ξj∇fj(x̄), x− x̄

⟩
≤ 0 ∀x ∈ X. (3.7)
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Thus, by definition and from Proposition 3.3, one has

−
p∑

j=1

ξj∇fj(x̄) ∈ NX(x̄) = cone{−∇gi(x̄), i ∈ I(x̄)},

which means there exists ηi, i ∈ I(x̄) such that

−
p∑

j=1

ξj∇fj(x̄) +
∑

i∈I(x̄)

ηi∇gi(x̄) = 0.

Since ξ ̸= 0, one has
∑p

i=1 ξi ̸= 0 and we may assume
∑p

i=1 ξi = 1. Therefore, the remaining
equalities and inequalities in system (3.3) are satisfied. It means that system (3.3) has the
solution (ξ, η).

ii) Since z̄ is a boundary point of the set Z and a point x̄ ∈ X such that ȳ = f(x̄) ≥ z̄, we
have ȳ ∈ W (Y ) (Proposition 3.1(ii)). By Proposition 3.3 and from the two first equations
of system (3.3), we have

−
p∑

j=1

ξj∇fj(x̄) ∈ NX(x̄) = cone{−∇gi(x̄), i ∈ I(x̄)},

Therefore,

0 ≥

⟨
p∑

j=1

ξj∇fj(x̄), x− x̄

⟩
=

p∑
j=1

ξj ⟨∇fj(x̄), x− x̄⟩ ∀x ∈ X. (3.8)

For each j = 1, . . . , p, since fj(x) is concave and differentiable, we have

fj(x) ≤ ⟨∇fj(x̄), x− x̄⟩+ fj(x̄) ∀x ∈ X.

Since ξ ≥ 0 and from (3.8), we have

p∑
j=1

ξjfj(x) ≤
p∑

j=1

ξj ⟨∇fj(x̄), x− x̄⟩+
p∑

j=1

ξjfj(x̄) ≤
p∑

j=1

ξjfj(x̄) ∀x ∈ X.

It implies that
⟨ξ, y⟩ ≤ ⟨ξ, ȳ⟩ for all y ∈ Y. (3.9)

Hence, ξ is a normal vector of the supporting hyperplane to Y at ȳ. By definition, ξ is a
normal vector of the cutting hyperplane H(ȳ).

Let z be an arbitrary point of Z = Y − Rp
+. Then there exists ŷ ∈ Y and û ∈ Rp

+ such
that z = ŷ − û. Since ξ ≥ 0 and û ≥ 0, it follows that

⟨ξ, z⟩ = ⟨ξ, ŷ⟩ − ⟨ξ, û⟩ ≤ ⟨ξ, ŷ⟩. (3.10)

Furthermore, by (3.9) with y = ŷ, we have

⟨ξ, ŷ⟩ ≤ ⟨ξ, ȳ⟩ = ⟨ξ, f(x̄)⟩. (3.11)

Combining (3.10) and (3.11), we get ⟨ξ, z⟩ ≤ ⟨ξ, f(x̄)⟩ for all z ∈ Z. Moreover, from the last
equation in system (3.3), it implies that

⟨ξ, z⟩ ≤ ⟨ξ, z̄⟩ for all z ∈ Z.

This means that ξ is a normal vector of the supporting hyperplane to the set Z at the point
z̄ ∈ Z. The proof is completed.
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4 The Outer Approximation Algorithm

Now the algorithm can be described in detail as follows.

Outer approximation algorithm for solving Problem (MPX)
Initialization step.

(i1) Choose a sufficiently small number ε ≥ 0. Construct the box P 0 described in (3.1).
Store the vertex set V (P 0) of P 0.

(i2) Choose a fixed vector d̂ ∈ −intRp
+.

(i3) Set α0 = 0 (initial lower bound) and k = 0. Go to Iteration k.

Iteration k, k = 0, 1, 2... See Steps k1 through k6 below

(k1) Set βk = max{φ(y) | y ∈ V (P k)} (currently best upper bound) and let vk denote any
element of the vertex set V (P k) for which φ(vk) = βk.

(k2) Solve the problem (P (vk)) to obtain an optimal solution (xk, tk). Let z
k = vk + tkd̂

and yk = f(xk) (By Remark 3.2, zk ∈ ∂Z and yk ∈ W (Y )).

(k3) If φ(yk) > αk Then

Begin

αk = φ(yk) (currently best lower bound)

ybest = yk (currently best feasible point)

xbest = xk (feasible solution of problem (MPX) with respect to ybest)

End

(k4) If βk − αk ≤ ε(|αk|+ 1) Then Terminate the algorithm

(ybest is an ε-optimal solution to problem (WPY ) and

xbest is an approximate optimal solution to problem (MPX))

Else Solve the system (3.3) with x̄ = xk and z̄ = zk to find a normal vector ξk of the
cutting hyperplane H(yk), where yk = f(xk) (Proposition 3.4).

(k5) Set P k+1 = P k ∩ {y ∈ Rp|⟨ξk, y⟩ ≤ ⟨ξk, yk⟩} and determine the vertex set V (P k+1)
of the polytope P k+1.

(k6) Let αk+1 = αk, k := k + 1 and go to Iteration k.

Before proving the convergence of the proposed algorithm, we give some comments on
its computational performance. In each typical iteration, we have to implement three main
procedures which are solving problem (P (vk)) at Step k2, solving system (3.3) at Step
k4 and calculating new vertex set V (P k+1) at Step k5. As shown in Section 3.1, problem
(P (vk)) is a convex programming problem with n+ 1 variables and can be solved by some
standard numerical methods. By applying Phase I of the two-phase simplex algorithm to
find a nonnegative solution of a linear equation system with n+ 2 equations and p+ I(xk)
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variables, we can determine the solution (ξ, η) of system (3.3). As mentioned in Section 3,
we can use some methods in [4, 6, 15] to determine the vertex set of the polytope P k+1

from its inequality representation. For the numerical examples in Section 5, we use the
on-line vertex enumerating method in [4]. This method is implemented by adjacency lists
and utilizes the vertex set of P k which is obtained in the previous iteration step. As shown
in [2], the performance of this method can be expected to be relatively efficient when the
dimension of outcome space is less than or equal to 20, i.e. p ≤ 20.

Lemma 4.1. Assume that the algorithm is infinite. Let vk, zk be the point generated by
Step k1, k2 of the algorithm, respectively. Then

lim
k→∞

∥∥vk − zk
∥∥ = 0.

Proof. Denote by S(vk) the feasible solution set of Problem (P (vk)) and let tk be its optimal
value. Then S(zI) ⊆ S(vk) because

f(x) ≥ zI + td̂ ≥ vk + td̂ for all (x, t) ∈ S(zI).

Hence, 0 ≤ tk ≤ tI , where tI is the optimal value of problem (P (zI)). Combining this fact

with Remark 3.2, one has zk = vk + tkd̂ ≥ tI d̂ because vk ≥ 0 and d̂ < 0. Let zO = tI d̂. It
implies that zk is contained in the box P̂ 0 = [zO, zI ].

At Iteration k, together with the polyhedral set P k+1 we also obtain

P̂ k+1 =
{
z ∈ P̂ k | ⟨ξk, z⟩ ≤ ⟨ξk, zk⟩

}
.

It is easily seen that P k ⊆ P̂ k and P̂ k+1 ⊆ P̂ k for k ≥ 0. By definition, we have

[zk, vk] ⊆ P̂ k.

Moreover, as ξk is nonnegative,

(zk + intRp
+) ∩ P̂ k+1 = ∅,

which implies int[zk, vk] ⊆ P̂ k \ P̂ k+1. Therefore, the volume of P̂ k satisfies

VolP̂ k −VolP̂ k+1 ≥ Vol[zk, vk]. (4.1)

Note that
zk − vk = tkd̂,

which means

Vol[zk, vk] = tpk

p∏
j=1

|d̂j |. (4.2)

Combining (4.1) and (4.2), we get

VolP̂ 0 ≥ VolP̂ 0 −VolP̂ ℓ =

ℓ∑
k=0

(
VolP̂ k −VolP̂ k+1

)
≥

ℓ∑
i=0

Vol[zk, vk] ≥

(
ℓ∑

k=0

tpk

)
p∏

j=1

|d̂j |
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for every ℓ ≥ 1. Consequently, the positive series
∑∞

k=0 t
p
k is convergent. We conclude

limk→∞ tk = 0 that means

lim
i→∞

∥∥zk − vk
∥∥ = lim

k→∞
tk

∥∥∥d̂∥∥∥ = 0.

as requested.

Theorem 4.2. For a tolerance ε > 0, the algorithm terminates after finitely many steps
and yields an ε-optimal solution to problem (WPY ).

Proof. Suppose that the algorithm is infinite. By the construction of αk and βk, one has

βk − αk = φ(vk)− φ(ybest) ≤ φ(vk)− φ(yk).

Moreover, since φ is increasing and yk ≥ zk, we deduce

βk − αk ≤ φ(vk)− φ(zk).

By Lemma 4.1, the continuity of φ implies that φ(vk) − φ(zk) = 0 when k → ∞. Hence,
(βk − αk)/(|αk| + 1) = 0 when k → ∞, which means there exists an integer K > 0 such
that (βk − αk)/(|αk| + 1) < ε. It contradicts to the assumption. Therefore, the algorithm
terminates after a finite number of iterations K and we also obtain that (βk − φ(ybest))/
(
∣∣φ(ybest)∣∣ + 1) < ε. Then ybest is an ε-optimal solution of (WPY ), which completes the
proof.

5 Illustrative Examples

Now we give some examples to illustrate the algorithm. These examples were performed on
a personal computer, using codes written in Matlab R2012a.

Example 5.1. Consider the problem in [1] and [3] as follows

max (x1 − x2 + 4) + (5− 0.25x2
1)(0.125x2 + 1) + (0.25x1 + 1)(4− 0.125x2

2)

s.t. 5x1 − 8x2 ≥ −24

5x1 + 8x2 ≤ 44

6x1 − 3x2 ≤ 15

4x1 + 5x2 ≥ 10

x1 ≥ 0.

It can be verified that the functions fj , j = 1, . . . , 5, are positive over the feasible set X. Let
the tolerance ε = 10−4. Determine the point zI = (2.5000, 2.6425, 2.6045).

The algorithm is terminated after 4 iteration steps. The optimal solution of Problem
(WPY ) is y

best = (2.4997, 1.8540, 2.5496) and the corresponding solution of Problem (MPX)
is xbest = (2.5003, 0.0006). The ε−optimal value of Problem (MPX) is h(xbest) = 16.4374.
This computational result is the same as one in [3] and [1]. Our algorithm terminates after
4 iterations with ε = 10−4 (see Table 1), while the algorithm in [3] terminates after 77
iterations with ε = 0.05 and the algorithm in [1] terminates after 8 iterations with the same
tolerance.
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k yk βk αk Gap ξk

0 (1.8553, 1.9978, 2.4751) 20.2661 15.9725 0.3310 (0.1721, 0.8279, 0)
1 (2.4537, 1.8488, 2.5582) 16.7572 16.4165 0.0254 (0.1530, 0, 0.8470)
2 (2.4866, 1.8572, 2.5481) 16.4795 16.4285 0.0038 (0.1923, 0.8077, 0)
3 (2.4693, 1.8563, 2.5506) 16.4608 16.4285 0.0024 (0.0494, 0.4406, 0.5100)
4 (2.4997, 1.8540, 2.5496) 16.4381 16.4374 5.10−5 ⋆

Table 1: The computational result of Example 5.1

Example 5.2. Consider the problem in [1] and [10] as follows.

max (3x1 − 4x2 + 15) + (x1 + 2x2 − 1.5)(2x1 − x2 + 4)

+ (x1 − 2x2 + 8.5)(2x1 + x2 − 1)

s.t. 5x1 − 8x2 ≥ −24

5x1 + 8x2 ≤ 44

6x1 − 3x2 ≤ 15

4x1 + 5x2 ≥ 10

x1 ≥ 0.

We can check that the functions fj , j = 1, . . . , 5, are positive over the feasible set X. Let
the tolerance ε = 10−5. Determine the point zI = (22.5000, 8.7464, 8.0829)T .

k yk βk αk Gap ξk

0 (19.6443, 5.8908, 7.6395) 164.3333 112.7073 0.4540 (0.4331, 0.5669, 0)
1 (15.5946, 8.4350, 8.0812) 157.7394 152.0490 0.0372 (0.3479, 0.6521, 0)
2 (15.0366, 8.7276, 8.0640) 156.8441 156.2356 0.0039 (0, 0.0842, 0.9158)
3 (15.0071, 8.7428, 8.0626) 156.5115 156.4487 0.0004 (0.3398, 0.6602, 0)
4 (15.0000, 8.7464, 8.0623) 156.5007 156.4995 8.10−6

Table 2: The computational result of Example 5.2

The algorithm is terminated after 4 iteration steps (see Table 2). The optimal solution
of Problem (WPY ) is ybest = (15.0000, 8.7464, 8.0623) and the corresponding solution of
Problem (MPX) is xbest = (4, 3). The ε-optimal value h(xbest) = 156.5. This computational
result is the same as one in [1] and [10].

6 Conclusions

In this paper, we have presented a global optimization algorithm for generalized concave
multiplicative programs. By using the suitable reformulation of the original problem in
the image space, we have solved an equivalent problem of maximizing an increasing and
convex function over the outcome set. In each iteration of algorithm, we established an
outer approximation of outcome set by two basic operators such as generating a weakly effi-
cient outcome point and a normal vector of cutting hyperplane by the normal cone method.
Because of nice properties of equivalent objective function φ, the problem over outer ap-
proximations is solved by an easy way. The convergence of algorithm is proven. In further
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research, we hope to develop the normal cone method and extend the algorithm for other
classes of multiplicative programs, and also apply it to solving practical problems.
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