
2018



228 G. WANG, G. ZHOU AND L. CACCETTA

Tensor eigenvalue problems have attracted a lot of researchers due to their wide ap-
plications in medical resonance imaging [1, 13, 14], data analysis [5], higher-order Markov
chains [11], positive definiteness of even-order multivariate forms in automatical control [12].
Many researchers focused on investigating Perron-Frobenius theorem for nonnegative ten-
sors [2, 4, 20, 21]. A number of effective algorithms for finding the largest eigenvalue of
nonnegative tensors have been presented; for more detailed discussions, see [3, 4, 7, 11, 15,
17, 18, 19, 20, 21, 22, 23, 24]. From these algorithms, we observe that the choice of initial
value is very important as it has great influence on the performance of these algorithms. In
this context, it is naturel to consider the distribution of eigenvalues. For this purpose, Wang
et al. [19] gave upper bounds for the largest eigenvalue of positive tensors. By max-min
theorem, Yang et al. [13] proposed bounds of the largest eigenvalue for nonnegative tensors
and further results for bounds of the largest eigenvalue have been given in [20]. For general
tensors, it is difficult to calculate all eigenvalues of a tensor. Sometimes, we only need to
know the distribution range of eigenvalues and we do not need to obtain the eigenvalues.
For example, we judge the stability of nonlinear autonomous system by the eigenvalues of
the system equation with nonnegative real component in automatic control [12]. To our
knowledge, the Gersgorin eigenvalue inclusion theorem proposed in [13] can be considered
as a pioneering work for general tensors. As an extension of the theory of [16], Li et al. [8]
proposed two new eigenvalue inclusion theorems and showed tighter bounds than results of
[13]. Meanwhile, Li et al. [8] raised a question on how to pick S to make KS(A) as tight as
possible in Theorem 2.2 of [8] when the dimension of A is large.

Motivated and inspired by the above works, we firstly construct new eigenvalue inclu-
sion set by exploring the largest modulus of the eigenvector and prove that new eigenvalue
inclusion set is included by KS(A) of Theorem 2.2 of [8], which overcome the drawbacks to
pick S [8]. By choosing different components of eigenvector, we give exact characterization
of eigenpair, which help us establish sharp eigenvalue inclusion theorems. Furthermore, we
discuss relations among different eigenvalue inclusion sets and show the non-substitutability
of the eigenvalue inclusion theorems by Example 3.7. As applications, we firstly apply these
eigenvalue inclusion theorems to estimate bounds for the largest eigenvalue of nonnegative
tensors, which achieve tighter bounds than existing bounds. Secondly, based on eigenvalue
inclusion sets, we propose several sufficient conditions to test positive (positive semidefinite-
ness) definiteness of an even-order real supersymmetric tensor.

This paper is organized as follows. In Section 2, we recall some preliminary results and
introduce some existing results. In Section 3, we establish several eigenvalue inclusion the-
orems, and show that relations among different eigenvalue inclusion sets. We apply these
eigenvalue inclusion sets to estimate bounds for the largest eigenvalue of nonnegative tensors
and test positive (positive semidefiniteness) definiteness of an even-order real supersymmet-
ric tensor in Section 4.

2 Notation and Preliminaries

In this section, we shall present some definitions and important properties related to eigen-
values of a tensor, which are needed in the subsequent analysis.

Definition 2.1. Let A and I be m-order n-dimensional tensors.

(i) We define σ(A) as the set of all eigenvalues of A. Assume σ(A) ̸= ∅. Then the spectral
radius of A is denoted by

ρ(A) = max{|λ| : λ ∈ σ(A)}.
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(ii) We say that tensor A is reducible if there exists a nonempty proper index subset
I ⊂ {1, 2, . . . , n} such that

aii2...imxi2 . . . xim = 0,∀i1 ∈ I, i2, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.

(iii) We call I a unit tensor if its entries are

δi1i2...im =

{
1, if i1 = i2 = . . . im
0, otherwise.

(iv) [13] Tensor A is supersymmetric if all the entries ai1i2...im are invariant under any
permutation of their indices {i1, i2, . . . , im}.

The Gersgorin eigenvalue inclusion theorems have been established in [13] for real su-
persymmetric tensors, and further results for general tensors can be found in [20]. Recently,
Li et al. [8] established Brauer-type eigenvalue inclusion theorems for general tensors. We
summarize the eigenvalue inclusion theorems for general tensors as follows.

Lemma 2.2. Let A be a complex tensor of order m and dimension n and S be a nonempty
proper subset of N = {1, . . . , n}. Then,

(I) (Theorem 6 of [13, 20])

σ(A) ⊆ Γ(A) =
∪
i∈N

Γi(A),

where Γi(A) = {z ∈ C : |z − ai...i| ≤ ri(A)}, ri(A) =
∑

i2,...im∈N,δii2...im=0 |aii2...im |.

(II) (Theorem 2.1 of [8])

σ(A) ⊆ K(A) =
∪

i,j∈N,i ̸=j

Ki,j(A),

where Ki,j(A) = {z ∈ C : (|z − ai...i| − rji (A))|z − aj...j | ≤ |aij...j |rj(A)} and rji (A) =∑
δii2...im

= 0

δji2...im
= 0

|aii2...im | = ri(A)− |aij...j |.

(III) (Theorem 2.2 of [8])

σ(A) ⊆ KS(A) = (
∪

i∈S,j /∈S

Ki,j(A))
∪

(
∪

i/∈S,j∈S

Ki,j(A)).

We end this section with a result for testing positive definiteness (positive semidefinite)
of a tensor.

Lemma 2.3 (Theorem 5 of [13]). Let A be an even-order real supersymmetric tensor. Then,

(i) A is said to be positive definite if all its real eigenvalues are positive.

(ii) A is said to be positive semidefinite if all its real eigenvalues are nonnegative.
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3 Eigenvalue Inclusion Theorems

In this section, we will characterize eigenvalues of A and obtain eigenvalue inclusion sets,
which is included in KS(A). In some sense, we will answer the question raised by Li et al.
[8] on how to pick S to make KS(A) as tight as possible when the dimension of A is large.

Theorem 3.1. Let A be a complex tensor of order m and dimension n ≥ 2. Then, all
eigenvalues of A are located in the union of the following sets:

σ(A) ⊆ M(A) =
∪
i∈N

∩
j∈N,i ̸=j

Mi,j(A),

where Mi,j(A) = {z ∈ C : |(z − ai...i)(z − aj...j) − aij...jaji...i| ≤ |(z − aj...j)|rji (A) +
|aij...j |rij(A).

Proof. Let λ be an eigenvalue of A with corresponding eigenvector x, i.e.,

Axm−1 = λx[m−1], (3.1)

where x[m−1] = [xm−1
1 , xm−1

2 , . . . , xm−1
n ]T . Since x is an eigenvector, it has at least one

nonzero component. Define xρ as a component of x with the largest modulus, i.e., |xρ| ≥ |xj |
for all j = 1, . . . n.

For any s ̸= ρ, we have

λxm−1
ρ =

∑
δρi2...im

= 0

δsi2...im
= 0

aρi2...imxi2 . . . xim + aρ...ρx
m−1
ρ + aρs...sx

m−1
s ,

λxm−1
s =

∑
δρi2...im

= 0

δsi2...im
= 0

asi2...imxi2 . . . xim + as...sx
m−1
ρ + asρ...ρx

m−1
s ,

which are equivalent to

(λ− aρ...ρ)x
m−1
ρ − aρs...sx

m−1
s =

∑
δρi2...im

= 0

δsi2...im
= 0

aρi2...imxi2 . . . xim ,

(λ− as...s)x
m−1
s − asρ...ρx

m−1
ρ =

∑
δρi2...im

= 0

δsi2...im
= 0

asi2...imxi2 . . . xim .

Solving for xρ, we obtain

((λ− aρ...ρ)(λ− as...s)− aρs...sasρ...ρ)x
m−1
ρ

= (λ− as...s)
∑

δρi2...im
= 0

δsi2...im
= 0

aρi2...imxi2 . . . xim

+ aρs...s
∑

δρi2...im
= 0

δsi2...im
= 0

asi2...imxi2 . . . xim .

(3.2)

Taking the modulus on both sides of equation (3.2) and using the triangle inequality yield
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|(λ− aρ...ρ)(λ− as...s)− aρs...sasρ...ρ||xρ|m−1

≤ |(λ− as...s)|
∑

δρi2...im
= 0

δsi2...im
= 0

|aρi2...im ||xi2 | . . . |xim |

+|aρs...s|
∑

δρi2...im
= 0

δsi2...im
= 0

|asi2...im ||xi2 | . . . |xim |.

Since |xρ| > 0 with |xρ| ≥ |xj | for all j ∈ N , we can divide through by |xρ|m−1 to obtain

|(λ− aρ...ρ)(λ− as...s)− aρs...sasρ...ρ|
≤ |(λ− as...s)|

∑
δρi2...im

= 0

δsi2...im
= 0

|aρi2...im |+ |aρs...s|
∑

δρi2...im
= 0

δsi2...im
= 0

|asi2...im |

= |(λ− as...s)|rsρ(A) + |aρs...s|rρs(A),

which shows λ ∈ Mi,j(A). From the arbitrariness of s, we have λ ∈
∩

j∈N,j ̸=ρ

Mρ,j(A).

Furthermore, λ ∈
∪
i∈N

∩
j∈N,j ̸=i

Mi,j(A). 2

Remark 3.2. (i) When m = 2, from Theorem 3.1, we can obtain the eigenvalue inclusion
region of matrices of [10].

(ii) By Theorem 6 of [9], we see σ(A) ⊆
∪

i,j∈N,i ̸=j

Mi,j(A). In this paper, we obtain

σ(A) ⊆
∪
i∈N

∩
j∈N,i ̸=j

Mi,j(A). Clearly, M(A) may localize all eigenvalues of a ten-

sor more precisely than eigenvalue inclusion set in Theorem 6 of [9] and Theorem 2.1
of [8].

In the proof of Theorem 3.1, the choice of xs is not limited, which is different from xs

as a component of x with the second largest modulus in Theorem 2.1 [8]. The advantage of
this characterization is that it provides tight eigenvalue inclusion sets.

Corollary 3.3. Let A be a complex tensor of order m and dimension n ≥ 2. Then,

σ(A) ⊆ M(A) ⊆ KS(A),

where KS(A) = (
∪

i∈S,j /∈S

Ki,j(A))
∪
(

∪
i/∈S,j∈S

Ki,j(A)) is defined in Theorem 2.2 of [8].

Proof. For any λ ∈ M(A), without loss of generality, there exists ρ ∈ N such that λ ∈
Mρ,q(A), i.e.,

|(λ− aρ...ρ)(λ− aq...q)− aρq...qaqρ...ρ| ≤ |(λ− aq...q)|rqρ(A) + |aρq...q|rρq (A), ∀q ∈ N, q ̸= ρ.

For all S ⊂ N, observe that ρ ∈ S or ρ /∈ S. When ρ ∈ S, there exists q /∈ S such that

|(λ− aρ...ρ)||(λ− aq...q)| − |aρq...q||aqρ...ρ| = |(λ− aρ...ρ)(λ− aq...q)| − |aρq...qaqρ...ρ|
≤ |(λ− aρ...ρ)(λ− aq...q)− aρq...qaqρ...ρ| ≤ |(λ− aq...q)|rqρ(A) + |aρq...q|rρq (A),

Furthermore,

|(λ− aρ...ρ)||(λ− aq...q)| − |aρq...q||aqρ...ρ| ≤ |(λ− aq...q)|rqρ(A) + |aρq...q|rρq (A),

equivalently,

(|(λ− aρ...ρ)| − rqρ(A))|(λ− aq...q)| ≤ |aρq...q|(|rρq (A) + |aqρ...ρ|) = |aρq...q|rq(A),
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which implies λ ∈ Kρ,q(A). It follows from Mρ(A) =
∩

q∈N,q ̸=ρ

Mρ,q that

Mρ(A) ⊂ Kρ,q(A) ⊂ Kρ∈S,q/∈S(A).

which implies λ ∈ Kρ∈S,q/∈S(A) and Mρ,q(A) ⊂ Kρ∈S,q/∈S(A).
When ρ /∈ S, there exists q ∈ S. Similarly, we have

Mρ(A) ⊂ Kρ,q(A) ⊂ Kρ/∈S,q∈S(A).

So, M(A) =
∪
i∈N

Mi(A) ⊂ (
∪

i∈S,j /∈S

Ki,j(A))
∪
(

∪
i/∈S,j∈S

Ki,j(A)) = KS(A). 2

In the following theorem, based on xs as a component of x with the second largest
modulus, we obtain sharp eigenvalue inclusion theorem.

Theorem 3.4. Let A be a complex tensor of order m and dimension n ≥ 2. Then, all
eigenvalues of A are located in the union of the following sets:

σ(A) ⊆ N (A) =
∪

i,j∈N,i ̸=j

[Ni,j(A)
∩

Γi(A)]
∪

i,j∈N,i ̸=j

Hi,j(A),

where Ni,j(A) = {z ∈ C : (|z− ai...i| − rji (A))(|z− aj...j | −P i
j (A)) ≤ |aij...j |(rj(A)−P i

j (A)),

P i
j (A) =

∑
i/∈{i2,...,im}

|aji2...im | and Hi,j(A) = {z ∈ C : |z−ai...i| ≤ rji (A), |z−aj...j | ≤ P i
j (A)}.

Proof. Let λ be an eigenvalue of A with corresponding eigenvector x, i.e., Axm−1 = λx[m−1].
Since x is an eigenvector, it has at least one nonzero component. Let |xt| ≥ |xs| ≥ {max |xk| :
k ∈ N, k ̸= s, k ̸= t}. Obviously, |xt| > 0. Similar to the characterization of inequality (4) of
[8], one has

(|λ− at...t| − rst (A))|xt|m−1 ≤ |ats...s||xs|m−1. (3.3)

Obviously, λ ∈ Γt(A). If |xs| = 0, then (|λ − at...t| − rst (A)) ≤ 0. For |z − as...s| ≥ P t
s(A),

one has λ ∈ Nt,s(A); For |z − as...s| ≤ P t
s(A), we have λ ∈ Ht,s(A).

Otherwise, |xs| > 0. Moreover, from (3.1), we get

|λ− as...s||xs|m−1 ≤
∑

δsi2...im=0

|asi2...im ||xi2 | . . . |xim |

=
∑

t∈{i2,...,im}
|asi2...im ||xi2 | . . . |xim |+

∑
t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im ||xi2 | . . . |xim |

≤
∑

t∈{i2,...,im}
|asi2...im |xt|m−1 +

∑
t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im ||xs|m−1,

that is,

(|λ− as...s| −
∑

t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im |)|xs|m−1 ≤
∑

t∈{i2,...,im}

|asi2...im |xt|m−1. (3.4)

When |λ−at...t| ≥ rst (A) or |λ−as...s| ≥
∑

t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im | holds, multiplying inequal-

ities (3.3) with (3.4), we have
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(|λ− at...t| − rst (A))(|λ− as...s| −
∑

t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im |)|xt|m−1|xs|m−1

≤ |ats...s|
∑

t∈{i2,...,im}
|asi2...im |xt|m−1|xs|m−1.

Note that |xs| > 0, |xt| > 0. Then

(|λ− at...t| − rst (A))(|λ− as...s| −
∑

t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im |) ≤ |ats...s|
∑

t∈{i2,...,im}

|asi2...im |,

equivalently,

(|λ− at...t| − rst (A))(|λ− as...s| − P t
s(A)) ≤ |ats...s|(rs(A)− P t

s(A)),

which implies λ ∈ Nt,s(A) ⊆ N (A).

When |λ − at...t| ≤ rst (A) and |λ − as...s| ≤
∑

t /∈ {i2, . . . , im}
δsi2...im

= 0

|asi2...im | hold, one has λ ∈

Ht,s(A) ⊆ N (A). So, the result holds. 2

Now, we give a proof to show N (A) ⊆ K(A).

Corollary 3.5. Let A be a complex tensor of order m and dimension n ≥ 2. Then,

σ(A) ⊆ N (A) ⊆ K(A),

where K(A) is defined in Theorem 2.2 of [8].

Proof. For any λ ∈ N (A), without loss of generality, there exists s ̸= t such that λ ∈ Nt,s(A)
with λ ∈ Γt(A), that is

(|λ− at...t| − rst (A))(|λ− as...s| − P t
s(A)) ≤ |ats...s|(rs(A)− P t

s(A)),

|λ− at...t| ≤ rt(A).

Then,

(|λ− at...t| − rst (A))(|λ− as...s|) ≤ (|λ− at...t| − rst (A))P t
s(A) + |ats...s|(rs(A)− P t

s(A))
= |ats...s|rs(A) + (|λ− at...t| − rst (A)− |ats...s|)P t

s(A) ≤ |ats...s|rs(A),

since (|λ − at...t| − rst (A) − |ats...s|) = |λ − at...t| − rt(A) ≤ 0. This shows λ ∈ Kt,s(A).
Otherwise, there exists s ̸= t such that λ ∈ Ht,s(A), that is

Ht,s = {λ ∈ C : |λ− at...t| ≤ rst (A), |λ− as...s| ≤ P t
s(A)},

which implies (|λ − at...t| − rst (A))(|λ − as...s|) ≤ |ats...s|rs(A). Thus, [Nt,s(A)
∩

Γt(A)] ⊆
Kt,s(A) and Ht,s ⊆ Kt,s(A). 2

From Theorem 3.1, Theorem 3.4, Theorem 2.3 [8], Corollary 3.3 and Corollary 3.5, there
exist inclusion relations among M(A),KS(A),N (A),K(A),Γ(A).

Corollary 3.6. Let A be a complex tensor of order m and dimension n ≥ 2. Then,

σ(A) ⊆ M(A) ⊆ KS(A) ⊆ K(A) ⊆ Γ(A),

σ(A) ⊆ N (A) ⊆ K(A) ⊆ Γ(A).

In particular, M(A) = KS(A) = N (A) = K(A) when n = 2.
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The following example shows that Corollary 3.6 holds. It is noteworthy that Theorem
3.1 and Theorem 3.4 are different, since we cannot judge the relations between Mi,j and
Ni,j

∪
Hi,j .

Example 3.7. Consider 3 order 3 dimensional tensor A = (aijk) defined by

aijk =

 a111 = 1; a222 = 2; a333 = 3;
a112 = a121 = a211 = −1; a113 = a131 = a311 = 1; a233 = a332 = a323 = 2;
aijk = 0, otherwise.

By simple computation, we get the eigenpairs of A as follows

{(λ, x) : (λ1 = 1, u1 = (1, 0, 0)), (λ2 = 2, u2 = (0, 1, 0)),
(λ3 = 3, u3 = (0, 0, 1)), (λ4 = −1.5298, u4 = (1.0000, 0.6325,−0.6325),
(λ5 = 5.8768, u5 = (0.1050, 0.6448, 0.9007)}.

For convenience of calculations, we take λ as a real number, where λ is an eigenvalue of A.
According to Theorem 6 of [13, 20], we have

λ ∈ Γ(A) =
∪
i∈N

Γi(A) =
∪

[−3, 5]
∪

[−1, 5]
∪

[−2, 8] = [−3, 8].

According to Theorem 2.1 of [8], we have

λ ∈ K(A) =
∪

i,j∈N,i ̸=j

Ki,j(A) = [−3, 8],

where K1,2

∪
K1,3 = [−3, 5]

∪
[−3, 5] = [−3, 5],K2,1

∪
K2,3 = [−2, 5+

√
17

2 ]
∪
[2 −

√
11, 3 +√

10] = [−2, 3 +
√
10] and K3,1

∪
K3,2 = [−

√
5, 4 +

√
13]

∪
[−2, 8] = [−

√
5, 8].

According to Theorem 2.2 of [8], choosing S1 = {3, 2}, S̄1 = {1}, we have

λ ∈ KS1 = (K2,1

∪
K3,1)

∪
(K1,2

∪
K1,3) = [−3, 4 +

√
13]).

Similarly, we have

According to Theorem 3.1, we have

λ ∈ M(A) =
∪
i∈N

∩
j∈N,j ̸=i

Mi,j(A) = [−3, 4 +
√
13],

where M1,2

∩
M1,3 = [−3, 5]

∩
[−3, 5] = [−3, 5], M2,1

∩
M2,3 = [−2, 5+

√
17

2 ]
∩
[2−

√
11, 3+√

10] = [2−
√
11, 5+

√
17

2 ] and M3,1

∩
M3,2 = [−

√
5, 4 +

√
13]

∩
[−2, 8] = [−2, 4 +

√
13]. It is

verified that
KS(A) ⊆ K(A) ⊆ Γ(A).

According to Theorem 3.4, we have

N1,3(A)
∩

Γ1(A) = ([−3,−1]
∪

[5, 7])
∩

[−3, 5] = [−3,−1]
∪

{5} ⊂ [−3, 5] = K1,3(A).

Similarly, we have
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N1,2(A)
∩

Γ1(A) = [−3, 0]
∪
[4, 5] N1,3(A)

∩
Γ1(A) = [−3,−1]

∪
{5}

N2,1(A)
∩

Γ2(A) = [−1, 1]
∪
[2, 5] N2,3(A)

∩
Γ2(A) = [−1, 5]

N3,1(A)
∩
Γ3(A) = [−(1 +

√
2),

√
2− 1]

∪
[1 +

√
2, 5 +

√
6] N3,2(A)

∩
Γ3(A) = [−2, 1]

∪
[3, 8]

and ∪
Hi,j(A) = H(A) = [−1, 3],

where H1,2 = [−1, 3],H1,3 = [1, 3],H2,1 = [1, 3],H2,3 = [2, 3],H3,1 = [1, 3],H3,2 = [1, 3]. So,

λ ∈ N (A) = [−3, 8].

Clearly,

Ni,j(A)
∩

Γi(A) ⊆ Ki,j(A),

σ(A) ⊆ N (A) ⊆ K(A) ⊆ Γ(A).

It is worth noting that we cannot judge relation between N (A) and M(A), since there
are no inclusion relations between Mi and Ni, where Mi(A) =

∩
j∈N,j ̸=i Mi,j(A) and

Ni(A) =
∪

j∈N,j ̸=i[Ni,j(A)
∩
Γi(A)]. For instance, N3(A) = [−(1 +

√
2), 1]

∪
[1 +

√
2, 8] *

[−2, 4 +
√
13] = M3(A).

4 Applications

4.1 Bounds on the Largest Eigenvalue For Nonnegative Tensors

Based on eigenvalue inclusion theorems in Section 3, we give several bounds of the largest
eigenvalue of nonnegative tensors, which improve some existing bounds [8, 13, 20]. We start
this section with some fundamental results of nonnegative tensors.

Lemma 4.1 (Lemma 5.2 of [20]). Let A be a nonnegative tensor with order m and dimension
n. Then,

min
i∈N

Ri(A) ≤ ρ(A) ≤ max
i∈N

Ri(A),

where Ri(A) =
∑

i2,...im∈N aii2...im .

Lemma 4.2 (Lemma 3.2 of [8]). Let A be a nonnegative tensor with order m and dimension
n ≥ 2. Then,

ρ(A) ≥ max
i∈N

ai...i.

Lemma 4.3 (Theorem 3.1 of [8]). Let A be a nonnegative tensor with order m and dimension
n ≥ 2. Then,

ρ(A) ≤ w = max
i,j∈N,i ̸=j

1

2
{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)},

where ∆i,j(A) = (ai...i − aj...j + rji (A))2 + 4aij...jrj(A).

Lemma 4.4 (Theorem 3.2 of [8]). Let A be a nonnegative tensor with order m and dimension
n ≥ 2. Then,

ρ(A) ≤ wS = max{wS , wS̄},

where wS = max
i∈S,j∈S̄

1
2{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)} and wS̄ = max

i∈S̄,j∈S

1
2{ai...i + aj...j +

rji (A) + ∆
1
2
i,j(A)}
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Now, we focus on establishing sharp bounds for the largest eigenvalue of nonnegative
tensors.

Theorem 4.5. Let A be a nonnegative tensor with order m and dimension n ≥ 2. Then,

min
i∈N

max
j∈N,i ̸=j

1
2{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)} = u ≤ ρ(A)

≤ ū = max
i∈N

min
j∈N,i ̸=j

1
2{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)},

where ∆i,j(A) = (ai...i − aj...j + rji (A))2 + 4aij...jrj(A).

Proof. Suppose ρ(A) is the largest eigenvalue of A associated with eigenvalue x. Without
loss of generality, xρ > 0 with xρ ≥ xj for j ∈ N. It follows from Theorem 3.1 that

(ρ(A)−aρ...ρ)(ρ(A)−as...s)−aρs...sasρ...ρ ≤ (ρ(A)−as...s)r
s
ρ(A)+aρs...sr

ρ
s(A),∀s ∈ N, s ̸= ρ,

that is,
((ρ(A)− aρ...ρ)− rsρ(A))(ρ(A)− as...s) ≤ aρs...srs(A).

Then, solving for ρ(A), we have

ρ(A) ≤ 1

2
(aρ...ρ + as...s + rsρ(A) + ∆

1
2
ρ,s(A))

Since s ∈ N is chosen arbitrarily, it holds

ρ(A) ≤ min
j∈N,j ̸=ρ

1

2
{aρ...ρ + aj...j + rjρ(A) + ∆

1
2
ρ,j(A)},

Furthermore,

ρ(A) ≤ max
i∈N

min
j∈N,i ̸=j

1

2
{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)}.

On the other hand, set B = A + E , where E is a positive tensor with every entry being ϵ.
Obviously, B = A+E is irreducible. Suppose ρ(A+E) is the largest eigenvalue of A+E with
corresponding eigenvector x. It follows from Theorem 1.4 of [2] that xi > 0, i = 1, 2 . . . , n.
Let |xt| ≤ |xj |, for j ∈ N. Similarly, ∀s ̸= t, we get

[(ρ(A+ E)− (at...t + ϵ)− rst (A+ E)][ρ(A+ E)− (as...s + ϵ)] ≥ (ats...s + ϵ)rs(A+ E).

Then, solving for ρ(A+ E), we have

ρ(A+ E) ≥ 1

2
[(at...t + ϵ) + (as...s + ϵ) + rst (A+ E) + ∆

1
2
t,s(A+ E)].

Based on Theorem 2.3 of [20], we notice that ρ(A) is a continuous function of ϵ. So,

ρ(A) = limϵ→0 ρ(A+ E) ≥ limϵ→0
1
2 [(at...t + ϵ) + (as...s + ϵ) + rst (A+ E) + ∆

1
2
t,s(A+ E)]

= 1
2{at...t + as...s + rst (A) + ∆

1
2
s,t(A)}.

From the arbitrariness of s, we obtain

ρ(A) ≥ max
j∈N,j ̸=t

1

2
{at...t + aj...j + rjt (A) + ∆

1
2
t,j(A)},

moreover,

ρ(A) ≥ min
i∈N

max
j∈N,j ̸=i

1

2
{ai...i + aj...j + rji (A) + Λ

1
2
i,j(A)}.

2
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Corollary 4.6. Let A be a nonnegative tensor with order m and dimension n ≥ 2. Then,

max{max
i∈N

ai...i,min
i∈N

Ri(A)} ≤ u ≤ ρ(A) ≤ ū ≤ wS ≤ max
i∈N

Ri(A),

where u, ū, wS are defined in Theorem 4.5 and Lemma 4.4, respectively.

Proof. We first show maxi∈N ai...i ≤ u. Noting that aij...jrj(A) ≥ 0, we have

4aij...jrj(A) + (ai...i − aj...j + rji (A))2 ≥ (aj...j − ai...i − rji (A))2,

that is,√
4aij...jrj(A) + (ai...i − aj...j + rji (A))2 ≥

√
(ai...i − aj...j − rji (A))2 ≥ aj...j−ai...i−rji (A),

1

2
(

√
4aij...jrj(A) + (ai...i − aj...j + rji (A))2 + ai...i + aj...j + rji (A)) ≥ aj...j ,

furthermore,

min
i∈N

1

2
(

√
4aij...jrj(A) + (ai...i − aj...j + rji (A))2 + ai...i + aj...j + rji (A)) ≥ aj...j ,

which implies

max
i∈N,j ̸=i

min
i∈N

1

2
(

√
4aij...jrj(A) + (ai...i − aj...j + rjk(A))2 + ai...i + aj...j + rji (A)) ≥ max

j∈N
aj...j .

Secondly, we divide the proof into two parts to get mini∈N Ri(A) ≤ u.
(i) For i, j ∈ N, i ̸= j, if Ri(A) ≥ Rj(A), then

aij...j ≥ aj...j − ai...i − rji (A) + rj(A).

Similar to the proof of Theorem 3.5 of [8], we obtain

1

2
{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)} ≥ Rj(A),

furthermore,

min
i∈N

max
j∈N,i ̸=j

1

2
{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)} ≥ min

j∈N
Rj(A). (4.1)

(ii) For i, j ∈ N, i ̸= j, if Ri(A) ≤ Rj(A), then

rj(A) ≥ ai...i − aj...j + rji (A) + aij...j .

Similar to the proof of Theorem 3.5 of [8], we obtain

1

2
{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)} ≥ Ri(A),

equivalently,

mini∈N maxj∈N,i ̸=j
1
2{ai...i + aj...j + rji (A) + ∆

1
2
i,j(A)} ≥ mini∈N Ri(A).
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This combined with (4.1) yields mini∈N Ri(A) ≤ ū.
Finally, we only prove ū ≤ wS , since wS ≤ maxi∈N Ri(A) from Theorem 3.5 of [8]. We

rewrite
ū = max{ūS , ūS̄},

where ūS = maxi∈S minj∈N,j ̸=i
1
2{ai...i + aj...j + rji (A) + Λ

1
2
i,j(A)}. Obviously, ūS ≤ wS .

Similarly, ūS̄ ≤ wS̄ . So,

ū = max{ūS , ūS̄} ≤ max{wS , wS̄} = wS .

This completes the proof. 2

From Theorem 3.4, we obtain sharp bounds of the largest eigenvalue for nonnegative
tensors.

Lemma 4.7. Let A be a nonnegative tensor with order m and dimension n ≥ 2. Then,

min
i,j∈N,i ̸=j

1
2{[ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)] = v ≤ ρ(A) ≤

max
i,j∈N,i ̸=j

{ 1
2 [ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)],min{rji (A) + ai...i, P

i
j (A) + aj...j}},

where Λi,j(A) = (ai...i − aj...j + rji (A)− P i
j (A))2 + 4[aij...j(rj(A)− P i

j (A))]).

Proof. Suppose ρ(A) is the largest eigenvalue of A. From Theorem 3.4, there exist i0, j0 ∈ N ,
j0 ̸= i0 such that ρ(A) ∈ Ni0,j0(A) or ρ(A) ∈ Hi0,j0(A). We divide the proof into two parts
to show the desired result.

When ρ(A) ∈ Ni0,j0(A), we have

(|ρ(A)− ai0...i0 | − rj0i0 (A))(|ρ(A)− aj0...j0 | − P i0
j0
(A)) ≤ |ai0j0...j0 |(rj0(A)− P i0

j0
(A)).

Similar to the proof of Theorem 4.5, one has

(ρ(A)− ai0...i0 − rj0i0 (A))(ρ(A)− aj0...j0 − P i0
j0
(A)) ≤ ai0j0...j0(rj0(A)− P i0

j0
(A)),

Then, solving for ρ(A), we get upper bound of ρ(A)

ρ(A) ≤ 1

2
(ai0...i0 + aj0...j0 + rj0i0 (A) + P i0

j0
(A) + Λ

1
2
i0,j0

(A))

≤ max
i,j∈N,i ̸=j

1

2
{ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)}.

(4.2)

Similar to the proof of upper bound of ρ(A), we get lower bound of ρ(A)

ρ(A) ≥ min
i,j∈N,i ̸=j

1

2
{ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)}. (4.3)

When ρ(A) ∈ Hi0,j0(A), one has

ρ(A)− ai0...i0 ≤ rj0i0 (A) and ρ(A)− aj0...j0 ≤ P i0
j0
(A),

which shows ρ(A) ≤ min{rj0i0 (A) + ai0...i0 , P
i0
j0
(A) + aj0...j0}. Furthermore,

ρ(A) ≤ max
i,j∈N,i ̸=j

min{rji (A) + ai...i, P
i
j (A) + aj...j} (4.4)
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From (4.2) and (4.3), we get

ρ(A) ≤ max
i,j∈N,i ̸=j

{1
2
[ai...i+aj...j+rji (A)+P i

j (A)+Λ
1
2
i,j(A)],min{rji (A) + ai...i, P

i
j (A) + aj...j}}.

2

Theorem 4.8. Let A be a nonnegative tensor with order m and dimension n ≥ 2. Then,

min
i,j∈N,i ̸=j

1
2{[ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)] = v ≤ ρ(A) ≤

v̄ = max
i,j∈N,i ̸=j

[min 1
2{[ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)], 2Ri(A)},

min{rji (A) + ai...i, P
i
j (A) + aj...j}],

where Λi,j(A) = (ai...i − aj...j + rji (A)− P i
j (A))2 + 4[aij...j(rj(A)− P i

j (A))]).

Proof. Suppose ρ(A) is the largest eigenvalue of A. It follows from Theorem 3.4 that there
exist i0, j0 ∈ N , j0 ̸= i0 such that ρ(A) ∈ Ni0,j0(A)

∩
Γi0(A), i.e., ρ(A) ≤ Ri0(A). This

combined with (4.8) yields

ρ(A) ≤ v̄ = max
i,j∈N,i ̸=j

min
1

2
{[ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)], 2Ri(A)}.

Using (4.4), we have

ρ(A) ≤ v̄ = max
i,j∈N,i ̸=j

[min
1

2
{[ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)], 2Ri(A)},

min{rji (A) + ai...i, P
i
j (A) + aj...j}].

(4.5)

On the other hand, from ρ(A) ∈ Γi(A), we know ai...i − ri(A) ≤ ai...i ≤ ρ(A), since Lemma
4.2 holds. Similar to the proof of Corollary 4.6, we have

max
i∈N

ai...i ≤ min
i,j∈N,i ̸=j

1

2
{[ai...i + aj...j + rji (A) + P i

j (A) + Λ
1
2
i,j(A)] = v ≤ ρ(A).

So, the conclusion is satisfied. 2

Corollary 4.9. Let A be a nonnegative tensor with order m and dimension n ≥ 2. Then,

max{max
i∈N

ai...i,min
i∈N

Ri(A)} ≤ v ≤ ρ(A) ≤ v̄ ≤ w ≤ max
i∈N

Ri(A),

where v, v̄, w are defined in Theorem 4.8 and Lemma 4.3, respectively.

Proof. Similar to the proof of Corollary 4.6 and Corollary 3.5, we obtain the conclusion
holds. 2

Now, we give an example to show that the bounds of Theorem 4.5 and Theorem 4.8 are
tighter than results in Lemmas 4.1, 4.2 and 4.3.

Example 4.10. Consider 3 order 3 dimensional tensor A = (aijk) defined by

aijk =

 a111 = 1; a222 = 2; a333 = 3;
a112 = a121 = a211 = 1; a113 = a131 = a311 = 1; a233 = a332 = a323 = 1;
aijk = 0, otherwise.
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Since A is a supersymmetric nonnegative tensor, from Theorem 3.6 of [23], we get the
largest eigenvalue λ = 5.1587 of A with nonnegative eigenvector x = (0.6645, 0.5841, 0.7976).
In the following, we shall estimate the largest eigenvalue ofA according to different Theorems
or Lemmas.

According to Theorem 4.5, we have

4 = max{max
i∈N

ai...i,min
i

Ri(A)} ≤ u = 3 +
√
3 ≤ ρ(A) ≤ 3 + 2

√
2 = ū;

By Theorem 4.8, we obtain

4 = max{max
i∈N

ai...i,min
i

Ri(A)} ≤ v = 3 +
√
2 ≤ ρ(A) ≤ max{4 +

√
3, 5} = 4 +

√
3 = v̄;

According to Lemma 4.1, we have
4 ≤ ρ(A) ≤ 6;

From Lemma 4.2 and Lemma 4.3, we get

3 ≤ ρ(A) ≤ 6;

Similar to Example 3.7, by Lemma 4.4,{
wSi = 6, i = 2, 3, 4, 5

wSi = 3 + 2
√
2, i = 1, 6,

where Si is the same as Example 3.7. This example shows that bounds of Theorem 4.5 and
Theorem 4.8 are tighter.

4.2 Testing Positive Semidefiniteness and Positive Definiteness of a tensor

By applying the results obtained in Section 3, we give some sufficient conditions for the
positive semidefiniteness (positive definiteness) of an even-order real supersymmetric tensor.

Theorem 4.11. Let A be an even-order real supersymmetric tensor of order m dimension
n with ai...i ≥ 0, i ∈ N. For i ∈ N, there exists j ̸= i such that

ai...iaj...j − |aij...jaji...i| ≥ |aij...j |rij(A) + aj...jr
j
i (A). (4.6)

Then, A is positive semi-definite.

Proof. Let λ be an H-eigenvalue of A. Suppose that λ < 0. From Theorem 3.1, we have
λ ∈ M, which implies that there exists i0 ∈ N such that λ ∈ Mi0,j for all j ∈ N, j ̸= i0,
that is,

|(λ− ai0...i0)(λ− aj...j)− ai0j...jaji0...i0 | ≤ |(λ− aj...j)|rji0(A) + |ai0j...j |r
i0
j (A). (4.7)

On the other hand, from ai0...i0 ≥ 0 and (4.6), there exists j0 ̸= i0 such that

(ai0...i0 − rj0i0 (A))aj0...j0 − |ai0j0...j0aj0i0...i0 | ≥ |ai0j0...j0 |r
i0
j0
(A), (4.8)

which implies ai0...i0 ≥ rj0i0 (A). Since λ < 0 and ai0...i0 ≥ 0, from (4.8), we obtain

(|λ− ai0...i0 | − rj0i0 (A))(|λ− aj0...j0 |)− |ai0j0...j0aj0i0...i0 | > |ai0j0...j0 |r
i0
j0
(A).
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Equivalently, we have

|λ− ai0...i0 ||λ− aj0...j0 | − |ai0j0...j0aj0i0...i0 | − rj0i0 (A)(|λ− aj0...j0 |) > |ai0j0...j0 |r
i0
j0
(A).

Thus,

|(λ− ai0...i0)(λ− aj0...j0)− ai0j0...j0aj0i0...i0 | ≥ |(λ− ai0...i0)(λ− aj0...j0)|
− |ai0j0...j0aj0i0...i0 |

> rj0i0 (A)(|λ− aj0...j0 |) + |ai0j0...j0 |r
i0
j0
(A),

which contradicts (4.7). Hence, λ ≥ 0. This shows that A is positive semi-definite. 2

Corollary 4.12. Let A be an even-order real supersymmetric tensor of order m dimension
n with ak...k > 0, k ∈ N. For i ∈ N, there exists j ̸= i such that

ai...iaj...j − |aij...jaji...i| > |aij...j |rij(A) + aj...jr
j
i (A).

Then, A is positive definite.

Proof. Similar to the proof of Theorem 4.11, we obtain the results. 2

Now we use the following example to show how to test positive semi-definiteness and
positive definiteness of a tensor by Theorem 4.11 and Corollary 4.12.

Example 4.13. Consider 4 order 3 dimensional tensor A = (aijkl),B = (bijkl) defined by

aijkl =

 a1111 = 1; a2222 = 2; a3333 = 1;
a1122 = a1221 = a2211 = a2112 = −1

2 ; a2233 = a2332 = a3322 = a3223 = −1
2 ;

aijkl = 0, otherwise,

bijkl =

 b1111 = 1; b2222 = 2; b3333 = 2;
b2233 = b2332 = b3322 = b3223 = −1

2 ;
bijkl = 0, otherwise.

It can be verified that A,B satisfy all the conditions of Theorem 4.11 and Corollary 4.12,
respectively. So, A is positive semi-definite and B is positive definite. Indeed, by simple
computation, we may compute the smallest eigenvalue λA = 0, λB = 1.

Based on Theorem 3.4, the conclusions follow immediately.

Theorem 4.14. Let A be an even-order real supersymmetric tensor of order m dimension
n with ak...k ≥ 0, k ∈ N. For i, j ∈ N, i ̸= j, the following conditions are satisfied

(ai...i − rji (A))(aj...j − P i
j (A)) ≥ |aij...j |(rj(A)− P i

j (A)),

ai...i ≥ rji (A) and aj...j ≥ P i
j (A).

Then, A is positive semi-definite.

Corollary 4.15. Let A be an even-order real supersymmetric tensor of order m dimension
n with ak...k > 0, k ∈ N. For i, j ∈ N, i ̸= j, the following conditions are satisfied

(ai...i − rji (A))(aj...j − P i
j (A)) > |aij...j |(rj(A)− P i

j (A)),

ai...i > rji (A) and aj...j > P i
j (A).

Then, A is positive definite.
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5 Conclusion

In this paper, we have established several Brauer-type eigenvalue inclusion theorems for gen-
eral tensors, which achieve sharper conclusions than existing results [8, 13]. In some sense,
we have answered the question raised in [8]. Furthermore, we obtained some bounds for the
largest eigenvalue of a nonnegative tensor which are sharper than that of [8, 13, 20]. In ad-
dition, we have given several sufficient conditions to test positive (positive semidefiniteness)
definiteness of an even-order real supersymmetric tensor.
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