
2018

246 J. TAYYEBI AND M. AMAN

is a penalty function to measure the distance between c and ĉ.
To the best of our knowledge, the problem (1.1) has been only studied by Nguyen and

Chassein [22] with the l1 norm penalty function given by f(c, ĉ) =
∑

ej∈E |ĉj − cj |. The
authors showed that the problem is NP-hard even on the cactus networks. Then they
presented some efficient approaches just for the cases that the network is a tree or a cycle.

In this article, we consider the problem (1.1) on trees under three different distances:

(I) the weighted l1 norm: f(c, ĉ) =
∑

ej∈E wj |ĉj − cj |;

(II) the weighted l∞ norm: f(c, ĉ) = maxej∈E |ĉj − cj |;

(III) the weighted sum-type Hamming distance: f(c, ĉ) =
∑

ej∈E wjH(cj , ĉj) where

H(cj , ĉj) is the Hamming distance between cj and ĉj , i.e., H(cj , ĉj) = 0 if ĉj = cj
and H(cj , ĉj) = 1 otherwise.

For the weighted l1 norm, it is shown that the problem is transformed into a minimum
cost flow problem on an auxiliary network and consequently, it can be solved in strongly
polynomial time. It is remarkable that a combinatorial algorithm is designed in [22] to solve
the problem (1.1) on a tree under the l1 norm. But the algorithm can not solve the problem
under the weighted l1 norm in its current form. Hence, the main advantage of our approach
is its generality. For the weighted l∞ norm, an efficient algorithm is designed to solve
the problem by using the binary search technique. For the weighted sum-type Hamming
distance, it is proved that the problem is NP-hard on trees. As a further result, it is also
shown that the problem (1.1) is strongly NP-hard on bipartite networks under the weighted
sum-type Hamming distance and the l1 norm.

A typical application of the problem (1.1) is in security network design discussed by
Nguyen and Chassein [22]. Here, we illustrate another application on urban transportation
systems. Figure 1.a shows two main city zones C and C ′ joined by several routes. There
exists a hospital in the neighborhood of the zone C ′. Due to transporting patients between
the hospital and health centers of the zone C ′, the road network planners are interested in
reducing the traffic flow along the road joining the hospital and the zone C ′. This can be
done by adding or removing toll stations and traffic lights, i.e., by increasing the cost of
transportation along the routes which pass through the hospital and decreasing the cost of
transportation along the others. This problem is equivalent to solving an inverse eccentric
vertex problem defined on the network shown in Figure 1.b in which C is the origin vertex
and C ′

1 is the destination vertex. For obtaining a solution to the inverse eccentric vertex
problem, one can add toll stations and traffic lights in the path from C to C ′

1 and also, can
remove some of them in the other paths. This yields the reduction of traffic flow along the
road joining C ′ and the hospital. Since adding (or removing) toll stations and traffic lights
has a fixed amount of penalty, the objective function can be stated in term of the Hamming
distance instead of the lp norms.

The rest of the paper is organized as follows. Section 2 considers the problem (1.1) on
trees under the weighted l1 norm. Section 3 presents an efficient algorithm for solving the
problem (1.1) on trees under the weighted l∞ norm. Section 4 is devoted to the complexity of
the problem (1.1) under the sum-type Hamming distance. Finally, some concluding remarks
are given in Section 5.

2 Literature review

The concept of inverse problems was first proposed by Tarantola in geophysical sciences [24].
Subsequently, Burton and Toint [8, 9] studied the inverse shortest path problem in which the

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 247

Figure 1: (a) An urban transportation system; (b) The corresponding network of the inverse
eccentric vertex problem.

l2 norm is used to measure the modifications. They also introduced two applications of the
inverse shortest path problem in traffic modeling and seismic tomography. Ahuja and Orlin
considered the inverse linear programming problem under the l1 and l∞ norms [2, 3]. They
showed that this problem can be formulated as a new linear programming problem. They
also considered the inverse minimum cost flow problem as a special case. In the case that
the modifications of the cost vector is measured by the l1 norm, they proved that the inverse
minimum cost flow problem is reducible to a unit capacity minimum cost flow problem. For
the l∞ norm, they converted the inverse problem into a minimum cost-to-time ratio cycle
problem. Afterwards, many authors considered the inverse optimization problems under the
l1 and l∞ norms (for a survey, see [14, 12]).

The Hamming distances are also used to measure the modifications in the inverse opti-
mization problems. Two types of the Hamming distances are applied in the literature: (I)
the weighted sum-type Hamming distance (H1); (II) the weighted bottleneck-type Hamming
distance (H∞). As the Hamming distances are nonconvex and discontinuous at every point,
some inverse optimization problems under the Hamming distances have different behaviour
in contrast to those under the l1 and l∞ norms. For example, the inverse assignment prob-
lem under the H1 distance is NP-hard while the problem under the l1 norm can be solved in
strongly polynomial time [17, 28]. This different behaviour can be also seen in the inverse
minimum cost flow problem [3, 5, 15, 25, 26], and the inverse minimum cut problem [27, 18].
However, some inverse optimization problems have a similar behaviour under the H1 dis-
tance and the l1 norm, e.g., the inverse maximum flow problem [11, 19] and the capacity
inverse minimum cost flow problem [4, 13, 20]. This argument shows that it is worthwhile to
study inverse optimization problems under various distances. In this article, we consider the
inverse eccentric vertex problem on trees and show that the problem is efficiently solvable
under the l1 and l∞ norms while it is NP-hard under the H1 distance.

3 Inverse eccentric vertex problem under the weighted l1 norm

In this section, we consider the problem (1.1) under the weighted l1 norm when the network
is a tree. We denote this tree by T (V,E, c). As every two vertices v and v′ of T are joined
by a unique path Pvv′ , the problem can be written as follows:

min z =
∑

ej∈E wj |ĉj − cj | (3.1a)

s.t.
∑

ej∈Psv
ĉj ≤

∑
ej∈Pst

ĉj ∀v ∈ V, (3.1b)

248 J. TAYYEBI AND M. AMAN

max{0, cj − lj} ≤ ĉj ≤ cj + uj ∀ej ∈ E, (3.1c)

where wj ≥ 0 is the weight associated with ej and the other parameters are defined as in
the problem (1.1).

From now on suppose that the tree T is rooted at the origin s. Each vertex v, except
the origin, has a unique predecessor, which is just the next vertex on the unique path in the
tree from v to s. We denote the predecessor of vertex v by pred(v). A vertex v′ is called
a successor of vertex v, denoted by succ(v), if pred(v′) = v. The descendants of a vertex
v are the vertex v itself, its successors, successors of its successors, and so on. The set of
descendants of v is denoted by des(v). The descendants of an edge ej are the descendants
of its endpoints. The set of descendants of ej is denoted by the similar notation des(ej).

The constraints (3.1c) guarantee the nonnegativity of ĉ. One can replace the constraints
(3.1c) by −l′ ≤ ĉ− c ≤ u where the lower bound vector l′ is defined as l′j = min{lj , cj} for
every ej ∈ E.

Without loss of generality, we assume that the destination vertex t is a leaf of the tree,
namely, a vertex with no successors. Because if not then we have to set ĉj = 0 for each edge
ej whose endpoints belong to des(t). Due to the nonnegativity of ĉ, the destination vertex
t is an eccentric vertex of s even if the constraints (3.1b) are satisfied only for the leaves of
T . This shows that the problem (3.1) can be rewritten as follows:

min z =
∑

ej∈E wj |ĉj − cj | (3.2a)

s.t.
∑

ej∈Psv
ĉj ≤

∑
ej∈Pst

ĉj ∀v ∈ L, (3.2b)

−l′j ≤ ĉj − cj ≤ uj ∀ej ∈ E, (3.2c)

where L is the set of leaves of T . We denote the number of leaves of T by r.

Lemma 3.1. The problem (3.2) is feasible if and only if∑
ej∈Pst\Psv

uj +
∑

ej∈Psv\Pst

lj ≥
∑

ej∈Psv\Pst

cj −
∑

ej∈Pst\Psv

cj (3.3)

for each v ∈ L.

Proof. Necessity: Let ĉ0 be a feasible solution to the problem (3.2). Then for each v ∈ L,∑
ej∈Psv\Pst

ĉ0j ≤
∑

ej∈Pst\Psv

ĉ0j

and based on the bound constraints,∑
ej∈Psv\Pst

(cj − lj) ≤
∑

ej∈Pst\Psv

(cj + uj),

which completes the proof of the necessity.
Sufficiency: Define ĉ0 as follows:

ĉ0j =

{
cj + uj , ej ∈ Pst,
cj − lj , otherwise,

∀ej ∈ E.

It is easy to see that ĉ0 is a feasible solution to the problem (3.2) if the inequality (3.3) holds
for any v ∈ L.

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 249

For obtaining a feasible solution of the problem (3.2), it is natural to increase the initial
length cj for some ej ∈ Pst and to decrease cj for some ej /∈ Pst. Let us present formally
this simple observation.

Lemma 3.2. If the problem (3.2) is feasible, then it contains an optimal solution ĉ∗ satis-
fying the following conditions:

(a) ĉ∗j ≥ cj , ∀ej ∈ Pst,

(b) ĉ∗j ≤ cj , ∀ej /∈ Pst.

Proof. The proof is straightforward.

By using Lemma 3.2, we can focus only on solutions satisfying the conditions (a) and
(b). For every ej ∈ E, we set xj = |ĉj − cj |. Based on the conditions (a) and (b),

• xj = ĉj − cj ∀ej ∈ Pst;

• xj = cj − ĉj ∀ej ∈ E\Pst.

Hence, the problem (3.2) is converted into

min z =
∑
ej∈E

wjxj

s.t.
∑

ej∈Psv\Pst

xj +
∑

ej∈Pst\Psv

xj ≥
∑

ej∈Psv\Pst

cj −
∑

ej∈Pst\Psv

cj ∀v ∈ L,

0 ≤ xj ≤ uj ∀ej ∈ Pst,

0 ≤ xj ≤ l′j ∀ej ∈ E\Pst,

In the matrix form, we represent the problem as follows:

min z = wTx (3.4a)

s.t. Ax ≥ b, (3.4b)

0 ≤ x ≤ u′. (3.4c)

Here,

x = [x1, x2, . . . , xn−1]
T ∈ Rn−1,

w = [w1, w2, . . . , wn−1]
T ∈ Rn−1,

u′ = [u′
1 . . . , u

′
n−1]

T ∈ Rn−1,

b = [b1, b2, . . . , br]
T ∈ Rr,

A = [a1,a2, . . . ,an−1] ∈ Rr×(n−1),

where

u′
j =

{
uj ej ∈ Pst,
l′j ej ∈ E\Pst,

∀ej ∈ E,

bv =
∑

ej∈Psv\Pst

cj −
∑

ej∈Pst\Psv

cj ∀v ∈ L,

and the coefficient matrix A is as follows:

avj =

{
1 ej ∈ (Psv\Pst) ∪ (Pst\Psv),
0 otherwise,

∀v ∈ L, ∀ej ∈ E. (3.5)

250 J. TAYYEBI AND M. AMAN

It is worth noting that an element avj of A is zero if either ej ∈ Pst ∩ Psv or ej /∈ Pst ∪ Psv.
On the other hand, for an edge ej ∈ Pst, if an element avj is zero then ej ∈ Pst∩Psv. While
for an edge ej /∈ Pst, if an element avj is zero then ej /∈ Pst ∪ Psv.
Now, we show that the 1’s of each column of A are consecutive whenever its rows are
arranged in a special fashion. For arranging the rows of A, we use a slight variation of the
well-known Depth-First-Search (DFS) algorithm as described below.

Algorithm 3.3.

Input: A tree T (V,E) with the origin vertex s as well as the destination vertex t.

Initialization: Mark all vertices as unvisited. Set L′ = ∅. Put all the vertices of Pst into
a stack S in the order of their appearance by starting at s.

Step 1: If all vertices are visited then stop. Otherwise, go to Step 2.

Step 2: Let i be the top element of S . If there exists an unvisited vertex j ∈ succ(i), then
go to Step 3. Otherwise, go to Step 4.

Step 3: Choose an unvisited successor j of i and add it to the top of S. Go to Step 1.

Step 4: Take i out from the top of the stack S. Mark i as visited. If i is a leaf, then add i
to L′. Go to Step 1.

In Algorithm 3.3, S is a stack and L′ is a sorted list of L. Since each row of A is associated
with a leaf of T , we suppose that the rows of A are arranged in the order of L′. To simplify
the notations, we denote the leaf vertex after (before) v in L′ by v + 1 (v − 1).

Remark 3.4. For each edge ej , the leaves belonging to des(ej) are consecutive in L′ because
the algorithm visits a vertex after all of its descendants have been visited.

Lemma 3.5. All elements of the first row of A are zero.

Proof. The first row of A corresponds to the destination vertex t because t is the first leaf
added to L′ (see Algorithm 3.3). If atj = 1 for some ej ∈ E, then ej ∈ Pst\Pst = ∅ based
on (3.5) which is a contradiction.

Theorem 3.6. The one entries of each column of A are consecutive.

Proof. Our proof is divided into two parts. In the first part, we prove the result for columns
aj corresponding to ej /∈ Pst. In second part, we prove that 0’s of aj , ej ∈ Pst, are
consecutive. This together with Lemma 3.5 imply that 1’s of aj are also consecutive for
every ej ∈ Pst.

Part 1: Let ej /∈ Pst. Note that avj = 1 for each v ∈ L′ with ej ∈ Psv. Equivalently,
avj = 1 for each v ∈ des(ej) ∩ L′. Based on Algorithm 3.3, all leaves belonging to des(ej)
appears consecutively in L′. Then 1’s of aj are consecutive.

Part 2: Let avj = 0 for some ej ∈ Pst. Then ej ∈ Psv∩Pst and consequently, v ∈ des(ej).
Since all leaves belonging to des(ej) are consecutive in L′, it follows that 0’s of aj are also
consecutive.

Using Theorem 5.2, the problem (3.4) is converted into a linear programming problem
whose +1’s of each column of the coefficient matrix are consecutive. This problem can be
transformed into an instance of the minimum cost flow problem [1]. We now describe this
transformation. Assume that we have arranged the constraints (3.1b) in the order of L′

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 251

Figure 2: (a) A tree T (V,E, c); (b) The auxiliary network of the corresponding minimum
cost flow problem.

. It is remarkable that the first constraint (3.1b) is 0Tx ≤ 0. Thus, it can be rewritten
as the equality form 0Tx = 0. We bring the vth constraint (3.1b) into an equality form
by introducing a surplus variable sv, for each row v ∈ L′\{t}. We next subtract the vth
constraint from the (v − 1)th constraint for each v ∈ L′\{t}. These operations create an
equivalent linear programming problem with exactly one +1 and exactly one −1 in each
nonzero column. Note that some columns may be zero. Indeed, column aj is zero if edge
ej belongs to Psv for all v ∈ L′. In this situation, we can set xj = 0 because the length
modification of ej changes the length of all paths by the same amount and has no effect
on the feasibility of the problem (3.4). Due to the property of the coefficient matrix, the
new linear programming problem is a minimum cost flow problem. This minimum cost flow
problem is defined on an auxiliary directed network introduced as follows:

• Each leaf vertex v ∈ L′ corresponds to a vertex of the auxiliary network.

• The auxiliary network contains an arc associated with each decision variable xj and
also, an arc associated with each surplus variable sv. Each arc corresponding to sv
emanates from v−1 and terminates at v. Each arc corresponding to xj emanates from
vj − 1 and terminates at v′j where vj is the row corresponding to the first element 1 of
aj and v′j is the row corresponding to the last element 1 of aj .

• The cost of each arc xj is wj and the cost of each arc sv is 0.

• The capacity of each arc xj is u′
j and all arcs sv are uncapacitated.

• bv =
∑

ej∈Psv\Pst
cj −

∑
ej∈Pst\Psv

cj represents the supply/demand of each vertex

v ∈ L′.

As each minimum cost flow problem can be solved efficiently [1], we have established the
following result.

Theorem 3.7. The problem (3.1) can be solved in strongly polynomial time.

We illustrate this transformation using an example.

252 J. TAYYEBI AND M. AMAN

Example 3.8. Consider the problem (3.1) defined on the network shown in Figure 3.a
where wj = lj = uj = 1 for each ej ∈ E. The problem can be formulated as the linear
programming problem (3.4) where

x1 x2 x3 x4 x5 x6

t(= v0) 0 0 0 0 0 0
A = v1 0 0 1 1 0 0

v2 0 1 1 0 1 0
v3 1 1 1 0 0 1

,w = u′ = [1, 1, 1, 1, 1, 1]T , b = [0, 1, 2, 2]T .

Note that the constraints of the inequality system Ax ≤ b are arranged by Algorithm 3.3.
By introducing surplus variable si for each constraint vi, i = 1, 2, 3, we state the constraints
Ax ≤ b in the equality form. Now, we subtract the constraint vi from the constraint vi−1 for

each i = 1, 2, 3. An equivalent linear programming problem is obtained with A′
[

x
s

]
= b′

instead of Ax ≤ b where
x1 x2 x3 x4 x5 x6 s1 s2 s3

t 0 0 -1 -1 0 0 1 0 0
A′ = v1 0 -1 0 1 -1 0 -1 1 0

v2 -1 0 0 0 1 -1 0 -1 1
v3 1 1 1 0 0 1 0 0 -1

, b′ = [−1,−1, 0, 2]T .

This linear programming problem is an instance of the minimum cost flow problem defined
on the network shown in Figure 3.b. The optimal solution of this minimum cost flow problem
is

x2 = x3 = 1, x1 = x4 = x5 = x6 = s1 = s2 = s3 = 0

with the optimal objective value 2. Therefore, the optimal solution of the inverse eccentric
problem (3.1) is

ĉ1 = 1, ĉ2 = 2, ĉ3 = 1, ĉ4 = 1, ĉ5 = 3 and ĉ6 = 4

with the optimal objective value 2.

Theorem 3.9. The problem (3.1) has an integer optimal solution if the vectors l,u and c
are integers.

Proof. The result follows immediately from the integrality property of network flows [1].

4 Inverse eccentric vertex problem under the weighted l∞ norm

In this section, we consider the inverse eccentric vertex problem on the tree T (V,E, c) under
the weighted l∞ norm. This problem can be formulated as follows:

min z = max
ej∈E

{wj |ĉj − cj |} (4.1a)

s.t.
∑

ej∈Psv

ĉj ≤
∑

ej∈Pst

ĉj ∀v ∈ L, (4.1b)

max{0, cj − lj} ≤ ĉj ≤ cj + uj ∀ej ∈ E, (4.1c)

where the parameters are defined as in the problems (1.1) and (3.1).
By Theorem 3.9, the optimal objective value of the problem (3.1) is an integer whenever

the problem data are integral. This property is not valid for the problem (4.2). For an
instance, consider the problem (4.2) defined on the network shown in Figure 3.a where
wj = lj = uj = 1 for each ej ∈ E. It is easy to see that an optimal solution of the problem

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 253

is ĉ1 = 5
3 , ĉ2 = 5

3 , ĉ3 = 2
3 , ĉ4 = 1

3 , ĉ5 = 7
3 , ĉ6 = 4 with the objective optimal value 2

3 .
Similar to Lemma 3.2, the following result is also valid for the problem (4.1) because the

feasible sets of both the problems (3.2) and (4.1) are the same.

Lemma 4.1. If the problem (4.1) is feasible, then it has an optimal solution ĉ that satisfies
the following conditions:

(a) ĉj ≥ cj , ∀ej ∈ Pst;

(b) ĉj ≤ cj , ∀ej /∈ Pst.

Proof. The proof is straightforward.

Based on Lemma 4.1, for obtaining an optimal solution to the problem (4.1), one can
increase the length of some edges ej ∈ Pst and decrease the length of some edges ej /∈ Pst

to satisfy the constraint (4.1b). Set xj = |ĉj − cj | for every ej ∈ E. Thus we have

• xj = ĉj − cj for every ej ∈ Pst;

• xj = cj − ĉj for every ej ∈ E\Pst.

By assuming λ = maxej∈E{wj |ĉj − cj |}, we can convert the problem (4.1) into the following
linear programming problem:

min z = λ (4.2a)

s.t.
∑

ej∈Psv∆Pst

xj ≥
∑

ej∈Psv\Pst

cj −
∑

ej∈Pst\Psv

cj ∀v ∈ L, (4.2b)

wjxj ≤ λ ∀ej ∈ E, (4.2c)

0 ≤ xj ≤ uj ∀ej ∈ Pst, (4.2d)

0 ≤ xj ≤ l′j ∀ej ∈ E\Pst, (4.2e)

where Psv∆Pst = (Psv\Pst) ∪ (Pst\Psv) and l′j = min{lj , cj} for every ej ∈ E.
Suppose that the problem (4.2) has a feasible solution with the objective value λ. One can
increase (or decrease) the modified lengths of this solution as long as the maximum weighted
change so that it still remains feasible. This observation is a motivation for introducing a
special type of feasible solutions. For a fixed value λ, we define xλ as

xλ
j =


uj ej ∈ Pst with wj = 0,
min{uj ,

λ
wj

} ej ∈ Pst with wj ̸= 0,

l′j ej ∈ E\Pst with wj = 0,

min{l′j , λ
wj

} ej ∈ E\Pst with wj ̸= 0,

∀ej ∈ E. (4.3)

The following lemma concerns the feasibility of the solution (xλ, λ).

Lemma 4.2. If the problem (4.2) contains a feasible solution with the objective value λ0,
then the solution (xλ, λ) is feasible to the problem where xλ is defined by (4.3) for each
λ ≥ λ0.

Proof. The proof is trivial.

Based on Lemma 4.2, we can restrict our attention to solutions (xλ, λ) and look for an
optimal solution among such solutions. The following corollary provides formally this result.

254 J. TAYYEBI AND M. AMAN

Corollary 4.3. If the optimal objective value of the problem (4.2) is λ∗, then (xλ∗
, λ∗) is

an optimal solution.

Corollary 4.4. The problem (4.2) is feasible if and only if xλmax satisfies the constraint
(4.2b) where λmax = max{maxej∈E\Pst

{wj l
′
j},maxej∈Pst{wjuj}}.

Proof. The sufficiency is trivial. We only prove the necessity. Let x be a feasible solution of
the problem (4.2) with the objective value λ0. Since xλmax = xλ for each λ ≥ λmax, we can
assume that λ0 ≤ λmax. Therefore, the problem contains a solution (x, λ0) whose objective
value is at most λmax. Based on Lemma 4.2, this implies that (xλmax , λmax) is feasible to
the problem.

Obviously, if t is an eccentric vertex of s with respect to the initial length vector c, then
λ = 0 is the optimal objective value of the problem (4.2). From Corollary 4.4, we can always
restrict our attention to the interval [0, λmax] for finding the optimal objective value of the
problem (4.2). Hence, the problem is reduced to finding the least value λ ∈ [0, λmax] so
that the vector xλ satisfies the constraints (4.2b). Suppose that λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λm

is a sorted list of elements of the set {wj l
′
j : ej ∈ E\Pst} ∪ {wjuj : ej ∈ Pst} ∪ {0}.

Obviously, λ0 = 0 and λm = λmax. Suppose that the problem (4.2) is feasible and its
optimal objective value is greater than zero. Then the problem contains an optimal solution
with objective value belonging to (λ0, λm]. Our proposed algorithm contains two phases. In
the first phase, the algorithm finds an interval (λi−1, λi] for some i ∈ {1, 2, . . . ,m} so that
the optimal objective value belongs to it. In the second phase, the optimal objective value is
computed by using the result obtained from the first phase. For finding an interval (λi−1, λi]
containing the optimal objective value, it is sufficient to look for an index i ∈ {1, 2, . . . ,m}
so that (xλi−1 , λi−1) is not feasible while (x

λi , λi) is feasible. Such an index i is identified by
using the binary search technique. In the second phase, the algorithm computes the optimal
objective value λ∗ ∈ (λi−1, λi].

We now show how to compute the optimal objective value λ∗. Based on Corollary 4.3,
xλ∗

is an optimal solution of the problem. By substituting xλ∗
in the constraints (4.2b), for

each v ∈ L, we have∑
ej∈Psv

cj −
∑

ej∈Pst

cj ≤
∑

ej∈Psv∆Pst

xλ∗

j

=
∑

ej∈Psv\Pst with wj ̸=0

min{λ
∗

wj
, l′j}+

∑
ej∈Psv\Pst with wj=0

l′j

+
∑

ej∈Pst\Psv with wj ̸=0

min{λ
∗

wj
, uj}+

∑
ej∈Pst\Psv with wj=0

uj

= λ∗
∑

ej∈(Psv∆Pst)\Eλi

1

wj
+

∑
ej∈(Psv\Pst)∩Eλi

l′j +
∑

ej∈(Pst\Psv)∩Eλi

uj

where Eλi = {ej ∈ E : λj < λi}. Consequently,

λ∗ ≥
∑

ej∈Psv
cj −

∑
ej∈Pst

cj −
∑

ej∈(Psv\Pst)∩Eλi l
′
j −

∑
ej∈(Pst\Psv)∩Eλi uj∑

ej∈(Psv∆Pst)\Eλi w
−1
j

.

Note that the right h and side of the last inequality depends on v ∈ L. Therefore, the
optimal objective value can be computed as follows:

λ∗ = max
v∈L

{
∑

ej∈Psv
cj −

∑
ej∈Pst

cj −
∑

ej∈(Psv\Pst)∩Eλi l
′
j −

∑
ej∈(Pst\Psv)∩Eλi uj∑

ej∈(Psv∆Pst)\Eλi w
−1
j

}. (4.4)

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 255

The second phase computes the optimal objective value of the problem (4.2) by using (4.4).
We are now ready to state formally our proposed algorithm for solving the problem (4.2).

Algorithm 4.5. Input: A tree T (V,E) with the edge length vector c, the lower bound lj
and the upper bound uj for each ej ∈ E.

Step 1: Sort elements of {wj l
′
j : ej ∈ E\Pst} ∪ {wjuj : ej ∈ Pst} ∪{0} in increasing order

where l′j = min{lj , cj} for each ej ∈ E. Suppose that λ0 ≤ λ1 ≤ . . . ≤ λm is the sorted
list.

Step 2: If xλm does not satisfy some constraints (4.2b), then the problem (4.2) is infeasible
and stop (see Corollary 4.4).

Step 3: If xλ0 satisfies the constraints (4.2b), then this solution is an optimal solution to
the problem (4.2) and stop.

Step 4: Set ilower = 0 and iupper = m.

Step 5: Set i = [
ilower+iupper

2]. If the solution xλi satisfies the constraints (4.2b), then set
iupper = i. Otherwise, set ilower = i. Repeat this step until iupper − ilower ≤ 1.

Step 6: Set i = iupper. Compute λ∗ ∈ (λi−1, λi] by using (4.4) and stop.

Output: If the problem (4.2) is feasible, then the solution xλ∗
is an optimal solution to the

problem with the objective function λ∗.

We now analyze the complexity of the algorithm. The number of iterations of Step 5
is O(log n) due to the binary search technique. Furthermore, the feasibility of xλi can be
checked in O(n2) time. Thus, the running time of Step 5 is O(n2 log n). On the other hand,
Step 6 computes λ∗ in O(n2) time. We have thus established the following result.

Theorem 4.6. Algorithm 4.5 solves the problem (4.2) in O(n2 log n) time.

5 Inverse eccentric vertex problem under the sum-type Hamming
distance

Assume that G(V,E, c) is a network together with nonnegative bound vectors l,u and a
nonnegative weight vector w defined on edges of G. In this section, we consider the inverse
eccentric vertex problem under the sum-type Hamming distance formulated as follows:

min z =
∑
ej∈E

wjH(cj , ĉj) (5.1a)

s.t. dĉ(v) ≤ dĉ(t) ∀v ∈ V, (5.1b)

max{0, cj − lj} ≤ ĉj ≤ cj + uj ∀ej ∈ E, (5.1c)

where the notations are defined as in the problem (1.1).
Here, we discuss the complexity of the problem (5.1). The decision version of this problem

is defined in the following.
Inverse Eccentric Decision (IED) problem:

Instance: An undirected network G(V,E, c) with two specified vertices s and t, a lower
bound vector l ≥ 0, an upper bound vector u ≥ 0, a penalty vector w ≥ 0 and a
nonnegative number K.

256 J. TAYYEBI AND M. AMAN

Question: Is there a new length vector ĉ that is feasible to the problem (5.1) and∑
ej∈E wjH(cj , ĉj) ≤ K?

Theorem 5.1. The IED problem is NP-complete even on path networks.

Proof. In order to prove the NP-completeness of the IED problem, we show that the Knap-
sack Decision (KD) problem, which is known to be NP-complete [16], is reduced to this
problem. The KD problem is stated as follows:
Knapsack Decision (KD) problem:

Instance: A set of n items, a nonnegative size sj and a nonnegative number pj for each
item j, two nonnegative numbers S and P .

Question: Does there exist a subset I of items such that
∑

j∈I sj ≤ S and
∑

j∈I pj ≥ P?

It is obvious that the IED problem belongs to the class NP. For each instance of the KD
problem, we construct an instance of the IED problem in the following manner. The vertex
set is V = {0, 1, 2, . . . , n + 1} in which the vertices 0 and n + 1 are respectively the origin
and the destination. The edge set is E = {(j − 1, j) : j = 1, 2, . . . , n} ∪ {(0, n + 1)}. Each
edge (j− 1, j), j = 1, 2, . . . , n, has a length of sj , a weight of pj , a lower bound of sj and its
upper bound is zero. The length of (0, n+1) is equal to S and its penalty is 0. We set both
the lower and the upper bounds of (0, n + 1) equal to zero and K =

∑n
j=1 pj − P . Figure

3.a illustrates this reduction.
Suppose that I is a certificate of a yes instance of the KD problem. It is shown that the

vector ĉ defined by

ĉij =

 S (i, j) = (0, n+ 1),
sj i = j − 1 and j ∈ I,
0 i = j − 1 and j /∈ I,

∀(i, j) ∈ A,

is a certificate to the corresponding instance of the IED problem. By construction, we have

dĉ(0, n) =

n∑
j=1

ĉj−1,j =
∑
j∈I

sj ≤ S = dĉ(0, n+ 1).

This guarantees that the destination vertex n+ 1 is an eccentric vertex of 0. On the other
hand, we observe that

∑
ej∈A

wjH(cj , ĉj) =
∑
j /∈I

pj =
n∑

j=1

pj −
∑
j∈I

pj ≤
n∑

j=1

pj − P = K.

Now, suppose that ĉ is a certificate of a yes instance of the introduced IED problem. Since
l0,n+1 = u0,n+1 = 0, it follows that ĉ0,n+1 = c0,n+1. Let I be a subset of items that j ∈ I if
and only if ĉj−1,j = cj−1,j for each j = 1, 2, . . . , n. It can be easily seen that the set I is a
certificate of the corresponding KD problem. This completes the proof.

Since any path graph can be considered as a subgraph of trees and cycles, Theorem 5.1
implies that the problem (5.1) is also NP-hard on trees and cycles. This result is interesting
because the problem under the l1 norm on trees and cycles is polynomially solvable [21].
However, the reduction of Theorem 5.1 does not prove that the problem (5.1) is NP-hard in
the strong sense. This is the subject of the following theorem.

Before we state the next theorem, we give some relevant definitions. Suppose that x is a

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 257

Figure 3: (a) An IED instance constructed from the KD problem; (b) An IED instance
constructed from the satisfiability problem.

boolean variable. We denote by x̄ the negation of boolean variable x. Given a set of boolean
variables X = {x1, x2, . . . , xn}, a truth assignment for X is a function t : X → {false, true}.
A literal is either a boolean variable or its negation. A clause on X consists of some literals
over X, and it is true under a truth assignment if and only if at least one of its members
is true under that assignment. Note that if a clause contains xj and its negation, then it is
true for each truth assignment. Thus, we can assume that any clause does not contain both
of xj and x̄j .

Theorem 5.2. The IED problem is strongly NP-complete even on bipartite networks.

Proof. The proof is based on a reduction from the satisfiability problem defined as follows:
Satisfiability (SAT) problem:

Instance: A setX = {x1, x2, . . . , xn} of boolean variables, m clauses C = {C1, C2, . . . , Cm}
on X.

Question: Is there a truth assignment for X such that all the clauses in C are true?

The SAT problem was the first known NP-complete problem [10]. For a given instance of
the SAT problem, we construct an instance of the IED problem in the following way.

• For each boolean variable xj , the network contains three vertices xj , x̄j and Dj . In
addition, for each clause Ci, the network has a vertex Ci. We also add two vertices s
and t to the network which are respectively the origin and the destination. Thus, the
vertex set is

V =
n∪

j=1

{xj , x̄j , Dj} ∪
m∪
i=1

Ci ∪ {s, t}.

• For each j = 1, 2, . . . , n, the network contains four edges (s, xj), (s, x̄j), (xj , Dj) and
(x̄j , Dj). For every i = 1, 2, . . . , n and every j = 1, 2, . . . , n, if xj ∈ Ci, then edge
(xj , Ci) is added to the network. If x̄j ∈ Ci, then edge (x̄j , Ci) is added to the network.
Thus, E =

∪n
j=1{(s, xj), (s, x̄j), (xj , Dj), (x̄j , Dj)} ∪

∪m
i=1

∪n
j=1{(xj , Ci) : xj ∈ Cj} ∪∪m

i=1

∪n
j=1{(x̄j , Ci) : x̄j ∈ Cj}.

258 J. TAYYEBI AND M. AMAN

The length of edges (s, xj) and (s, x̄j) is equal to 1 and the length of all the other edges
is zero.

• Each edge has a weight of 1.

• The upper bound of all edges is 1. The lower bound of edges (s, xj) and (s, x̄j) is 1
and the lower bound of all the other edges is zero.

• We set K = n.

Fiqure 3.b illustrates this reduction. Obviously, the introduced network is bipartite. By
noting the values of lower and upper bounds, we can only modify the length of edges (s, xj)
and (s, x̄j), j = 1, . . . , n, to make t form an eccentric vertex of s.

Suppose that a yes instance of the SAT is given and x0 is its certificate. Consider the
solution of the corresponding instance of the IED problem defined in the following manner:
for each j = 1, . . . , n, if x0

j = true, then the length of (s, xj) is decreased to 0, and otherwise,
the length of (s, x̄j) is decreased to 0. Obviously, the number of modified arcs is n. To prove
that t is an eccentric vertex of s, we must show that the distance from s to any other vertex
is zero. The distance from s to each vertex Dj equals to zero because one of the two edges
(s, xj) and (s, x̄j) is modified. The shortest path from s to each xj is the path s − xj if
x0
j = true and otherwise, it is the path s− x̄j −Dj −xj . Similarly, the shortest path from s

to each x̄j is the path s− x̄j if x0
j = false and it is the path s−xj −Dj − x̄j otherwise. For

every i = 1, 2, . . . ,m, there exists at least one index j ∈ {1, 2, . . . , n} so that either xj ∈ Ci

and x0
j = true or x̄j ∈ Ci and x0

j = false because x0 is a solution of the SAT problem. In
the former, the path s− xj −Ci is the shortest path with zero length and in the latter, the
path s− x̄j − Ci is the shortest path with zero length.

Now, suppose that ĉ is a solution to a yes instance of the IED problem. Note that if
there exists a j ∈ {1, . . . , n} so that both the edges (s, xj) and (s, x̄j) are not modified, then
the length of the shortest path from s to Dj is equal to 1 and consequently, t is not an
eccentric vertex of s. This fact guarantees that the solution ĉ has two properties: (1) the
number of modified arcs of ĉ is exactly n; (2) for each j = 1, 2, . . . , n, exactly one of two
edges {(s, xj) and (s, x̄j)} is modified. Define the boolean vector x0 as follows: For each
j = 1, . . . , n, if the length of (s, xj) is modified, then x0

j = true and otherwise, x0
j = false.

It is easy to verify that x0 is a solution to the corresponding SAT instance.

Note that the proof of Theorem 5.2 is also valid for the l1 and l2 norms. Hence, we
obtain a further conclusion as follows.

Corollary 5.3. The inverse eccentric vertex problem under the l1 and l2 norms is strongly
NP-hard even on bipartite networks.

6 Conclusion and further research

In this article, we considered the inverse eccentric vertex problem on trees. When the length
modifications are measured by the weighted l1 norm, we showed that the problem is reduced
to a minimum cost flow problem on an auxiliary network. For the weighted l∞ norm, we
applied the binary search technique to present an efficient algorithm for solving the problem.
For the weighted sum-type Hamming distance, we proved that the problem is NP-hard on
trees and strongly NP-hard on bipartite networks.

For further researches, it will be meaningful to study the problem under other distances,

INVERSE ECCENTRIC VERTEX PROBLEM ON TREES 259

e.g., the bottleneck-type Hamming distance and also, design the efficient algorithms for
solving the problem on other specific networks.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice-Hall, Englewood
Cliffs, 1993.

[2] R.K. Ahuja and J.B. Orlin, Inverse optimization, Oper. Res. 49 (2001) 771–783.

[3] R.K. Ahuja and J.B. Orlin, Combinatorial algorithms for inverse network flow problems,
Networks 40 (2002) 181–187.

[4] M. Aman and J. Tayyebi, Capacity inverse minimum cost flow problem under the
weighted Hamming distances, Iranian Journal of Operations Research 5 (2014) 12–25.

[5] M. Aman, H. Hassanpour and J. Tayyebi, A modified algorithm for solving the in-
verse minimum cost flow problem under the bottleneck-type hamming distance, Bull.
Transilv. Univ. Braşov Ser.C 9 (2016) 97–110.

[6] M.S. Bazaraa, J. Jarvis and H.D. Sherali, Linear programming and network flows, John
Wiley & Sons, 2011.

[7] M. Bezad and J.E. Simpson, Eccentric sequences and eccentric sets in graphs, Discrete
Math. 16 (1976) 178–193.

[8] D. Burton and P.L. Toint, On an instance of the inverse shortest paths problem, Math.
Program. 53 (1992) 45–61.

[9] D. Burton and P.L. Toint, On the use of an inverse shortest paths algorithm for recov-
ering linearly correlated costs, Math. Program. 63 (1994) 1–22.

[10] S.A. Cook, The Complexity of Theorem-Proving Procedures, In: Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[11] Deaconu A (2008) The inverse maximum flow problem with lower and upper bounds
for the flow. Yugosl. J. Oper. Res. 18: 13–22

[12] M. Demange and J. Monnot, An introduction to inverse combinatorial problems. In:
Vangelis Th. Paschos, Paradigms of Combinatorial Optimization (Problems and New
approaches), Wiley, London-Hoboken, 2010.

[13] Ç Güler and H. Hamacher, Capacity inverse minimum cost flow problem, J. Comb.
Optim. 19 (2010) 43–59.

[14] C. Heuberger, Inverse optimization: A survey on problems, methods, and results, J.
Comb. Optim. 8 (2004) 329–361.

[15] Y. Jiang, L. Liu, B. Wuc and E. Yao, Inverse minimum cost flow problems under the
weighted Hamming distance, European J. Oper. Res. 207 (2010) 50–54.

[16] R.M. Karp, Reducibility among combinatorial problems, In: Complexity of computer
computations, New York: Plenum Press, 1972, pp. 85–103.

260 J. TAYYEBI AND M. AMAN

[17] L. Liu and E. Yao, Weighted inverse maximum perfect matching problems under the
Hamming distance, J. Global Optim. 55 (2013) 549–557.

[18] L. Liu, Y. Chen, B. Wu and E. Yao, Weighted inverse minimum cut problem under the
sum-type hamming distance, In: Frontiers in Algorithmics and Algorithmic Aspects in
Information and Management, Springer Berlin Heidelberg, 2012, pp. 26–35.

[19] L. Liu and J. Zhang, Inverse maximum flow problems under the weighted Hamming
distance, J. Comb. Optim. 12 (2006) 395–408.

[20] L. Liu and E. Yao, Capacity inverse minimum cost flow problems under the weighted
Hamming distance, Optim. Lett. (2015) doi:10.1007/s11590-015-0919-y.

[21] M. Mneimneh and K. Sakallah, Computing vertex eccentricity in exponentially large
graphs: QBF formulation and solution, In: Proceedings of 6th international conference
SAT03, volume 2919 of LNCS, 2003.

[22] K.T. Nguyen and A. Chassein, Inverse eccentric vertex problem on networks, CEJOR
Cent. Eur. J. Oper. Res. 23 (2015) 687–698.

[23] K.B. Reid and W. Gu, Peripheral and eccentric vertices in graphs, Graphs Combin. 8
(1992) 361–375.

[24] A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter
Estimation, Elsevier, Amsterdam, 1978.

[25] J. Tayyebi and M. Aman, Note on ”inverse minimum cost flow problems under the
weighted hamming distance”, European J. Oper. Res. 234 (2014) 916–920.

[26] J. Tayyebi and M. Aman, On inverse linear programming problems under
the bottleneck-type weighted Hamming distance, Discrete Appl. Math. (2016)
doi:10.1016/j.dam.2015.12.017.

[27] C. Yang, J. Zhang, and Z. Ma, Inverse maximum flow and minimum cut problems,
Optimization 40 (1997) 147–170.

[28] J. Zhang and Z. Liu, Calculating some inverse linear programming problems, J. Comput.
Appl. Math. 72 (1996) 261–273.

Manuscript received 20 February 2016
revised 14 July 2016

accepted for publication 4 August 2016

Javad Tayyebi
Department of Industrial Engineering
Birjand University of Technology, Birjand, Iran
E-mail address: javadtayyebi@birjandut.ac.ir; javadtayyebi@birjand.ac.ir

Massoud Aman
Department of Mathematics, Faculty of Mathematical
Sciences and Statistics, University of Birjand, Birjand, Iran
E-mail address: mamann@birjand.ac.ir

