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where A ∈ Rm×n, C ∈ Rk×n, b ∈ Rm and d ∈ Rk are given matrices and vectors, respec-
tively. Since this problem is NP-hard, one popular solution approach replaces the nonconvex
discontinuous ℓ0-norm in (1.1) by the convex continuous ℓ1-norm, leading to a linear pro-
gram:

minimize
x∈Rn

∥x ∥1
subject to Ax ≥ b and Cx = d.

(1.2)

Theoretical results are known that provide sufficient conditions under which an optimal so-
lution to (1.2) is also optimal to (1.1) [7, 14, 21, 38]. Yet these results are of limited practical
value as the conditions can not easily be verified or guaranteed for specific realizations of
(1.1); thus in general, optimal solutions to (1.2) provide suboptimal solutions to (1.1).

It is our contention that, from a practical perspective, improved solutions to (1.1) can be
obtained by reformulating the ℓ0-norm in terms of complementarity constraints [29]. This
leads to a linear program with linear complementarity constraints (LPCC) which can be
solved with specialized algorithms that do not depend on the feasibility and/or bounded-
ness of the constraints [23, 24]. In the event that bounds are known on the solutions of the
problem, the LPCC can be further reformulated as a mixed-integer linear program (MILP).
However, the solution of this MILP is usually too time-consuming for large instances.

As an alternative to the MILP approach, the LPCC can be expressed directly as a smooth
continuous nonlinear program (NLP). It is the main purpose of this research to examine the
quality of solutions computed by standard NLP solvers applied to these smooth reformu-
lations of the ℓ0-norm. There are two features of the NLP reformulations that make them
difficult to solve. First, the NLPs are highly nonconvex, and, consequently, the solutions re-
turned by the NLP solvers depend strongly on the starting point, because the NLP methods
are typically only able to find local minimizers or Karush-Kuhn-Tucker (KKT) points, in-
stead of global minimizers. Secondly, the NLPs are not well-posed in the sense that they do
not satisfy the assumptions that are made usually for the convergence analysis of standard
NLP algorithms, such as the Mangasarian-Fromovitz constraint qualification. Nevertheless,
our numerical results show that these methods often generate high-quality solutions for the
ℓ0-norm minimization problem (1.1), thus providing a testament of the effectiveness of the
NLP solvers applied to a very challenging class of nonconvex problems.

The remainder of this paper is organized as follows. In Section 1.1 we present two basic
complementarity formulations for the ℓ0-norm. One of them leads to an LPCC formula-
tion of the problem (1.1) which is reformulated as a smooth NLP using different approaches,
including a new construction based on squared complementarities. The other complementar-
ity formulation results in a nonlinear program with bilinear, disjunctive constraints. These
formulations are generalized to the nonlinear case in Section 2 where we introduce an NLP
model whose objective comprises a weighted combination of a smooth term and a discontinu-
ous ℓ0-term. This model is sufficiently broad to encompass many optimization problems that
include applications arising from compressive sensing [8, 12], basis pursuit [3, 11], LASSO
regression [34, 37], image deblurring [2], the least misclassification (as opposed to the well-
known least-residual) support-vector machine problem with a soft margin; the latter problem
was first introduced by Mangasarian [10, 30], and a cardinality minimization problem [27].

To give some theoretical background for the expected convergence behavior for (local)
NLP solvers, connections between the KKT points of the smooth formulations of the com-
plementarity problems and the original ℓ0-norm minimization problem are established in
Section 3. Further insights are obtained in Section 4 by considering ε-relaxations of the
smooth NLP formulations. In particular, convergence of points satisfying second order con-
ditions for the relaxations are discussed in Section 4.3 and this convergence is related to
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solutions to the ℓ1-norm approximation. The practical performance of standard NLP codes
for the solution of ℓ0-norm minimization problems is assessed in Section 5. We present
numerical results for an extensive set of computational experiments that show that the solu-
tions obtained by some NLP formulations of the ℓ0-minimization are significantly better than
those obtained from the convex ℓ1-formulation, often close to the globally optimal objective
value. Conclusions and an outlook for future research are given in the final section.

1.1 Equivalent formulations

We start by introducing two basic ways to formulate the ℓ0-norm using complementarity
constraints.

Full complementarity. A straightforward way of formulating the ℓ0-norm using com-
plementarity constraints is to first express x = x+ − x− with x± being the non-negative
and non-positive parts of x, respectively; this is followed by the introduction of a vector
ξ ∈ [0, 1]n that is complementary to |x|, the absolute-value vector of x. This maneuver leads
to the following formulation:

minimize
x, x±, ξ

1T
n (1n − ξ ) =

n∑
j=1

( 1− ξj )

subject to Ax ≥ b, Cx = d, and x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0, ξ ≤ 1n

and 0 ≤ x+ ⊥ x− ≥ 0

(1.3)

where 1n is the n-vector of all ones. It is not difficult to deduce that if x is an optimal
solution of (1.1), then by letting x± , max(0,±x) and

ξj ,
{

0 if xj ̸= 0

1 if xj = 0

}
j = 1, · · · , n, (1.4)

the resulting triple (x±, ξ) is an optimal solution of (1.3) with objective value equal to ∥x∥0.
Conversely, if (x±, ξ) is an optimal solution of (1.3), then x , x+−x− is an optimal solution
of (1.1) with the same objective value as the optimal objective value of (1.3). The definition
(1.4) provides a central connection between (1.1) and its “pieces” to be made precise in
Section 3. Such pieces are smooth programs in which some of the x-variables are fixed at
zero and correspond in some way to the enumeration of the zero versus nonzero components
of x. The scalar 1− ξi is the indicator of the support of xi; we call 1n− ξ the support vector
of x.

It is easy to see that the complementarity between the variables x± is not needed in
(1.3); this results in the following equivalent formulation of this problem, and thus of (1.1):

minimize
x, x±, ξ

1T
n (1n − ξ ) =

n∑
j=1

( 1− ξj )

subject to Ax ≥ b, Cx = d, and x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

x± ≥ 0 and ξ ≤ 1n,

(1.5)

In terms of the global resolution of (1.3), maintaining the complementarity between x± could
potentially allow sharper cutting planes to be derived in a branch-and-cut scheme for solving



276 M. FENG, J.E.MITCHELL, J.-S. PANG, X. SHEN AND A. WÄCHTER

this disjunctive program. This led to better numerical results in our experiments reported in
Section 5. We give below several equivalent formulations of the complementarity condition
0 ≤ y ⊥ z ≥ 0 in (1.3) and (1.5) that lead to a smooth continuous NLP formulation:

• (y, z) ≥ 0 and yT z ≤ 0 (inner product complementarity);

• (y, z) ≥ 0 and y ◦ z ≤ 0, where u ◦ v denotes the Hadamard, i.e., componentwise, product
of two vectors u and v (componentwise or Hadamard complementarity);

• Adding the penalty term MyT z in the objective for some large scalar M > 0 (penalized
complementarity);

• (y, z) ≥ 0 and (yT z)2 ≤ 0 (squared complementarity).

Interestingly, the last formulation, which has never been used in the study of complemen-
tarity constraints, turns out to be quite effective for solving some instances of the ℓ0-norm
minimization problem. It can be shown that the only KKT point of this formulation, if it
exists, is (x, x+, x−, ξ) = (0, 0, 0,1n). From a theoretical perspective, this result suggests
that it is not a good idea to use an NLP algorithm to solve the ℓ0-norm minimization prob-
lems (1.1) or (2.1) transformed by the squared reformulation. Nevertheless, our numerical
experiments reported in Section 5 suggest otherwise. Indeed, the encouraging computational
results are the primary reason for us to introduce this squared formulation.

We point out that, with the exception of the penalizing complementarity approach, none
of these reformulations of the complementarity problem give rise to a well-posed NLP model
in the sense that the Mangasarian-Fromovitz constraint qualification (MFCQ) fails to hold
at any feasible point, and the existence of KKT points is not guaranteed. Nevertheless,
some NLP solvers have been found to be able to produce good numerical solutions for these
reformulations [17].

Half complementarity. There is a simpler formulation, which we call the half comple-
mentarity formulation, that requires only the auxiliary ξ-variable:

minimize
x, ξ

1T
n (1n − ξ )

subject to Ax ≥ b; Cx = d

0 ≤ ξ ≤ 1n; and ξ ◦ x = 0,

(1.6)

The equivalence of (1.1) and (1.6) follows from the same definition (1.4) of ξ. Strictly
speaking, the constraints in (1.6) are not of the complementarity type because there is no
non-negativity requirement on the variable x; yet the Hadamard constraint ξ◦x = 0 contains
the disjunctions: either ξi = 0 or xi = 0 for all i.

Finally, if a scalar M > 0 is known such that M ≥ ∥x∗∥∞ for an optimal solution x∗,
then the ℓ0-norm minimization problem (1.1) can be formulated as a mixed-integer linear
program with the introduction of a binary variable ζ ∈ {0, 1}n:

minimize
x, ζ

1T
n ζ =

n∑
j=1

ζj

subject to Ax ≥ b and Cx = d,

−Mζ ≤ x ≤ Mζ, ζ ∈ {0, 1}n.

(1.7)
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2 A General ℓ0-norm Minimization Problem

Together, the ℓ0-norm and its complementarity formulation allow a host of minimization
problems involving the count of variables to be cast as disjunctive programs with comple-
mentarity constraints. A general NLP model of this kind is as follows: for two finite index
sets E and I,

minimize
x

f(x) + γ∥x ∥0
subject to ci(x) = 0, i ∈ E
and ci(x) ≤ 0, i ∈ I,

(2.1)

where γ > 0 is a prescribed scalar and the objective function f and the constraint functions
ci are all continuously differentiable. Let S denote the feasible set of (2.1). A distinguished
feature of the problem (2.1) is that its objective function is discontinuous, in fact only lower
semicontinuous; as such, it attains its minimum over any compact set. More generally,
we have the attainment result as stated in Proposition 2.1. We recall that a function θ is
coercive on a set X if lim θ(x) = ∞ as ∥x∥ → ∞ for x feasible to (2.1).

Proposition 2.1. Let the functions f and {ci}i∈I∪E be continuous. If (2.1) is feasible and
f is coercive on S, then (2.1) has an optimal solution.

Proof. Let x0 be a feasible vector. Since f is continuous and the ℓ0-norm is lower semi-
continuous, the level set {x ∈ S | f(x) + γ ∥x ∥0 ≤ f(x0) + γ ∥x0 ∥0 } is nonempty and
compact, by the coercivity of f . The desired conclusion now follows readily.

Similar to (1.3), we can derive an equivalent complementarity constrained formulation
for (2.1) as follows:

minimize
x, x±, ξ

f(x) + γ T (1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

0 ≤ x+ ⊥ x− ≥ 0, and ξ ≤ 1n,

(2.2)

where we have used an arbitrary positive vector γ instead of a scalar γ-multiple of the vector
of ones. Since both the objective and constraint functions are nonlinear, (2.2) is an instance
of a Mathematical Program with Complementarity Constraints (MPCC).

Similar to the half complementarity formulation (1.6) of (1.1), we may associate with
(2.1) the following smooth NLP with an auxiliary variable ξ:

minimize
x, ξ

f(x) + γ T (1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
0 ≤ ξ ≤ 1n and ξ ◦ x = 0.

(2.3)

Subsequently, we will relate various properties of the two programs (2.1) and (2.3). Similar
results for the full complementarity formulation can be proved if the variable x is non-
negatively constrained. To avoid repetition, we focus on the above half complementarity
formulation with no (explicit) sign restriction on x.
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The misclassification minimization problem that arises from the literature in support-
vector machines [10, 30] provides an example of problem (2.1). Cardinality constrained
optimization problems provide a large class of problems where the ℓ0-norm appears in the
constraint that restricts the cardinality of the nonzero elements of the decision variables.
These problems are of growing importance; two recent papers study them from different
perspectives. Referencing many applications, the paper [39] proposes a piecewise linear
approximation of the ℓ0 constraint as a dc (for difference of convex) constraint. Extending
a previous work [5], the report [4] follows a related approach to ours by reformulating the
cardinality constraint using complementarity conditions.

3 A Touch of Piecewise Theory

In practice, the problem (2.3) provides a computational platform for solving the problem
(2.1). Thus it is important to understand the basic connections between these two problems.
Due to the presence of the bilinear constraints: ξ ◦x = 0, (2.3) is a nonconvex program even
if the original NLP (2.1) with γ = 0 is convex. The discussion in this section focuses on the
half-complementarity formulation (2.3) and omits the results for the full-complementarity
formulation of the problem (2.1).

The discussion in the next several subsections proceeds as follows. We begin with a
reformulation of (2.3) as a nonlinear program with “piecewise structures” [32], which offers
a global perspective of this nonconvex program. Next, we turn to the local properties of the
problem, establishing the constant rank constraint qualification (CRCQ) [16, page 262] [25]
of the problem under a constant rank condition on the constraint functions, which naturally
holds when the latter functions are affine. With the CRCQ in place, we then present the
Karush-Kuhn-Tucker (KKT) conditions of (2.3) and relate them to the KKT conditions of
the “pieces” of the problem. We also briefly consider second-order optimality results for
these problems. In Section 4, we undertake a similar analysis of a relaxed formulation of
(2.3). Incidentally, beginning with Scholtes [33], there has been an extensive literature on
regularization methods for general MPCCs; a recent reference is [27] which contains many
related references on this topic.

3.1 Piecewise formulation

While the computation of a globally optimal solution to the ℓ0-norm minimization problem
(2.1) is practically very difficult, we describe a piecewise property of this problem and identify
its pieces. For any index set J ⊆ {1, · · · , n} with complement J c, consider the nonlinear
program

minimize
x

f(x)

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

and xi = 0, i ∈ J ,

(3.1)

which may be thought of as a “piece” of (2.1) in the sense of piecewise programming. Indeed,
provided that (2.1) is feasible, we have

∞ > minimum of (2.1) = minimum
J

{ minimum of (3.1) + γ | J c | } ≥ −∞, (3.2)
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where the value of −∞ is allowed in both the left- and right-hand sides. [We adopt the
convention that the minimum value of an infeasible optimization problem is taken to be
∞.] To prove (3.2), we note that the left-hand minimum is always an upper bound of the
right-hand minimum. Let N (x) be the support of the vector x, with complement N (x)c in
{1, · · · , n}. It follows that, for any feasible x of (2.1), we have, with J = N (x)c,

f(x) + γ ∥x ∥0 = f(x) + γ | J c | ≥ { minimum of (3.1) with J = N (x)c }+ γ | J c |.

This bound establishes the equality of the two minima in (3.2) when the left-hand minimum
is equal to −∞. A moment’s thought shows that these two minima are also equal when the
right-hand minimum is equal to −∞. Thus it remains to consider the case where both the
left and right minima are finite. Let xJ be an optimal solution of (3.1) that attains the
right-hand minimum in (3.2). We have

minimum of (2.1) ≤ f(xJ ) + γ ∥xJ ∥0 ≤ f(xJ ) + γ | J c |,

establishing the equality (3.2).

3.2 Constraint qualifications

As the constraints of (2.3) are nonlinear, it is important that they satisfy some constraint
qualification in order to gain some understanding of the optimality properties of the problem.
Let x be a feasible solution to (2.1). We wish to postulate a constraint qualification at x
with respect to (2.1) under which the CRCQ will hold for the constraints of (2.3) at (x, ξ),
where ξ is defined by (1.4). For this purpose, we introduce the index set

A(x) , { i ∈ I | ci(x) = 0 } .

The gradients of the active constraints in (2.3) at the pair (x, ξ) are of several kinds:{(
∇ci(x)

0

)
: i ∈ E ∪ A(x)

}
,

{
−
(

0
ei

)
: i ∈ N (x)

}
,

{(
0
ei

)
: i ∈ N (x)c

}

and

{
xi

(
0
ei

)
: i ∈ N (x)

}
,

{
ξi

(
ei
0

)
: i ∈ N (x)c

}
︸ ︷︷ ︸

gradients of the equality constraint ξ ◦ x = 0

where ei is the n-vector of zeros except for a 1 in the ith position. We assume that for every
index set α ⊆ A(x) the family of vectors{(

∂ci(x
′)

∂xj

)
j∈N (x)

: i ∈ E ∪ α

}
(3.3)

has the same rank for all vectors x ′ sufficiently close to x that are also feasible to (2.1).
Each vector (3.3) is a subvector of the gradient vector ∇ci(x

′) with the partial derivatives
∂ci(x

′)/∂xj for j ∈ N (x)c removed. If this assumption holds at x, the CRCQ is valid for
the constraints of the problem (2.3) at the pair (x, ξ). To show this, it suffices to verify that
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for any index sets α ⊆ A(x), β1, γ1 ⊆ N (x) and β2, γ2 ⊆ N (x)c, the family of vectors:{(
∇ci(x

′)
0

)
: i ∈ E ∪ α

}
,

{
−
(

0
ei

)
: i ∈ β1

}
,

{(
0
ei

)
: i ∈ β2

}

and

{
x ′
i

(
0
ei

)
: i ∈ γ1

}
,

{
ξ ′
i

(
ei
0

)
: i ∈ γ2

}
︸ ︷︷ ︸

gradients of the equality constraint ξ ◦ x = 0
evaluated at (x ′, ξ ′)

(3.4)
has the same rank for all pairs (x ′, ξ ′) sufficiently close to the given pair (x, ξ) that are also
feasible to (2.3). Clearly, this assumption is satisfied when the constraint functions ci(x) are
affine. Consider such a pair (x ′, ξ ′). We must have N (x) ⊆ N (x ′); moreover, if i ∈ N (x)c,
then ξi = 1; hence ξ ′ > 0. By complementarity, it follows that i ∈ N (x ′)c. Consequently,
N (x) = N (x ′). This is sufficient to establish the rank invariance of the vectors (3.4) when
the pair (x ′, ξ ′) varies near (x, ξ).

An immediate corollary of the above derivation is that if the constraints of (2.1) are all
affine, then the CRCQ holds for the constraints of (2.3) at (x, ξ) for any x feasible to (2.1)
and ξ defined by (1.4).

3.3 KKT conditions and local optimality

With the CRCQ in place, it follows that the KKT conditions are necessary for a pair (x, ξ)
to be optimal to (2.3), provided that ξ is defined by (1.4). Letting λ, η, and µ be the
multipliers to the constraints of (2.3), the KKT conditions of this problem are:

0 = ∇f(x) +
∑

i∈E ∪I
λi ∇ci(x) + µ ◦ ξ

0 ≤ ξ ⊥ −γ + µ ◦ x+ η ≥ 0, 0 = ξ ◦ x

0 ≤ η ⊥ 1n − ξ ≥ 0

0 = ci(x), i ∈ E
0 ≤ λi ⊥ ci(x) ≤ 0, i ∈ I

(3.5)

We wish to compare the above KKT conditions with those of the pieces of (2.1) exempli-
fied by (3.1) for an index subset J of {1, · · · , n}. Letting λ denote the multipliers of the
functional constraints in (3.1), we can write the KKT conditions of (3.1) as

0 =
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
, j ∈ J c

0 = ci(x), i ∈ E
0 ≤ λi ⊥ ci(x) ≤ 0, i ∈ I
0 = xj , j ∈ J .

(3.6)

We have the following result connecting the KKT systems (3.5) and (3.6), which can be
contrasted with the equality (3.2) that deals with the global minima of these two problems.

Proposition 3.1. Let x be a feasible solution of (2.1) and let ξ be defined by (1.4). The
following three statements hold for any positive vector γ:
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(a) If (x, ξ) is a KKT point of (2.3) with multipliers λ, µ, and η, then x is a KKT point of
(3.1) for any J satisfying N (x) ⊆ J c ⊆ N (x) ∪ {j | µj = 0}.

(b) Conversely, if x is a KKT point of (3.1) for some J , then (x, ξ) is a KKT point of
(2.3).

(c) If x is a local minimum of (3.1) for some J , then (x, ξ) is a local minimum of (2.3).

Proof. To prove (a), it suffices to note that for such an index set J , we must have J ⊆ N (x)c;
moreover, if j ∈ J c, then either µj = 0 or ξj = 0. To prove part (b), it suffices to define
the multipliers µ and η. An index set J for which (3.6) holds must be a subset of N (x)c so
that N (x) ⊆ J c. Let

µj ,



γj
xj

if j ∈ N (x)

−

[
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj

]
if j ∈ J

0 if j ∈ J c ∩ N (x)c

ηj ,



0 if j ∈ N (x)

γj if j ∈ J

γj if j ∈ J c ∩ N (x)c.

It is not difficult to verify that the KKT conditions (3.5) hold at the triple (x, ξ, λ, µ, η).
Finally, to prove (c), let (x ′, ξ ′) be a feasible pair of (2.3) sufficiently close to (x, ξ).

Since xj = 0 for all j ∈ J , it follows that ξj = 1 for all such j. Since ξ ′
j is sufficiently close

to ξj , we deduce ξ ′
j > 0; hence x ′

j = 0 by complementarity. Thus x ′ is feasible to (3.1).
Moreover, if xj ̸= 0, then x ′

j ̸= 0; hence ξ ′
j = 0.

f(x ′) + γ T (1n − ξ ′ )

≥ f(x) +
∑

j :xj=0

γj
(
1− ξ ′

j

)
+

∑
j :xj ̸=0

γj
(
1− ξ ′

j

)
≥ f(x) +

∑
j :xj=0

γj ( 1− ξj ) +
∑

j :xj ̸=0

γj ( 1− ξj ) = f(x) + γ T (1n − ξ ) ,

establishing the desired conclusion.

The next proposition states a result for the inner-product reformulations of the full-
complementarity formulation (2.2). Similar statements hold for the componentwise formu-
lation, which are omitted.

Proposition 3.2. Let x be a feasible solution of (2.1), let ξ be defined by (1.4), and x± ,
max{0,±x}. Then the following three statements hold for any positive vector γ:
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(a) If (x, x±, ξ) is a KKT point of

minimize
x, x±, ξ

f(x) + γ T (1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
x = x+ − x−, ξT (x+ + x−) ≤ 0, (x+)T (x−) ≤ 0

0 ≤ ξ ≤ 1n and x± ≥ 0,

(3.7)

then x is a KKT point of (3.1) for any J satisfying N (x) ⊆ J c ⊆ N (x) ∪ {j | µj = 0}.

(b) Conversely, if x is a KKT point of (3.1) for some J , then (x, x±, ξ) is a KKT point of
(3.7).

(c) If x is a local minimum of (3.1) for some J , then (x, x±, ξ) is a local minimum of (3.7).

We now look at the second-order optimality conditions. In the proposition below, we
examine the sufficient conditions; an analogous result can be derived for the second-order
necessary conditions in a similar manner. Results similar to the following Proposition 3.3
and Corollary 3.4 hold for the full-complementarity and half-complementarity formulations.

Proposition 3.3. Let (x, ξ) be a point so that (x, ξ) is a KKT point of (2.3) with multipliers
λ, µ, and η, and so that x is a KKT point of (3.1) for any J satisfying N (x) ⊆ J c ⊆
N (x) ∪ {j | µj = 0}. If the second-order sufficient condition holds at x of (3.1), then it
holds at (x, ξ) of (2.3). In addition, if J c = N (x), the converse holds.

Proof. The second-order conditions examine directions d in the critical cone, i.e., those
directions that satisfy the linearization of each equality constraint and active inequality
constraints, and that keep active the linearization of any inequality constraint with a positive
multiplier. From the KKT conditions (3.5) of (2.3), if xj = 0 for some j ∈ {1, . . . , n} then
ξj = 1 and the corresponding multiplier ηj > 0. If xj ̸= 0 then the linearization of the
complementarity constraint restricts the direction. Thus, all directions d = (dx, dξ) in the
critical cone satisfy

dξ = 0.

Therefore, we only need to consider the x part of the Hessian,

H = ∇2f(x) +
∑

i∈E ∪I
λi∇2ci(x),

for both (2.3) and (3.1). Let D1⊆ Rn be the set of directions dx that satisfy

∇ci(x)
T dx = 0, i ∈ E

∇ci(x)
T dx = 0, i ∈ I with λi > 0

∇ci(x)
T dx ≤ 0, i ∈ I with λi = 0 and ci(x) = 0

(3.8)

together with dx ◦ ξ = 0. The second-order sufficient condition for (2.3) holds at x if and
only if dTHd > 0 for all d ∈ D1 with d ̸= 0. Similarly, let D2⊆ Rn be the set of directions
that satisfy (3.8) together with (dx)j = 0 for all j ∈ J . Then the second-order sufficient
condition for (3.1) holds at x if and only if dTHd > 0 for all d ∈ D2 with d ̸= 0.
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To prove the first part of the claim, we need to show that D1 ⊆ D2. Let d
1 ∈ D1. Since

J ⊆ N (x)c, we have ξj = 1 for all j ∈ J . Because the direction satisfies the linearization
of the half-complementarity constraint, it follows that d1j = 0, which implies d1 ∈ D2. To

prove the second part, let d2 ∈ D2. Since N (x)c = J , we have xj = 0 and hence ξj = 1 for
all j ∈ J . Further, xj ̸= 0 and ξj = 0 for all j ∈ J c. Thus d2 ∈ D1.

Let us consider what these results imply for the simple model problem (1.1). It is easy
to see that any feasible point x with Ax ≥ b and Cx = d is a KKT point for (3.1) with
J = {j : xj = 0} and f(x) = 0. Propositions 3.1(b) and 3.3 then imply that x corresponds
to a KKT point of (2.3) that satisfies the second-order necessary optimality conditions. In
other words, finding a second-order necessary KKT point for (2.3) merely implies that we
found a feasible point for (1.1), but this says nothing about its ℓ0-norm. We summarize this
observation in the following corollary.

Corollary 3.4. A vector x̂ is feasible to the system Ax ≥ b and Cx = d if and only if (x̂, ξ),
where 1n − ξ is the support vector of x̂, is a KKT pair of the nonlinear program (2.3) with
J = {j : x̂j = 0} that satisfies the second-order necessary optimality conditions.

A principal goal in this study is assessing the adequacy of (local) NLP solvers for solving
ℓ0-norm minimization problems, such as (1.1) and (2.1), using the equivalent full- or half-
complementarity reformulations. The results in this section cast a negative shadow on this
approach. NLP solvers typically aim to find KKT points, ideally those that satisfy second-
order optimality conditions. Propositions 3.1–3.3 establish that the reformulations for (2.1)
may have an exponential number of points (one for each set J ⊆ {1, . . . , n} in (3.1)), to
which the NLP solvers might be attracted to. [This conclusion is not too surprising in light
of the piecewise structure of these problems as seen from Subsection 3.1.] In the particular
case of the model problem (1.1), Corollary 3.4 paints an even more gloomy picture because
any feasible point for (1.1) has the characteristics that an NLP solver looks for, and most
of those points have sub-optimal objective function values. Interestingly, these theoretical
reservations do not seem to materialize in practice. Our computational results attest that
usually points of rather good objective values are returned by the NLP solvers. The discus-
sions related to the relaxed formulations in Section 4 shed some light on this observation. In
particular, convergent sequences of points satisfying the second order necessary conditions
for a relaxed problem are shown to converge to locally optimal solutions on a piece, under
certain assumptions; in the linear case (1.1) they converge to nondominated solutions, and
the set of limit points is a subset of the set of possible solutions to a weighted ℓ1-norm
approach.

4 Relaxed Formulations

As mentioned at the end of the Introduction, in general, the exact reformulations of an
MPCC result in NLPs that are not well-posed in the sense that the MFCQ does not hold at
any feasible point. To overcome this shortcoming, relaxation schemes for MPCCs have been
proposed [33, 13, 26], where the complementarity constraints are relaxed. The resulting
NLPs have better properties, and the solution of the original MPCC is obtained by solving
a sequence of relaxed problems, for which the relaxation parameter is driven to zero. In this
section, we investigate the stationarity properties of relaxed reformulations for the ℓ0-norm
minimization problem.
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We introduce the following relaxation of the new half-complementarity formulation (2.3),
which we denote by NLP(ε), for a given relaxation scalar ε > 0:

minimize
x, ξ

f(x) + γ T (1n − ξ )

subject to ci(x) = 0, i ∈ E (λE)

ci(x) ≤ 0, i ∈ I (λI)

ξ ≤ 1n (η)

ξ ◦ x ≤ ε1n (µ+)

−ξ ◦ x ≤ ε1n (µ−)

and ξ ≥ 0,

(4.1)

where λ, η, and µ± are the associated multipliers for the respective constraints. The problem
NLP(0) is the original half-complementary formulation (2.3). In essence, we wish to examine
the limiting properties of the NLP(ε) as ε ↓ 0. Observations analogous to those in the
following subsections are valid for relaxations of the full complementarity formulations (3.7).

Similarly to Subsection 3.2, we give a sufficient condition for the Abadie constraint
qualification (ACQ) to hold for (4.1) at a feasible pair (x̄, ξ̄), i.e., for the linearization cone
of the constraints of (4.1) at this pair to equal the tangent cone. Explicitly stated, this CQ
stipulates that if (dx, dξ) is a pair of vectors such that

∇ci(x)
T dx = 0 ∀ i ∈ E

∇ci(x)
T dx ≤ 0 ∀ i ∈ I such that ci(x̄) = 0

dξi ≤ 0 ∀ i such that ξ̄i = 1

dξi ≥ 0 ∀ i such that ξ̄i = 0

x̄i dξi + ξ̄i dxi

{
≤ 0 if x̄i ξ̄i = ε

≥ 0 if x̄i ξ̄i = −ε,

(4.2)

then there exist a sequence of pairs {(xk, ξk)} such that each (xk, ξk) is feasible to (4.1) and
a sequence of positive scalars {τk} tending to zero such that

dx = lim
k→∞

xk − x̄

τk
and dξ = lim

k→∞

ξk − ξ̄

τk
.

The sufficient condition that we postulate is on the functional constraints

ci(x) = 0 i ∈ E
ci(x) ≤ 0 i ∈ I

(4.3)

at the given x̄. Namely, the linearization cone of the constraints (4.3) at x̄ is equal to the
tangent cone; i.e., for every dx satisfying the first two conditions in (4.2), there exists a
sequence {xk} of vectors converging to x̄ and a sequence of positive scalars {τk} converging
to zero such that

dx = lim
k→∞

xk − x̄

τk
;

equivalently, for some sequence {ek} of vectors satisfying lim
k→∞

ek

τk
= 0, we have xk , x̄ +

τk dx+ ek satisfies (4.3) for all k. This by itself is a CQ on these functional constraints that
is naturally satisfied if such constraints are affine.
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Theorem 4.1. The Abadie constraint qualification holds for NLP(ε) at the feasible pair
(x̄, ξ̄) if the linearization cone of the constraints (4.3) at x̄ is equal to the tangent cone.

Proof. For any feasible solution to a nonlinear program, the tangent cone is a subset of the
linearization cone [29, page 117]; we show the reverse also holds under the assumptions of
the theorem. Let dξ satisfy the remaining three conditions in (4.2). We claim that the
pair (dx, dξ) is in the tangent cone of the constraints in the relaxed formulation (4.1) at

(x̄, ξ̄). It suffices to show that there exists a sequence {ηk} such that lim
k→∞

ηk

τk
= 0 and

ξ̂ k , ξ̄ + τk dξ + ηk satisfies

0 ≤ ξ̂ k
i ≤ 1 and | ( x̄i + τk dxi + eki ) ( ξ̄i + τk dξi + ηki ) | ≤ ε, ∀ i.

For a component i such that |x̄iξ̄i| < ε, it suffices to choose ηki = 0. Consider a component
i for which ε = |x̄iξ̄i|. We consider only the case where x̄iξ̄i = ε and leave the other case to
the reader. Thus, both x̄i and ξ̄i must be positive; hence so are both xk

i , x̄i + τk dxi + eki
and ξ̂ k

i , ξ̄i + τk dξi + ηki for all k sufficiently large. It remains to show that we can choose

ηki so that ξ̂ k
i ≤ 1 and xk

i ξ
k
i ≤ ε for all k sufficiently large.

We first derive an inequality on some of the terms in the product xk
i ξ

k
i . We show

( x̄i + τk dxi ) ( ξ̄i + τk dξi ) = ε+ τk
[
( x̄i dξi + ξ̄i dxi ) + τk dxi dξi

]
≤ ε.

In particular, since x̄idξi + ξ̄idxi ≤ 0, there are two cases to consider. If x̄idξi + ξ̄idxi = 0,
then dxidξi ≤ 0 and the claim holds for all τk ≥ 0. If x̄idξi + ξ̄idxi < 0, then x̄idξi + ξ̄idxi +
τkdxidξi < 0 for all τk > 0 sufficiently small.

We can now choose ηki , −α|eki |, where α > 0 will be determined from the following

derivation. With this choice, we easily have ξ̂ k
i ≤ 1 for all k sufficiently large. Furthermore,

xk
i ξ

k
i = ( x̄i + τk dxi + eki ) ( ξ̄i + τk dξi + ηki )

= ε+ τk
[
( x̄i dξi + ξ̄i dxi ) + τk dxi dξi

]︸ ︷︷ ︸
≤ 0 as above

+ eki

 ξ̄i + τk dξi︸ ︷︷ ︸
positive

− α | eki |

 x̄i + τk dxi︸ ︷︷ ︸
positive

− α eki | eki |.

It is now clear that we may choose α > 0 so that xk
i ξ

k
i ≤ ε for all k sufficiently large.

4.1 Convergence of KKT points for NLP(ε)

In this subsection we examine the limiting behavior of KKT points x(ε) for NLP(ε) as ε
converges to zero. This is of interest because algorithms based on the sequential solution of
the relaxation NLP(ε) aim to compute limit points of x(ε) [13, 26, 33]. However, our analysis
also gives insight into the behavior of standard NLP solvers that are applied directly to one
of the unrelaxed NLP-reformulations of the MPCC, such as (2.3) and (3.7). For instance,
some implementations of NLP solvers, such as the IPOPT solver [35] used for the numerical
experiments in Section 5, relax all inequality and bound constraints by a small amount that
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is related to the convergence tolerance before solving the problem at hand. This modification
is done in order to make the problem somewhat “nicer”; for example, a feasible problem is
then guaranteed to have a nonempty relative interior of the feasible region. However, because
this alteration is on the order of the user-specified convergence tolerance, it usually does not
lead to solutions that are far away from solutions of the original unperturbed problem. In
the current context this means that such an NLP code solves the relaxation NLP(ε) even if
the relaxation is not explicitly introduced by the user.

With a CQ in place, we may write down the KKT conditions for NLP(ε):

0 = ∇f(x) +
∑

i∈E ∪I

λi ∇ci(x) + (µ+ − µ−) ◦ ξ (4.4a)

0 ≤ ξ ⊥ −γ + (µ+ − µ−) ◦ x+ η ≥ 0 (4.4b)

0 ≤ η ⊥ 1n − ξ ≥ 0 (4.4c)

0 = ci(x), i ∈ E (4.4d)

0 ≤ λi ⊥ ci(x) ≤ 0, i ∈ I (4.4e)

0 ≤ µ+ ⊥ ε1n − ξ ◦ x ≥ 0 (4.4f)

0 ≤ µ− ⊥ ε1n + ξ ◦ x ≥ 0. (4.4g)

We may draw the following observations from the above conditions:

• For j ∈ {1, . . . , n} with xj > ε > 0, by (4.4g) we have µ−
j = 0, and by (4.4f) we have

ξj < 1. It follows from (4.4c) that ηj = 0 and then (4.4b) and (4.4a) give the relationships:

ξj =
ε

xj
< 1, ηj = 0, µ+

j =
γj
xj

, µ−
j = 0,

∂f(x)

∂xj
+
∑

i∈E ∪I

λi
∂ci(x)

∂xj
= −εγj

x2
j

< 0.

(4.5)
• For j ∈ {1, . . . , n} with xj < −ε < 0, by (4.4f) we have µ+

j = 0, and by (4.4g) we have
ξj < 1. It follows from (4.4c) that ηj = 0 and then (4.4b) and (4.4a) give the relationships:

ξj =
ε

−xj
< 1, ηj = 0, µ+

j = 0, µ−
j =

γj
−xj

,
∂f(x)

∂xj
+
∑

i∈E ∪I

λi
∂ci(x)

∂xj
=

εγj
x2
j

> 0.

(4.6)
• For j ∈ {1, . . . , n} with −ε < xj < ε, (4.4f) and (4.4g) give µ+

j = µ−
j = 0. Then (4.4b)

implies ηj > 0, giving ξj = 1 by (4.4c) and so ηj = γj by (4.4b). Together with (4.4a), this
overall implies

ξj = 1, ηj = γj , µ+
j = 0, µ−

j = 0,
∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
= 0. (4.7)

• For j ∈ {1, . . . , n} with xj = ε we have µ−
j = 0 from (4.4g). Also, we must have ξj = 1

since otherwise ηj = 0 from (4.4c) and µ+
j = 0 from (4.4f), which would then violate (4.4b).

Thus from (4.4b) and (4.4a) we have

ξj = 1, ηj = γj−εµ+
j , 0 ≤ µ+

j ≤ γj
ε
, µ−

j = 0,
∂f(x)

∂xj
+
∑

i∈E ∪I

λi
∂ci(x)

∂xj
+µ+

j = 0.

(4.8)
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• For j ∈ {1, . . . , n} with xj = −ε we have µ+
j = 0 from (4.4f). Also, we must have ξj = 1

since otherwise ηj = 0 from (4.4c) and µ−
j = 0 from (4.4g), which would then violate (4.4b).

Thus from (4.4b) and (4.4a) we have

ξj = 1, ηj = γj − εµ−
j , µ+

j = 0, 0 ≤ µ−
j ≤ γj

ε
,

∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
− µ−

j = 0.
(4.9)

We show that any limit of a subsequence of KKT points to (4.1) is a KKT point to the
problem (3.1) for a particular J , under certain assumptions.

Theorem 4.2. Let (x(ε), ξ(ε)) be a KKT point for for NLP(ε) with multipliers
(λ(ε), η(ε), µ(ε)). Let (x∗, λ∗) be a limit of a subsequence of (x(ε), λ(ε)) as ε ↓ 0. As-
sume f(x) and each ci(x), i ∈ E ∪ I, is Lipschitz continuous. Let J = N (x∗)c. Then
(x∗, λ∗) is a KKT point for (3.1).

Proof. From observations (4.5) and (4.6), we have for components j with x∗
j ̸= 0 that

∂f(x(ε))

∂xj
+

∑
i∈E ∪I

λi
∂ci(x(ε))

∂xj
= − εγj

x(ε)
2
j

→ 0.

For the remaining components, we can choose the multiplier for the constraint xj = 0
to be equal to lim

ε→0
µ+
j (ε) − µ−

j (ε), which exists from the Lipschitz continuity assumption

and observations (4.8) and (4.9). Thus, the KKT gradient condition holds for (3.1). The
remaining KKT conditions hold from continuity of the functions.

4.2 Second-order conditions

We analyze the second-order necessary (sufficient) conditions of the relaxed NLP(ε). Such a
necessary (sufficient) condition stipulates that the Hessian of the Lagrangian function with
respect to the primary variables (i.e., (x, ξ)) is (strictly) copositive on the critical cone of
the feasible set; that is to say, at a feasible pair (x̄, ξ̄), if (dx, dξ) is a pair satisfying (4.2)
and ∇f(x̄)T dx − γ T dξ = 0, then for all (some) multipliers (λ, η, µ±) satisfying the KKT
conditions (4.4),

(
dx

dξ

)T
 ∇2f(x̄) +

∑
i∈E∪I

λi ∇ci(x̄)
2 Diag(µ+ − µ−)

Diag(µ+ − µ−) 0

 ( dx

dξ

)
≥ (> ) 0,

or equivalently, (focusing only on the necessary conditions),

dxT

[
∇2f(x̄) +

∑
i∈E∪I

λi ∇2ci(x̄)

]
dx+

n∑
i=1

(
µ+
i − µ−

i

)
dxi dξi ≥ 0. (4.10)
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Taking into account the KKT conditions (4.4), the pair (dx, dξ) satisfies the following con-
ditions (see [16, Lemma 3.3.2]):

∇ci(x̄)
T dx = 0 ∀ i ∈ E

∇ci(x̄)
T dx ≤ 0 ∀ i ∈ I such that ci(x̄) = 0

∇ci(x̄)
T dx = 0 ∀ i ∈ I such that ci(x̄) = 0 < λi

dξi ≤ 0 ∀ i such that ξ̄i = 1

dξi = 0 ∀ i such that 1− ξ̄i = 0 < ηi

dξi ≥ 0 ∀ i such that ξ̄i = 0

dξi = 0 ∀ i such that ξ̄i = 0 < −γi + (µ+
i − µ−

i )x̄i

x̄i dξi + ξ̄i dxi


≤ 0 if x̄i ξ̄i = ε

= 0 if ε− x̄i ξ̄i = 0 < µ+
i

= 0 if ε+ x̄i ξ̄i = 0 < µ−
i

= 0 if x̄i ξ̄i = −ε

(4.11)

Note from (4.4f) that µ+
i > 0 only if x̄i ≥ ε and x̄iξ̄i = ε, in which case dxi and dξi cannot

have the same sign. Similarly from (4.4g), µ−
i > 0 only if x̄i ≤ −ε and x̄iξ̄i = −ε, in which

case dxi and dξi cannot have opposite signs. Then (4.10) becomes:

dxT

[
∇2f(x̄) +

∑
i∈E∪I

λi ∇2ci(x̄)

]
dx+

∑
i:µ+

i >0

µ+
i dxi dξi︸ ︷︷ ︸

≤ 0

−
∑

i:µ−
i >0

µ−
i dxi dξi︸ ︷︷ ︸

≥ 0

≥ 0. (4.12)

It follows that if dxidξi ̸= 0 for some i such that µ+
i > 0 or µ−

i > 0, then the above
inequality, and thus the second-order necessary condition (SONC) for the NLP(ε) (which is
a minimization problem) cannot hold, by simply scaling up dξi and fixing dxi. Therefore, if
this SONC holds, then we must have dxidξi = 0 for all i for which (µ+

i + µ−
i ) > 0.

Summarizing the above discussion, we have proved the following result.

Proposition 4.3. Let (x̄, ξ̄) be a feasible pair to the NLP(ε). Suppose that for all KKT
multipliers (λ, η, µ±) satisfying (4.4),

dxT

∇2f(x̄) +
∑
i∈E

λi ∇2ci(x̄) +
∑

i∈I with λi > 0

λi ∇2ci(x̄)

 dx ≥ 0

for all vectors dx satisfying the first three conditions of (4.11). The SONC holds for the
NLP(ε) if and only if for all critical pairs (dx, dξ) satisfying (4.11), dxidξi = 0 for all i for
which (µ+

i + µ−
i ) > 0.

4.3 Convergence of points satisfying SONC for NLP(ε)

For most of this subsection, we restrict our attention to problems of the form (1.1), which
we write in the following form in order to simplify the notation:

minimize
x∈Rn

∥x ∥0
subject to x ∈ X := {x : Ax ≥ b}.

(4.13)
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The corresponding version of NLP(ε) can be written

minimize
x, ξ

γ T (1n − ξ )

subject to b − Ax ≤ 0 (λ)

ξ ≤ 1n (η)

ξ ◦ x ≤ ε1n (µ+)

−ξ ◦ x ≤ ε1n (µ−)

and ξ ≥ 0,

(4.14)

It follows from Theorem 4.1 that the Abadie CQ holds for (4.14). Further, the same argu-
ment as in Section 3.2 can be used to show that the constant rank constraint qualification
holds for (4.14). It is proved in [1] that if the CRCQ holds then any local minimizer must
satisfy the second order necessary conditions. Hence, any local minimizer to (4.14) must
satisfy the second-order necessary conditions. In this subsection, we investigate limits of
local minimizers to (4.14) as ε ↓ 0.

Theorem 4.4. Any limit x∗ of a subsequence of the x part of the locally optimal solutions
(x(ε), ξ(ε)) to (4.14) must be an extreme point of the piece defined by x∗, namely

P(x∗) := {x : Ax ≥ b} ∩ {x : xi = 0 if x∗
i = 0}.

Proof. Assume x∗ is not an extreme point of P(x∗), so x∗ ̸= 0 and there exists a feasible
direction dx ̸= 0 with x∗ ± αdx ∈ P(x∗) for sufficiently small positive α. For sufficiently
small ε, we have (b − Ax(ε))i = 0 only if (b − Ax∗)i = 0, so dx satisfies the first three
conditions of (4.11). We now construct dξ(ε) to satisfy the remaining conditions of (4.11).

Let ξ(ε) be the ξ part of the solution to (4.14) and let (λ(ε), η(ε), µ±(ε))) be the cor-
responding KKT multipliers. For sufficiently small ε, xj(ε) > ε if x∗

j > 0 and xj(ε) < −ε

if x∗
j < 0. It follows from the observations (4.5) and (4.6) that ξj(ε) =

ε

xj(ε)
< 1 and

µ+
j (ε) > 0 if x∗

j > 0, and ξj(ε) = − ε

xj(ε)
< 1 and µ−

j (ε) > 0 if x∗
j < 0 for sufficiently

small ε.

The direction dξ(ε) is defined as

dξj(ε) =


− ξj(ε)

xj(ε)
dxj if x∗

j ̸= 0

0 otherwise.

(4.15)

With this choice, (4.11) is satisfied while the left hand side of (4.10) evaluates to be negative.
Hence, the point (x(ε), ξ(ε)) is not a local optimum to (4.14).

The following corollary is immediate.

Corollary 4.5. If the feasible region is contained within the nonnegative orthant then any
limit x∗ of a subsequence of locally optimal solutions to (4.14) must be an extreme point of
{x : Ax ≥ b}.
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In order to relate the solutions obtained as limits of solutions to NLP(ε) to solutions
of weighted ℓ1-norm minimization problems, we make the following definition. First, we
introduce some notation: if u ∈ Rn then |u| is the vector in Rn

+ with |u|i = |ui| for i =
1, . . . , n.

Definition 4.6. A point y ∈ S ⊆ Rn is dominated in S if there exists a vector ỹ ∈ S with
|ỹ| ̸= |y| and |ỹ| ≤ |y|. Otherwise it is nondominated in S.

A point x̄ is nondominated in X if and only if the optimal value of the following linear
program is zero:

maximize
x, t∈Rn

1T
n t

subject to Ax ≥ b, t ≥ 0

x + t ≤ |x̄| and x − t ≥ −|x̄|
(4.16)

The following proposition relates the limiting points of subsequences of solutions to (4.14)
to nondominated points.

Theorem 4.7. Any limit x∗ of a subsequence of the x-part of locally optimal solutions
(x(ε), ξ(ε)) to (4.14) must be nondominated.

Proof. We prove that if x∗ is dominated then (x(ε), ξ(ε)) is not a local optimum for suffi-
ciently small ε. Suppose there exists a feasible point (x̃, ξ̃) such that |x̃| ≤ |x∗|, x̃ ̸= x∗.
Set

dx = x∗ − x̃ ̸= 0,

a feasible direction from x(ε) in (4.14) since A(x(ε)) ⊆ A(x∗) for sufficiently small ε. Note
that dxi = 0 if x∗

i = 0. For small positive α, a lower objective value can be achieved by

setting x = x(ε) + αdx and updating the value of ξ(ε)j to be min

{
1,

ε

|x(ε)j + αdxj |

}
, so

(x(ε), ξ(ε)) is not a locally optimal point to (4.14).

This theorem allows us to relate the set of solutions obtained as limits of sequences of
locally optimal solutions to (4.14) to the solutions obtained using an ℓ1-norm approach. A
weighted ℓ1-norm approach for finding a solution to (1.1) is to solve a problem of the form

minimize
x∈Rn

n∑
j=1

wj |xj |

subject to Ax ≥ b

(4.17)

for a positive weight vector w ∈ Rn. Iterative reweighted ℓ1 schemes [9] seek choices of
weights w that lead to sparse solutions.

Proposition 4.8. Any nondominated point satisfying Ax ≥ b is a solution to a weighted
ℓ1-norm minimization problem.

Proof. Let x̄ be a nondominated point in X. The dual of the linear program (4.16) is

minimize
y λ π

|x̄|T (λ + π) − bT y

subject to AT y − λ + π = 0n,
λ + π ≥ 1n,
y, λ, π ≥ 0

(4.18)
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The nondominance of x̄ indicates that the optimal objective of (4.16) is 0. Let (λ∗, π∗, y∗)
be an optimal solution to (4.18). Set w = λ∗+π∗ > 0. Expressing (4.17) as a linear program
and examining its dual shows that x̄ is then optimal for (4.17), because the optimal value
of (4.18) is zero.

Note that minimizing a weighted ℓ1-norm minimization problem may give a solution that
cannot be obtained as a limit of a subsequence of solutions to NLP(ε), so the latter set of
solutions can be a proper subset of the set of solutions that can be obtained by solving (4.17).
This is illustrated by the following example:

minimize
x∈R2

∥x ∥0
subject to l x1 + x2 ≥ l p + 1

x1 + p x2 ≥ 2 p

(4.19)

where l and p are positive parameters with l p > 1 and p > 1. This problem is solved by
points of the form (r, 0) and (0, s) with r ≥ 2p and s ≥ lp+1. The point (p, 1) is a nondom-
inated extreme point which does not solve (4.19). For any feasible x̂ = (x̂1, x̂2) sufficiently

close to (p, 1) with ξ̂ =

(
ε

x̂1
,

ε

x̂2

)
, the direction dx = (p,−1) and dξ = ε

(
− p

x̂2
1

,
1

x̂2
2

)
is a

feasible improving direction for (4.14), provided γ1 < γ2(p− δ) for some positive parameter

δ which determines the size of the neighborhood. Thus, such an x̂ and ξ̂ cannot be optimal
to (4.14), and x = (p, 1) cannot be a limit of solutions to (4.14). Nonetheless, x = (p, 1) is
optimal to a weighted ℓ1-norm formulation

minimize
x∈R2

w1|x1| + w2|x2|
subject to l x1 + x2 ≥ l p + 1

x1 + p x2 ≥ 2 p

(4.20)

provided

l >
w1

w2
>

1

p
, with w1, w2 ≥ 0.

As p and l increase, the point (p, 1) becomes the optimal solution to (4.20) for more choices
of w, and it is optimal in (4.14) for fewer choices of γ.

Returning to the general problem (2.1) and its relaxation NLP(ε), we prove a result
regarding the limit of a sequence of points satisfying the second order necessary KKT condi-
tions. This result is analogous to Theorem 4.7, although the earlier theorem is not implied
by the result for the general problem.

Theorem 4.9. Assume that f(x) and each ci(x), i ∈ E ∪I, have continuous second deriva-
tives. Let (x(ε), ξ(ε)) be a local minimizer for NLP(ε) that satisfies the second order neces-
sary conditions with multipliers (λ(ε), η(ε), µ(ε)). Let (x∗, λ∗) be a limit of a subsequence of
(x(ε), λ(ε)) as ε ↓ 0. Let J = N (x∗)c. If the gradients of the constraints in E ∪ A(x∗) are
linearly independent and if λ∗

i ̸= 0 for all i ∈ E ∪ A(x∗) then x∗ satisfies the second order
necessary conditions for the problem (3.1).

Proof. Assume the conclusion is false, so there is a direction d̂x in the critical cone of (3.1)

at x∗ satisfying d̂x
T
∇2

xxL(x
∗, λ∗) d̂x < 0. We construct a direction that shows that the

second order necessary conditions are violated at x(ε) for sufficiently small positive ε.
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For ε sufficiently small, any constraint with λ∗
i ̸= 0 must have λi(ε) ̸= 0 so it must

be active at x(ε). In addition, no constraint in I \ A(x∗) is active at x(ε), for sufficiently
small ε. For such ε, the gradients of the constraints in E ∪ A(x∗) are linearly independent
at x(ε) and close to their values at x∗, and the same set of constraints is active. Let the
rows of the matrix B̂ comprise the gradients of the active constraints at x∗ and let B(ε) be
the analogous matrix at x(ε), and let M(ε) = B(ε)− B̂. Let dx(ε) denote the projection of

d̂x onto the nullspace of B(ε), so

dx(ε) = d̂x − (B̂ +M(ε))T
(
(B̂ +M(ε))(B̂ +M(ε))T

)−1

(B̂ +M(ε))d̂x

= d̂x − (B̂ +M(ε))T
(
(B̂ +M(ε))(B̂ +M(ε))T

)−1

M(ε)d̂x,

which is well defined for sufficiently small ε since BBT is positive definite. By continuity of

the gradients, ||M(ε)|| → 0 as ε ↓ 0, so dx(ε) → d̂x as ε ↓ 0. Further, by continuity of the
Hessians, we then have for sufficiently small ε that

dx(ε)T ∇2
xxL(x(ε), λ(ε)) dx(ε) < 0.

For sufficiently small ε, we have |xi(ε)| > ε if x∗
i ̸= 0, so 0 < ξi(ε) < 1 for these components.

A direction dξ(ε) can be constructed from (4.15) (taking dx = dx(ε)) so that the direction
(dx(ε), dξ(ε)) is in the critical cone at (x(ε), ξ(ε)) for the problem NLP(ε) and satisfies (4.11).
Therefore, from (4.12), this point violates the second order necessary conditions.

We now use these observations to characterize the limit points of KKT points x(ε) for
NLP(ε) in a particular case. Consider the problem

minimize ||x ||0 subject to x1 + x2 + x3 ≥ 1 and x ≥ 0.

The relaxation of the corresponding half-complementarity formulation is

minimize
x, ξ

1T
3 (13 − ξ )

subject to 1− x1 − x2 − x3 ≤ 0, (λ0)

−xi ≤ 0, (λi) for i = 1, 2, 3

ξ ≤ 13 (η)

ξ ◦ x ≤ ε13 (µ+)

and ξ ≥ 0,

(4.21)

which is a special case of (4.1) where f(x) = 0, γ = 13, c0(x) = 1 − x1 − x2 − x3, and
ci(x) = −xi for i = 1, 2, 3. Because here ξ, x ≥ 0 for any feasible point, the constraint
corresponding to µ− in (4.1) can never be active, and we may ignore this constraint without
loss of generality. The following proposition shows that there are exactly seven limit points
of x(ε) as ε converges to zero, and that the KKT points converging to non-global solutions
of the unrelaxed half–complementarity formulation (2.3) are not local minimizers of (4.21).

Proposition 4.10. The following statements are true.

(a) The set of x parts of the limit points of KKT points for (4.21) as ε ↓ 0 is exactly{(
1
3 ,

1
3 ,

1
3

)
,
(
0, 1

2 ,
1
2

)
,
(
1
2 , 0,

1
2

)
,
(
1
2 ,

1
2 , 0
)
,
(
0, 0, 1

)
,
(
0, 1, 0

)
,
(
1, 0, 0

)}
.
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(b) The x parts of the KKT points (x(ε), ξ(ε)) of (4.21) that converge to

x̂ ∈
{(

1
3 ,

1
3 ,

1
3

)
,
(
0, 1

2 ,
1
2

)
,
(
1
2 , 0,

1
2

)
,
(
1
2 ,

1
2 , 0
)}

as ε ↓ 0 are not local minimizers.

Proof. Part (b) follows easily from Theorem 4.4. Part (a) can be proven by specializing
the conclusions (4.5)–(4.9) to (4.21). Let x(ε) be a sequence of KKT points for (4.21) that
converges to some limit point x̂ as ε ↓ 0, and let ξ(ε), η(ε), µ+(ε), λ(ε) satisfy the KKT
conditions (4.4). Due to the first constraint in (4.21), x(ε) has at least one component
xj(ε) ≥ 1

3 > ε if ε is sufficiently small. For such j we know that λj(ε) = 0 due to xj(ε) > 0.
Moreover, based on (4.5) we have

∂f(x)

∂xj
+

∑
i∈E ∪I

λi
∂ci(x)

∂xj
= −λ0(ε)− λi(ε) = − ε

xj(ε)2

so that λ0(ε) = ε
xj(ε)2

> 0 for such j. Hence the constraint corresponding to λ0(ε) is active

and
x1(ε) + x2(ε) + x3(ε) = 1. (4.22)

The problem can be broken into three cases depending on the nonzero structure of x̂. We
prove one case and leave the other cases to the reader.

Case 1: Suppose x̂j > 0 for all j = 1, 2, 3. For sufficiently small ε we have xj(ε) > ε and
therefore λj(ε) = 0 for all j = 1, 2, 3. Then, based on (4.5), we know that λ0(ε) = ε

xj(ε)2

holds for all j = 1, 2, 3, so that x1(ε) = x2(ε) = x3(ε). Using (4.22) and (4.5) we see that
the KKT quantities must satisfy

x(ε) =
(
1
3 ,

1
3 ,

1
3

)
, ξ(ε) =

(
3ε, 3ε, 3ε

)
, λ(ε) =

(
9ε, 0, 0, 0

)
µ+(ε) =

(
3, 3, 3

)
, η(ε) =

(
0, 0, 0

)
.

(4.23)

This shows that lim
ε↓0

x(ε) =
(1
3
,
1

3
,
1

3

)
is the only potential limit point with the nonzero

structure considered in this case. Conversely, it is easy to verify that the quantities in (4.23)
satisfy the KKT conditions (4.4), so that x̂ =

(
1
3 ,

1
3 ,

1
3

)
is indeed a limit point.

For this particular example, this result is as strong as we could hope for. There are only
a few KKT points for each sufficiently small ε with an equal number of limit points as ε ↓ 0.
This is in stark contrast to Corollary 3.4, which does not differentiate between any feasible
point. In addition, if the relaxation NLP(ε) is solved by an NLP solver that is able to escape
local maximizers, the point returned by the solver for small ε is close to a global minimizer
of the original ℓ0-norm minimization problem (1.1).

5 Computational Results

After having discussed theoretical properties of the NLP reformulations, we now examine
the practical performance of NLP solvers as solution methods of ℓ0-norm minimization
problems. One premise for our experiments is that black-box NLP codes are used with
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default settings. Those are applied directly to the NLP reformulations described in the
previous sections, without modifications, despite the fact that some of these optimization
models are not well-posed (i.e., the MFCQ does not hold at any feasible point for (3.7)).

The goal of these brute-force experiments is to assess the potential of NLP algorithms
as solution approaches for hard ℓ0-norm optimization problems. If these initial experiments
give encouraging results, it motivates further research that aims at a deeper understanding
of the underlying mechanisms and the development of specialized methods.

The experiments were conducted using the NLP solvers CONOPT 3.15C [15], IPOPT
3.10.4 [35], KNITRO 8.0.0 [6], MINOS 5.51 [31], and SNOPT 7.2-8 [20]. We did not alter the
solvers’ default options, except that KNITRO was run with the option “hessopt=5”, which
avoids the (potentially time-consuming) computation of the full Hessian matrix. In addition,
any arising linear program (LP), mixed-integer linear programs (MILP), quadratic program
(QP), and mixed-integer quadratic programs (MIQP) was solved with CPLEX 12.5.1.0.
Matlab R2012b and the AMPL modeling software [18] were used as scripting languages and
to generate the random problem instances. All numerical experiments reported in this paper
were obtained on a 8-core 3.4GHz Intel Core i7 computer with 32GB of memory, running
Ubuntu Linux.

5.1 Sparse solutions of linear inequalities

We first consider random instances of the model problem (1.1) of the form

minimize
x∈Rn

∥x ∥0
subject to Ax ≥ b and −M1n ≤ x ≤ M1n,

(5.1)

where A ∈ Rm×n, b ∈ Rm, and M > 0. The test instances were generated using AMPL’s
internal random number generator, where the elements of A and b are independent uniform
random variables between -1 and 1.

Our numerical experiments compare the performance of different NLP optimization codes
when they are applied to the different NLP reformulations. Because these problems are
nonconvex, we also explore the effect of different starting points.

The NLP reformulations considered are (the first five were discussed in previous sections):

• “Half”: The half-complementarity formulation (1.6);

• “Aggregate”: The full complementarity formulation where the complementarity con-
straints are reformulated by the inner product (3.7);

• “Individual”: The full complementarity formulation where the complementarity con-
straints are reformulated by the Hadamard product;

• “Agg-Relaxed” and “Ind-Relaxed” are variants of “Aggregate” and “Individual” formu-
lations, respectively, where the “≤ 0” complementarity constraints are relaxed to “≤ 10−8”;

• “Squared”: The full complementarity formulation where the complementarity con-
straints are reformulated using the square of the inner product.

• “AMPL”: This formulation uses the keyword complements in order to pose (1.3) di-
rectly as an LPCC in AMPL. It is then up to the particular chosen optimization code to
handle the complementarity constraints appropriately. Among the solvers considered here,
only KNITRO is able to handle the complements keyword. KNITRO then internally refor-
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mulates the complementarity constraints using a penalty term that is added to the objective
function; see [28] for details.

• “MILP”: The MILP formulation (1.7). Our test problems (5.1) explicitly include a
bound on the optimal value x∗, so that the same M can be used in (5.1) and (1.7). The
solution for this formulation is the global solution for (1.1).

• “LP”: The linear programming formulation (1.2).

Because the nonlinear optimization methods aim at finding only local (and not global)
optimal solutions of the nonconvex NLP reformulations, the choice of the starting point is
crucial. In the experiments, we considered the following options:

• Start1: Set x+ = x− = 0 and ξ = 0;

• Start2: Set x+ = x− = 0 and ξ = 1n;

• Start3: Let xLP be the optimal solution of the LP formulation (1.2). Then set x+ ,
max{0, xLP}, x− , max{0,−xLP}, and ξ = 0;

• Start4: Let xLP be the optimal solution of the LP formulation (1.2). Then set x+ ,
max{0, xLP}, x− , max{0,−xLP}, and ξ = 1n;

• Start5: Let xLP be the optimal solution of the LP formulation (1.2). Then set x+ ,
max{0, xLP}, x− , max{0,−xLP}, and ξ according to (1.4).

5.1.1 Pilot study on small problems

As a pilot study, we considered small problems with 30 constraints and 50 variables (i.e.,
m = 30, n = 50), and M was chosen to be 100. To make statements with statistical
significance, we generated 50 different random instances. Each of these instances is solved
by 140 combinations of NLP solver, problem reformulation, and starting point, in addition
to the LP and MILP formulations.

For each individual run, the point x∗ returned by the solver is accepted as solution if it
satisfies Ax∗ ≥ b, independent of the solvers’ exit status. In particular, we accept a solution
as feasible if ∥Ax∗ − b∥1 ≥ 1e − 8. The number of nonzeros (i.e., ∥x∗∥0) is computed by
counting the number of elements with |x∗

j | > 10−6. Table 1 lists the mean and standard
deviation of ∥x∗∥0 for the different combinations. We note that all 50 problems were solved
(i.e., the returned point satisfied the linear inequalities) for each combination, except for one
CONOPT combination. As a reference, for the LP option, the mean was 14.32 with standard
deviation 2.97, and for the MILP option, the mean was 4.88 with standard deviation 0.82.

To present the results in more detail, Figures 1(a)–1(e) depict, for each of the 50 in-
stances, the best ℓ0-norm obtained by the different NLP solvers, in comparison to the LP
approximation and the (globally optimal) MILP solution. For each solver, the “Best-” line
is the smallest ∥x∗∥0 value obtained over all configurations for the same solver. In addition,
the figures show the results obtained with the formulation/starting-point combination giv-
ing the smallest mean by the respective NLP solver. For example, in Figure 1(a), the line
“CONOPT-Relaxed-3” shows the outcome for the relaxed aggregate formulation and the 3-th
starting point (Start3) with the CONOPT solver. As we can see, all of the NLP solvers are
able to find solutions that are sparser than those obtained by the common ℓ1-approximation.
Indeed, the optimal solutions of some NLP solvers, particularly IPOPT and KNITRO, are
able to find points with sparsity very close to the sparsest solution possible, as computed by
the MILP formulation. Finally, Figure 1(f) shows the sparsest solution obtained by any of
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Table 1: Solution quality statistics for pilot study, grouped by solvers.

the solver, formulation, and starting point combinations. We see that, for each instance, at
least one combination resulted in a solution that is equal or at most two nonzero elements
worse than the global solution.

These results indicate that the application of (standard) NLP solvers to complemen-
tarity formulations of the ℓ0-norm minimization problem results in high-quality solutions,
considerably better than what is obtained by the common ℓ1-approximation. This promising
observation is noteworthy, given that the problems are highly nonconvex. From a theoretical
standpoint, the NLP solvers are only guarateed to converge to a KKT point (at least when a
constraint qualification holds), and as shown in Corollary 3.4, there are exponentially many
(undesirable) KKT points to which the NLP solver might potentially converge. In practice,
however, the line-search or trust-region globalization mechanisms usually guide the NLP
solvers to local minimizers. As discussed in Section 4.3, for the relaxed formulations these
correspond to non-dominated points from which there is no obvious direction to improve
the objective.

It is also somewhat surprising that, in this preliminary experiment, the squared for-
mulation resulted in the lowest sparsity in some cases, even though no KKT point exists
for any instance. The fact that the solvers terminate nevertheless can be explained by
looking at the optimality conditions for the squared formulation. These conditions can
only be satisfied in exact arithmetic if the product of some Lagrangian multipliers with
the (partial) Jacobian matrix Jξϕ(x

+, x−, ξ) of the squared reformulation ϕ(x+, x−, ξ) =
(ξT (x+ + x−) + (x+)T (x−))2 is nonzero. Note that Jξϕ(x

+, x−, ξ) is zero at every comple-
mentary point. However, as the iterations of the NLP solver converge to such a point, the
product of Jξϕ(x

+, x−, ξ) with the multipliers can converge to a nonzero value when the
multipliers become arbitrarily large. So, even though there is no finite KKT point, the NLP
solvers’ termination tests can be satisfied by diverging multipliers.

We also note that the CONOPT, MINOS, and SNOPT solvers usually do not converge
to good solutions for the Aggregate and Individual formulations when started from a point
obtained by the LP formulation (Start3, Start4, and Start5). Indeed, in many cases the
solvers terminate immediately at such a starting point. This can be explained by the fact
that any feasible point is a KKT point for these formulations, and the active set solvers
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Figure 1: Sparsest solutions for 50 random problems using different NLP solvers, ordered by MILP
solutions.

simply compute the corresponding multipliers at the starting point, so that the termination
test is immediately satisfied. This is in contrast to the interior point solvers IPOPT and
KNITRO, which are required to move the starting point away from bound constraints. This
modification results in violations of the respective reformulation of the complementarity
constraints and forces the algorithm to take steps.

5.1.2 Large-scale problems

Based on the results in the pilot study, we pursued further numerical studies on larger prob-
lems, using the NLP solvers CONOPT, IPOPT and KNITRO. For this set of experiments
we generated 30 random instances of (5.1) with 300 constraints and 1,000 variables.

With this problem size, obtaining the true global optimum with the MILP formulation
(1.7) is not possible with reasonable computational effort, even though we chose a reasonable



298 M. FENG, J.E.MITCHELL, J.-S. PANG, X. SHEN AND A. WÄCHTER

Figure 2: Solution sparsities for 30 large-scale random problems using different NLP solvers, ordered
by MILP solutions.

big-M constant (M = 100) in (5.1). In order to get an idea of what the sparsest solution
for an instance might be, we ran CPLEX in multi-threaded mode for 10 minutes, which is
roughly equivalent to more than an hour of CPU time (this option is labeled MILP-600sec),
and we report the sparsity of the best incumbent. Similarly, we also explored the quality
of a heuristic solution that an MILP solver is able to find in a time that is comparable
to that taken by the NLP solvers. For this purpose, the MILP60 option reports the best
incumbent obtained in one minute, equivalent to about 2.5 minutes of CPU time. In these
experiments, CPLEX was run with the mipemphasis=1 option, to focus on finding good
heuristic solutions quickly.

As we observed in the small-case study, the ℓ1-approximation (1.2) did not lead to good
solutions. However, it is common to enhance the LP solution by some improvement heuristic.
One such approach is the iterative re-weighted ℓ1-minimization scheme proposed in [9].
Starting with the optimal solution x∗,0 of (1.2), this procedure optimizes a sequence of LPs
for k = 0, 1, 2, . . . to generate iterates from

x∗,k+1 = argmin
x∈Rn

{∑
i=1

wk,i|xi|, subject to Ax ≥ b and −M1n ≤ x ≤ M1n

}
,

with weights wk,i = 1/|x∗,k
i |. Here, we understand wk,i = 1/0 = ∞ as xi being fixed to zero.

We ran this procedure for 30 iterations (after which the iterates had settled), and report the
outcome of this procedure under the label “LPReweight”.

The results of the experiments are depicted in Figure 2. First, we see in Figure 2(a)
that the iterative re-weighting procedure indeed improves the standard ℓ1-approximation
considerably; it more than halves the objective function. However, there is still a significant
gap (17% – 66%) between LP-Reweight and the best solution found by the MILP solver
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∥x∗∥0 CPU time
Mean StdDev Mean StdDev

LP 149.33 9.93 4.87 0.59
LP-Reweight 66.00 6.22 5.26 0.60
MILP-60sec 169.83 20.42 373.65 12.89
MILP-600sec 48.03 3.20 4116.37 142.83

CONOPT-Agg-Relaxed-4 61.23 4.90 14.33 2.49
CONOPT-Agg-Relaxed-5 64.23 5.69 32.30 3.84

IPOPT-Aggregate-1 46.47 3.88 544.27 354.91
IPOPT-Individual-1 49.00 3.73 44.99 45.50

KNITRO-AMPL-2 58.13 4.90 46.46 8.95
KNITRO-Ind-Relaxed-2 54.57 4.72 121.52 93.42

Table 2: Summary statistics for large-scale study.

within an hour of CPU time. We note that the MILP solver is not able to find any good
solution within about 2.5 minutes of CPU time.

Figure 2(b) shows the solution quality obtained with different reformulations of the ℓ0-
norm minimization problem when solved with CONOPT. To limit the amount of data in the
graphs, we plot only selected representative combinations, including the best ones. In this
experiment, the relaxed aggregate formulation obtains solutions of similar quality to those
obtained by the LP-Reweight option.

The KNITRO results are reported in Figure 2(d) for the relaxed individual formulation
and AMPL keyword option which both give better solutions than the LP-Reweight option.
IPOPT results are reported in Figure ?? for the aggregate and individual formulations. We
see that the solution quality is comparable with that obtained by the MILP solver, and for
the Aggregate formulation often even better.

For practical purposes it is also important to consider the computation time required to
solve the NLP formulations. Table 2 lists the average solution quality and required CPU
time for representative combinations of formulations and starting points. We note that, on
average, solutions within 4% of the MILP-600sec objective can be computed in less than one
minute (“IPOPT-Individual-1”). Solutions comparable and better than the MILP-600sec
objective can be computed in 10 minutes on average (“IPOPT-Aggregate-1”), but with
significant variation in the computation time.

5.2 Traffic network problems with fixed costs

The final set of numerical experiments considers traffic planning problems, formulated as
the following network flow problem with nodes (i ∈ N ) and arcs ((i, j) ∈ A ⊆ N ×N ):

minimize
x

∑
(i,j)∈A

fij∥xij∥0 +
∑
i∈N

vi

( ∑
(i,j)∈A

xij

)
+
∑
i∈N

qi

( ∑
(i,j)∈A

xij

)2
subject to Ax = b, x ≤ c, and x ≥ 0.

(5.2)

Here, b ∈ R|N | are the external traffic volumes (inflows/outflows) at each node, and A ∈
R|N |×|N| represents the connectivity (or adjacancy) matrix of the network. The vector
c ∈ R|A| denotes the capacity of each arc. With each arc (i, j), we associate some fixed
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costs fij that has to be paid if the arc is used (has non-zero flow). In addition, we consider
node-based congestion costs that grow quadratically in the total inflow into a node.

To investigate the performance of the NLP formulations for a problem of realistic size,
we obtained the incidence matrices A of the Austin network (7,388 nodes and 18,691 arcs)
from the transportation network problem collection provided at http://www.bgu.ac.il/
∼bargera/tntp/. The other parameters in (5.2) were chosen as fij = 5 and cij = 10 for
each arc, and the variable and quadratic costs vi and qi were both independently chosen
from uniform random variables between 1 and 5. Based on the rationale that the nodes
in the instances are ordered according to their geographic positions, we chose the first five
nodes as sources with inflow uniformly chosen at random between (2, 10), and the last five
as sinks with equal amounts of outflow. In this way, long paths are generated in the optimal
solution.

We compare the “Aggregate” and “Individual” NLP formulations of the complementarity
reformulation (2.2) of (5.2) with the standard MIQP formulation of the fixed-cost term in
(5.2) (similar to the MILP reformulation (1.7) of the complemenarity reformulation (2.2)).

We point out that it has been demonstrated that the solution time for the MIQP formula-
tion of problems of a similar kind can be dramatically reduced using perspective formulations
[19, 22]. That approach, however, can only be applied when the objective function is separa-
ble, which is not the case here. Therefore, we are comparing the NLP reformulation proposed
in this paper with the time required to solve the straight-forward MIQP formulation.

We performed experiments for random 20 instances, where the NLP formulations are
solved with IPOPT. As starting points we chose

• all-zero: xij = 0 and ξij = 0 for all (i, j) ∈ A.

• all-off: xij = 0 and ξij = 1 for all (i, j) ∈ A.

• all-on: xij = cij and ξij = 0 for all (i, j) ∈ A.

• all-max: xij = cij and ξij = 1 for all (i, j) ∈ A.

In Table 3 and Figure 3 we present some of the NLP runs that consistently achieved
better objective values than the incumbent found by CPLEX after 10 minutes wall clock
time for the MIQP formulation. In analogy to the “LP” formulation in Section 5.1, we also
include results in which the ℓ0-norm in (5.2) was replaced by the ℓ1-norm, leading to a QP.
However, the objective values reported for this option are those with the original ℓ0-norm.

Clearly, the NLP solvers are able to achieve significantly better objective values than
the global MILP solver, in a very small fraction of the time (around 13 CPU secs vs. 1
CPU hour). In particular, we observe that the solutions obtained by the NLP solver are
much sparser than those found for the discrete formulation. This indicates that NLP solvers
applied to complementarity formulations of ℓ0-norm structures such as startup costs might
be a promising alternative to mixed-integer formulations and deserve further investigation.

6 Conclusions and Outlook

We presented several nonlinear programming reformulations of the ℓ0-norm minimization
problem. Our goal was to study the practical performance of standard NLP codes on these
NP-hard problems. We found that the solvers are often able to generate solutions that have
objective values close to the global solution. This is somewhat remarkable because the NLP
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Opt. Obj. CPU time Sparsity ∥x∗∥0
Mean StdDev Mean StdDev Mean StdDev

L1-QP 24885.58 4804.71 0.99 0.07 2724.90 418.42
MIQP-600sec 27324.94 8796.15 3643.73 108.77 2253.55 2065.14

IPOPT-Ind-all-max 16636.52 4093.09 12.79 1.97 893.75 264.41
IPOPT-Ind-all-off 16983.78 4219.95 44.62 70.10 466.30 105.41
IPOPT-Agg-all-max 17061.89 4444.53 40.82 19.65 1010.15 379.71

Table 3: Summary statistics for Austin traffic network.

Figure 3: Optimal objective values for different formulations of the traffic problem, ordered by
NLP objectives.

formulations are highly nonconvex and the usual constraint qualifications, such as MFCQ,
do not hold.

Typically, NLP algorithms are designed to find a KKT point, ideally one that satisfies
the second-order necessary optimality conditions. Our analysis pertaining to the optimality
conditions of the NLP formulations finds that, for the simple problem with linear constraints
in the introduction, any feasible point for the ℓ0-norm minimization problem is such a KKT
point. Consequently, from this perspective, any feasible point seems equally attractive to
the NLP solver, and therefore these considerations do not explain the observed high quality
of the solutions.

We also discussed the properties of solutions for relaxations of the NLP formulations as
the relaxation parameter is driven to zero. For a small example problem with linear con-
straints we showed that there are only a few KKT points for the relaxed problem, and that
those converge to a small number of limit points as the relaxation parameter goes to zero.
This is in contrast to the earlier result that does not distinguish between any two feasible
points. In addition, we established that a KKT point for the relaxed NLP that is not close
to a local minimizer of the original problem is a local maximizer for the relaxation. As a
consequence, an NLP solver, when applied to the relaxation with a small relaxation param-
eter, will most likely converge to a point that is close to a local minimizer of the original
ℓ0-norm minimization problem.

These observations might help to explain why the NLP solvers compute points with ob-
jective values close to the globally optimal value in our experiments. Some solvers relax any
given NLP by a small amount by default, and therefore explicitly solve a relaxation of the
complementarity reformulation. For other solvers, numerical inaccuracies or the lineariza-
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tion of the nonlinear reformulations of the complementarity constraints at infeasible points
might have an effect that is similar to that of a relaxation. The details of such an analogy,
as well as the generalization of the results beyond the particular small example, are subject
to future research.

Our numerical experiments did not identify a clear winner among the different reformu-
lations of the ℓ0-norm minimization problems. Similarly, while some NLP codes tended to
produce better results than others, it is not clear which specific features of the algorithms
or their implementations are responsible for finding good solutions. We point out that each
software implementation includes enhancements, such as tricks to handle numerical prob-
lems due to round-off error or heuristics that are often not included in the mathematical
description in scientific papers. Because the NLP reformulations of the ℓ0-norm minimiza-
tion problems are somewhat ill-posed, these enhancement are likely to be crucial for the
solver’s performance.
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[26] C. Kanzow and A. Schwartz, The price of inexactness: Convergence properties of
relaxation methods for mathematical programs with equilibrium constraints revisited,
Math. Oper. Res. 40 (2015) 253–275.

[27] C. Kanzow and A. Schwartz, A new regularization method for mathematical programs
with complementarity constraints with strong convergence properties, SIAM J. Optim.
23 (2013) 770–798.
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