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and if not, as the existing works suggest, the decision-maker needs to seek optimal solutions
in other senses, for example, Pareto optimality. To the best of our knowledge, there are no
papers to consider this problem. In this paper, we will investigate whether the given ob-
jectives have a COS. In fact, we solve this problem by considering a more general problem:
how to compute the minimum error ε that guarantees that the objectives have at least one
ε-optimal solution, noting that the objectives have a COS if and only if the minimum error
guaranteeing the existence of ε-optimal solutions is zero. The aim of this paper is to provide
an estimate for the minimum error that guarantees the existence of ε-optimal solutions in a
fully distributed manner. We solve the minimum error estimate problem through a multi-
agent network, where each agent uniquely corresponds to an objective and each agent only
knows its own objective. In this network, agents can exchange information only with their
neighbors via an underlying directed graph.

Distributed optimization and algorithms have been widely studied in the literature due
to its broad applications in resource allocation and wireless sensor networks [3, 5, 6, 8, 12,
15, 18–20, 25–27, 30, 34]. In centralized algorithms, there is typically a fusion center that
takes charge of collecting, analyzing and computing the data received from the agents.
However, in contrast to this, in distributed algorithms there is no fusion center and the
agents accomplish the task by mutual cooperation. We take the following widely studied
resource allocation problem for example to illustrate the motivation of applying distributed
algorithms to solve the considered problem. Consider a large factory consisting of multiple
divisions producing different products (each division corresponds to an agent in the network).
Each division manager only knows her own division’s production plan and cost objective,
but not other divisions’ information. When the number of the divisions is very large, the
workload of the central resource planner or the factory manager (playing the role of the
fusion center in centralized algorithms) and the data transmitted from the divisions to the
central resource planner are very huge. This centralized way may cause network congestion
and even breakdown of this network. In this case, a possible approach is that all the
division managers cooperate with each other to help the central resource planner accomplish
the resource allocation task. Distributed algorithms enjoy the following advantages over
centralized algorithms: scalability to the network size, robustness to communication failure,
avoiding computation overload and network congestion.

We develop a fully distributed method to solve the minimum error estimation problem
based on the proposed distributed subgradient algorithm and the well-known distributed
averaging algorithm. The considered problem can be equivalently converted into a min-max
optimization problem. The authors in [31] proposed two distributed methods (penalty-based
method and primal-dual method) to solve general min-max problems. From a different
viewpoint, in this paper we use a standard sum objective optimization problem (SOOP)
to approximate the equivalently transformed min-max problem and propose a distributed
subgradient algorithm to solve this standard SOOP. We first establish the optimal con-
vergence of the distributed subgradient algorithm in terms of the sum objective at agents’
estimates. Then we provide an estimate for the minimum error that guarantees the existence
of ε-optimal solutions. The contribution of this paper is summarized as follows.

• To our knowledge, it is the first time that the problem whether the objectives in multi-
objective optimization have COSs is investigated. Almost all of the works on multi-
objective optimization assume that the given objectives have no COS. However, how
to check whether the given objectives have a COS is an important problem in practice,
since if they have a COS, this solution is desirable and good for all the objectives, and
in this case it is no longer necessary to apply the existing methods to find POSs.
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• In terms of the new concept of ε-optimal solutions, we consider a more general mini-
mum error estimation problem in a fully distributed manner. Based on the proposed
distributed subgradient algorithm and distributed averaging algorithm, we present an
estimate for the minimum error that guarantees the existence of ε-optimal solutions.

• The weight-balance of the adjacency matrix plays an important role in the optimal
convergence of distributed subgradient optimization algorithms [19]. The authors in
[11] proposed a distributed mirror imbalance-correcting algorithm and established its
finite-time convergence to a weight-balanced adjacency matrix and convergence time
complexity analysis. In this paper, we provide an estimate on the convergence of a class
of more general weight-balanced adjacency matrix generating algorithms which are the
same as the mirror imbalance-correcting algorithm in [19] except without specifying a
specific node selection rule.

This paper is organized as follows. In Section 2, we introduce the notation and the
two concepts of common optimal solution and ε-optimal solution. In Section 3, we first
review the distributed optimization algorithms in the literature and then introduce the
proposed distributed subgradient algorithm following with an algorithm convergence result.
In Section 4, we provide an estimate for the minimum error that guarantees the existence of
ε-optimal solutions, while in Section 5, we give an estimate for the convergence of a class of
weight-balanced matrix generating algorithms. Finally, some concluding remarks are given
in Section 6.

2 Preliminaries and Problem Formulation

In this section, we formulate the minimum error estimation problem of interest. We first
introduce the notation and basic terminology used in this paper.

2.1 Notation and Terminology

Throughout this paper, R is the real Euclidean space with the Euclidean norm || · ||. We
view a vector as a column vector and write z′ to denote the transpose of a vector or matrix
z. We write PX(·) to denote the projection operator onto closed convex set X. For a
convex function g : Rm → R, v(ẑ) ∈ Rm is a subgradient of g at vector ẑ if g(z) ≥
g(ẑ) + (z − ẑ)′v(ẑ), ∀z ∈ Rm. The set of all subgradients of g at ẑ is denoted by ∂g(ẑ).

A vector is said to be a weighting vector if all its components are nonnegative and the
sum of its components is one. A matrix is a weighting matrix if all of its row vectors are
weighting vectors. Furthermore, if the transpose of a weighting matrix is also weighting, we
call this weighting matrix a doubly weighting matrix. Clearly, for doubly weighting matrix
A, we have A1 = 1, 1′A = 1′, where 1 is the vector with all ones. Let A = (aij) ∈ Rn×n

be a nonnegative matrix. Denote by GA =
(
V, EA

)
the induced graph of A, i.e., (j, i) ∈ EA

if and only if aij > 0, V = {1, 2, ..., n}. Graph GA is strongly connected if there is a path in
GA from i to j for each pair node i, j.

Let A be a weighting matrix with strongly connected induced graph GA. By Proposition
1 in [26], it holds that for any k,

∣∣∣∣Akei −
1

n
1
∣∣∣∣ ≤ c0σ

k, (2.1)
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where c0 = 2
√
n 1+ζ−n+1

(1−ζn−1)
1+ 1

n−1
, 0 < σ = (1 − ζn−1)

1
n−1 < 1, ζ = min{aij |aij > 0, i, j ∈ V},

ei is the vector with i-th component one and other components zero.

2.2 Common Optimal Solutions and ε-Optimal Solutions

A multi-objective optimization problem (MOOP) is usually defined as follows:

minimize f(x) =
(
f1(x), . . . , fn(x)

)
subject to x ∈ X.

(2.2)

Here X ⊆ Rm is the convex constraint set, which is assumed to be bounded; fi : Rm →
R, i = 1, ..., n are the convex objective functions to be minimized simultaneously. By the
boundedness of X and the convexity of fi, f

∗
i := minx∈X fi(x) is a finite number, i = 1, ..., n

and the minimum minX
1
n

∑n
i=1 fi can be achieved.

When the objectives are conflicting, there exists no well-defined solution that can min-
imize all objectives simultaneously but some mathematically equally good solutions, which
are called the POSs or nondominated points in the outcome space [1, 4, 9, 32]. Much atten-
tion has been paid to designing algorithms to seek the POSs. However, to our knowledge
there is no paper investigating whether the given objectives are conflicting, or equivalently,
whether they have COSs. We now introduce the formal definition of COSs.

Definition 2.1. (Common Optimal Solutions) We say that MOOP (2.2) has a COS if there
exists a feasible point x0 ∈ X such that

fi(x0) = f∗
i , i = 1, ..., n.

In this paper, we are interested in the problem that how to check the given objectives
have a COS. Although in most cases these objectives do not have COSs, the COS existence
problem is still important in practice since if these objectives have a COS, this solution is
desirable and it is no longer necessary to apply the existing methods to seek POSs. When
the objectives have no COS, sometimes the feasible point with a certain error from all the
optimal values f∗

i can also be viewed as an acceptable solution. Here is the definition of the
newly proposed concept of ε-optimality.

Definition 2.2. (ε-Optimal Solutions) We say that MOOP (2.2) has an ε-optimal solution
if there exists a feasible point x0 ∈ X such that

fi(x0) ≤ f∗
i + ε, i = 1, ..., n.

Here x0 is said to be an ε-optimal solution of MOOP (2.2) and ε ≥ 0 is referred to as the
(approximate) error of x0.

Clearly, the concept of ε-optimality is more general than the concept of common optimal
solutions since a COS is a 0-optimal solution, and when the specified error ε is sufficiently
large, there always exist ε-optimal solutions with ε as the approximate error.

2.3 ε-Pareto Optimal Solutions

Various concepts of ε-POSs (or ε-efficient solutions) have been proposed in the literature [13,
33]. We next introduce one of the most commonly used concepts and give some discussions
on this concept and the ε-optimality proposed in this paper.
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(ε-Pareto Optimal Solutions): Let ε > 0. Point x0 ∈ X is said to be an ε-POS of MOOP
(2.2) if there is no x ∈ X such that fi(x) ≤ fi(x0) − ε for all i and with strict inequality
holding for at least one index i.

We can see that ε-optimality is stronger than the ε-Pareto optimality. In fact, if x0 ∈ X is
an ε-optimal solution, but not an ε-POS, then there exists x ∈ X such that fi(x) ≤ fi(x0)−ε
for all i and with strict inequality holding for some index i0. Combining this with the ε-
optimality, we have fi0(x) < fi0(x0) − ε ≤ f∗

i0
, which yields a contradiction. An ε-optimal

solution is thus also an ε-POS.
Now we give some discussions about the two concepts. First, since a POS is also an

ε-POS, generally the ε-POS set is nonempty. We also note that a MOOP does not have
ε-optimal solutions for all sufficiently small ε unless it has a COS. However, an advantage of
ε-optimality over ε-Pareto optimality is that in some cases it excludes some solutions, which
may be good for some objectives, but extremely bad for some other objectives, from the set
of acceptable solutions. Here we take an example to illustrate this observation.

Example 2.3. We consider a bi-objective piecewise linear optimization problem with ob-
jectives:

f1(x) =


−ax+ 2− 3a, −∞ < x ≤ −3;
−x− 1, −3 < x ≤ −1;
x+ 1, −1 < x ≤ 1;
ax+ 2− a, 1 < x < +∞,

f2(x) =


−ax+ 2− a, −∞ < x ≤ −1;
−x+ 1, −1 < x ≤ 1;
x− 1, 1 < x ≤ 3;
ax+ 2− 3a, 3 < x < +∞,

where a > 1, the constraint set is X = [−3, 3]. We can see that the 2-optimal solution set is
[−1, 1] and 2-POS set is (−3, 3). Although the points in (−3,−1) ∪ (1, 3) are acceptable in
the sense of approximate Pareto optimality, intuitively they are not acceptable in the sense
that though points in (−3,−1) are relatively good for the first objective, they are extremely
bad, especially those close to −3, for the second objective when a > 1 is sufficiently large.
Similarly, points in (1, 3) are approximately good for the second objective, but extremely
bad for the first objective when a > 1 is sufficiently large.

2.4 Problem Formulation

In this paper we are interested in the following two problems:

Does MOOP (2.2) has a COS?

How to compute the minimum ε that can guarantee the existence of ε-optimal solu-
tions?

In fact, we can give a positive answer to the first problem by solving the second more
general one. The second problem can be described as the following optimization problem:

minimize ε

subject to x ∈ X, fi(x)− f∗
i ≤ ε, i = 1, ..., n,

which can be further equivalently converted into

min
x∈X

max
1≤i≤n

(fi(x)− f∗
i ) , M. (2.3)

In this paper, M is referred to as the minimum error that guarantees the existence of ε-
optimal solutions and we will develop a fully distributed method to give an approximate
estimate for it. The following lemma is straightforward.
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Lemma 2.4. MOOP (2.2) has an ε-optimal solution if and only if ε ≥ M . Particularly,
MOOP (2.2) has a COS if and only if M = 0.

3 Distributed Subgradient Algorithms

In this section, we will first review some existing distributed optimization algorithms and
then propose a new distributed subgradient algorithm. Finally, we give a preliminary con-
vergence result for the proposed algorithm.

3.1 Literature Review on Distributed Optimization Algorithms

In this subsection, we first review some distributed optimization algorithms and then present
some comparisons between distributed algorithms and centralized algorithms.

Due to the broad applications in resource allocation, machine learning and wireless sensor
networks, distributed optimization and distributed algorithms have been widely studied in
the control, engineering and optimization community [3,5,6,8,12,15,18–20,25–27,30]. Most
of attention has been paid to designing distributed algorithms for a multi-agent network to
cooperatively minimize the SOOP

min
x∈Rm

n∑
i=1

gi(x),

where each component gi of the sum objective is only known by agent i. The network
can achieve a global optimization goal via agents’ local optimization and local information
exchange among agents over a directed graph. The authors in [25] proposed a distributed
subgradient algorithm

xi(k + 1) =
∑

j∈Ni(k)

aij(k)xj(k)− αdi(k), i = 1, ..., n

to solve the above SOOP, where xi(k) is the estimate of agent i for the optimal solution
of the sum objective at time k, Ni(k) is agent i’s neighboring node set at time k in the
time-varying network graphs, which are used to characterize the communication structure
among agents, di(k) is a subgradient of agent i’s convex objective gi at its current estimate
xi(k). Under some basic assumptions of bounded subgradients and jointly connected net-
work graph, the authors in [25] presented a convergence error between the sum objective
value at an ergodic average of all past estimates and the optimal objective value in terms
of some model parameters including the constant stepsize, the upper bound of subgradients
and the number of agents. Then the authors in [26] considered a more general sum objective
constrained optimization problem and proposed a similar projection subgradient algorithm
with time-varying step-sizes: xi(k + 1) = PX

(∑
j∈Ni(k)

aij(k)xj(k) − αkdi(k)
)
, where PX

denotes the convex projection operator. In addition to the bounded subgradients and jointly
connected graph assumptions, the authors showed that all agents’ estimates will converge to
some common optimal point provided that the time-varying stepsizes {αk} satisfies the clas-
sical stochastic approximation conditions

∑∞
k=0 αk = +∞ and

∑∞
k=0 α

2
k < +∞. Following

this, many distributed subgradient algorithms and their variants emerge to solve the SOOP
under different scenarios, for example, inexact subgradients with errors [27], random network
graphs [18,30], unbalanced network graphs [19], incremental subgradient methods [15].

Although the subgradient method is simple and easily implemented, it suffers from low
convergence rate. Other distributed algorithms including distributed dual averaging algo-
rithms [8] and ADMM [3] also appeared in the literature to solve the SOOP. Besides the
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SOOP, distributed algorithms were also proposed in the literature to solve other problems,
for instance, Nash equilibrium computation in games [12, 19], convex intersection problems
in optimization theory [20], POS computation in multi-objective optimization [6]. In fact,
most of the existing distributed algorithms focus on the SOOPs, except the work [31]. The
authors in [31] proposed a distributed exact-penalty approach and a distributed primal-dual
Lagrangian approach to solve the general min-max problem, respectively.

In centralized algorithms, typically there is a fusion center, which takes charge of collect-
ing, analyzing and computing the data received from all the agents in the network. However,
in practical situations a fusion center is usually not allowed and the communication cost to
the fusion center is expensive and not economical. Moreover, the breakdown of the fusion
center may cause the failure of the entire optimization task. In contrast to centralized algo-
rithms, in distributed algorithms the fusion center is not required and agents autonomously
exchange information with their neighbors at a low communication cost. The convergence
results in [5, 25, 26] have shown that a global optimization can be achieved by agents in
a cooperative way via agents’ local information communication and local optimization for
their own objective functions. Compared to centralized algorithms, distributed algorithms
also have the advantages of scalability to the network size and robustness to communica-
tion failure. In addition, the distributed algorithms can also largely avoid the potential
computation overload due to the absence of the fusion center.

3.2 A Distributed Subgradient Algorithm

By the norm relation ||z||∞ ≤ ||z||p ≤ n
1
p ||z||∞, ∀z ∈ Rn we have

0 ≤ min
x∈X

( n∑
i=1

(fi(x)− f∗
i )

p
) 1

p −min
x∈X

max
1≤i≤n

(fi(x)− f∗
i ) ≤ (n

1
p − 1) max

x∈X,1≤i≤n
(fi(x)− f∗

i )

and then it follows from the boundedness of X and the convexity of fi that

lim
p→+∞

min
x∈X

( n∑
i=1

(fi(x)− f∗
i )

p
) 1

p

= min
x∈X

max
1≤i≤n

(fi(x)− f∗
i ) = M.

In the sequel we will present an approximate estimate for M by solving the following SOOP

min
x∈X

( n∑
i=1

(fi(x)− f∗
i )

p
) 1

p

, (3.1)

where p is sufficiently large.
We consider a network consisting of n agents with node set V. Each agent i is associated

with the convex objective (fi − f̂∗
i )

p and agent i does not know other agents’ objectives. In
our setup, agents cannot obtain the minimum f∗

i of their own objectives and can only use

approximate estimates f̂∗
i . The goal of this network is to cooperatively solve optimization

problem (3.1) by only local information exchange over a directed graph.
We propose the following distributed subgradient optimization algorithm:

zi(k + 1) = PX(zi(k)− αkui(k)),

wi(k + 1) = fi(ẑi(k + 1)), ẑi(k + 1) = 1∑k+1
r=0 αr

∑k+1
r=0 αrzi(r),

xi(k + 1) = PX

(
x̆i(k)− αkp(fi(x̆i(k))− wi(k + 1))p−1vi(k)

)
,

yi(k + 1) = fi(x̂i(k + 1)), x̂i(k + 1) = 1∑k+1
r=0 αr

∑k+1
r=0 αrxi(r), i = 1, ..., n,

(3.2)
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where x̆i(k) =
∑

j∈Ni
aijxj(k), ui(k) ∈ ∂fi(zi(k)), vi(k) ∈ ∂fi(x̆i(k)), zi(0) = xi(0), 0 <

αk ≤ 1 is the stepsize at time k. Here the adjacency matrix A = (aij) ∈ Rn×n is used to
characterize the communication structure among the agents, and Ni = {j|(j, i) ∈ EA} is the
neighbor set of node i.

Remark 3.1. The authors in [31] solved the general min-max problem minX max1≤i≤n gi
by first converting it into a SOOP that introduces some new decision variables and then
proposed two distributed methods of penalty-based approach and primal-dual Lagrangian
approach to solve it. Different from the two methods in [31], here we approximately convert
the min-max problem into a standard SOOP involved only with the decision variable and
fully employ the existing distributed algorithms to solve this standard SOOP. Note that
agents generally cannot obtain the minimum f∗

i of their own objectives. In this paper,
we propose a new distributed algorithm to solve the min-max problem (2.3) involved with
individual minimum f∗

i , in which the well-known subgradient algorithm is used to generate
an approximate estimate of the minimum f∗

i .

Remark 3.2. Here we make some comparisons between our algorithms and the two algo-
rithms in [31]. First, our algorithm and the two algorithms in [31] are all gradient-based
first-order methods and then can achieve the optimal convergence rate in terms of objec-
tive value by choosing appropriate stepsizes. Second, our distributed subgradient algorithm
(3.2) requires only the decision variable x (with dimension m) to be iterated (the operation
includes weighted average, subgradient computation and convex projection). However, be-
sides the decision variable, the distributed penalty-based method proposed in [31] requires
an additional auxiliary variable associated with the objective function value (with dimension
one) to be iterated, and the distributed primal-dual method in [31] further requires both
the auxiliary variable and the dual variable (with dimension n) to be iterated. Finally, our
algorithm can only achieve an approximate optimality due to the approximate of the sum
objective optimization to the min-max optimization while the algorithms in [31] can achieve
the exact optimality.

Here we make two assumptions on the communication graph, which are basic in the
multi-agent literature and assumed to be true throughout this paper.

Assumption 3.1. The adjacency matrix A is a doubly weighting matrix.

Assumption 3.2. The induced graph GA of the adjacency matrix A is strongly connected
with self-loops.

3.3 A Convergence Result

Theorem 3.3. Consider distributed subgradient optimization algorithm (3.2) with p ≥ 2.
Then

0 ≤ 1

n

n∑
i=1

(fi(x̂i(k + 1))− f∗
i )

p −min
X

1

n

n∑
i=1

(fi(x)− f∗
i )

p ≤ 1∑k
r=0 αr

R0, (3.3)

where

R0 =
1

2n

n∑
i=1

||xi(0)||2argminX
1
n

∑n
i=1(fi(x)−f∗

i )
p + 2L2 max

r1,r2
||xr1(0)− xr2(0)||+

2L2c0σ

1− σ
||x(0)||

+
(L2

1

2
+ 4L1L2 +

2c0L1L2
√
n

1− σ

) k∑
r=0

α2
r +

L3L
2
0

2

k∑
r=0

αr∑r+1
s=0 αs

r+1∑
s=0

α2
s
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+
L3

2

k∑
r=0

αr∑r+1
s=0 αs

1

n

n∑
i=1

||xi(0)||2argminX fi ,

and the numbers Li, 0 ≤ i ≤ 3 are given in the proof.

Proof. Take x∗ ∈ argminX
1
n

∑n
i=1(fi(x)−f∗

i )
p. By the projection inequality ||PX(y)−z|| ≤

||y − z|| for any y ∈ Rm and z ∈ X, we have

||xi(k + 1)− x∗||2

≤ ||x̆i(k)− αkp
(
fi(x̆i(k))− wi(k + 1)

)p−1
vi(k)− x∗||2

= ||x̆i(k)− x∗||2 + α2
kL

2
1 − 2αk(x̆i(k)− x∗)′p

(
fi(x̆i(k))− f∗

i

)p−1
vi(k)

+ 2αk(x̆i(k)− x∗)′vi(k)p
[
(fi(x̆i(k))− f∗

i )
p−1 − (fi(x̆i(k))− wi(k + 1))p−1

]
,
(3.4)

where L1 := p supi,k |fi(x̆i(k)) − wi(k + 1)|p−1L0, L0 = supz∈
∪

i,x∈X ∂fi(x) ||z|| < ∞, which

are finite due to the boundedness of X and the convexity of fi. It follows from the mean
value theorem that there exists βi,k ∈ [0, 1] such that

(fi(x̆i(k))− f∗
i )

p−1 = (fi(x̆i(k))− wi(k + 1))p−1

− (p− 1)(fi(x̆i(k))− (wi(k + 1) + βi,k(f
∗
i − wi(k + 1))))p−2(f∗

i − wi(k + 1)).
(3.5)

Similarly, there exists γi,k ∈ [0, 1] such that

(fi(x̄(k))− f∗
i )

p = (fi(x̆i(k))− f∗
i )

p

+ p(fi(x̆i(k)) + γi,k(fi(x̄(k))− fi(x̆i(k)))− f∗
i )

p−1(fi(x̄(k))− fi(x̆i(k))),
(3.6)

where x̄(k) = 1
n

∑n
i=1 xi(k). Some simple calculations give

0 ≤ fi(ẑi(k))− f∗
i ≤ 1∑k

r=0 αr

(1
2
||xi(0)||2argminX fi +

L2
0

2

k∑
r=0

α2
r

)
. (3.7)

By (3.4), (3.5), (3.6), (3.7) and the convexity of function || · ||2, we get

||xi(k + 1)− x∗||2 ≤
∑
j∈Ni

aij ||xj(k)− x∗||2 + α2
kL

2
1 + 2αk((fi(x

∗)− f∗
i )

p − (fi(x̄(k))− f∗
i )

p)

+ 2L2αk||x̄(k)− x̆i(k)||

+ 2L3
αk∑k+1
r=0 αr

(1
2
||xi(0)||2argminX fi +

L2
0

2

k+1∑
r=0

α2
r

)
, (3.8)

where x̄(k) = 1
n

∑n
i=1 xi(k),

L2 := pL0 sup
i,x,y∈X,γ∈[0,1]

(fi(x) + γ(fi(y)− fi(x))− f∗
i )

p−1,

L3 := p(p− 1)L0 sup
i,x,y∈X,β∈[0,1]

|x− x∗|
∣∣fi(x)− (fi(y) + β(f∗

i − fi(y)))
∣∣p−2

,
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which are also finite. Since 1′A = 1′, multiplying both sides of (3.8) by 1
n and then taking

the sum over i = 1, ..., n yield

1

n

n∑
i=1

||xi(k + 1)− x∗||2 ≤ 1

n

n∑
i=1

||xi(k)− x∗||2

+ 2αk

[ 1
n

n∑
i=1

((fi(x
∗)− f∗

i )
p − (fi(x̄(k))− f∗

i )
p)
]

+ 2L2αk
1

n

n∑
i=1

||x̄(k)− xi(k)||+ α2
kL

2
1

+ L3L
2
0

αk

∑k+1
r=0 α

2
r∑k+1

r=0 αr

+ L3
αk∑k+1
r=0 αr

1

n

n∑
i=1

||xi(0)||2argminX fi ,

(3.9)

where we use the relation
∑n

i=1 ||x̄(k)− x̆i(k)|| ≤
∑n

i=1 ||x̄(k)−xi(k)|| following from 1′A =
1′. Rearranging the terms in (3.9) leads to

2

k∑
r=0

αr
1

n

n∑
i=1

((fi(x̄(r))− f∗
i )

p − (fi(x
∗)− f∗

i )
p)

≤ 1

n

n∑
i=1

||xi(0)− x∗||2 + 2L2

k∑
r=0

αr
1

n

n∑
i=1

||x̄(r)− xi(r)||+ L2
1

k∑
r=0

α2
r

+ L3L
2
0

k∑
r=0

αr∑r+1
s=0 αs

r+1∑
s=0

α2
s + L3

k∑
r=0

αr∑r+1
s=0 αs

1

n

n∑
i=1

||xi(0)||2argminX fi

=: ϑ(k).

Denote λk =
∑k

r=0 αr. Then∑k
r=0 αr

1
n

∑n
i=1((fi(x̄(r))− f∗

i )
p − (fi(x

∗)− f∗
i )

p)

λk
≤ ϑ(k)

2λk
. (3.10)

Now we give an estimate for the term
∑k

r=0 αr
1
n

∑n
i=1 ||x̄(r)− xi(r)||. Clearly,

xi(k + 1) = PX

(
x̆i(k)− αkp(fi(x̆i(k))− wi(k + 1))p−1vi(k)

)
=: x̆i(k) + νi(k),

where νi(k) = PX

(
x̆i(k)−αkp(fi(x̆i(k))−wi(k+1))p−1vi(k)

)
−x̆i(k), ||νi(k)|| ≤ αkp

∣∣fi(x̆i(k))−
wi(k + 1)

∣∣p−1||vi(k)|| ≤ αkL1. The preceding algorithm can be written as a compact form

x(k + 1) = (A⊗ Im)x(k) + ν(k),

where x(k) = (x′
1(k), ..., x

′
n(k))

′, ν(k) = (ν′1(k), ..., ν
′
n(k))

′. For national simplicity, without
loss of generality we assume m = 1 in the subsequent proof of this theorem. It follows from
the preceding equation that

x(k) = Akx(0) +
k−2∑
r=0

Ak−r−1ν(r) + ν(k − 1).
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From 1′A = 1′ again, it can be seen that x̄(k) = x̄(0) +
∑k−1

r=0
1
n

∑n
j=1 νj(r). Therefore,

∣∣x̄(k)− xi(k)
∣∣ = ∣∣∣x̄(k)− n∑

j=1

(Ak)ijxj(0)−
k−2∑
r=0

n∑
j=1

(Ak−r−1)ijνj(r)− νi(k − 1)
∣∣∣

≤
∣∣∣∣e′iAk − 1

n
1′∣∣∣∣||x(0)||+ k−2∑

r=0

∣∣∣∣e′iAk−r−1 − 1

n
1′∣∣∣∣||ν(r)||

+
∣∣∣ 1
n

n∑
j=1

νj(k − 1)− νi(k − 1)
∣∣∣. (3.11)

By the inequalities (3.11), (2.1) and the relation ||νi(k)|| ≤ αkL1, we get

|x̄(k)− xi(k)| ≤ c0σ
k||x(0)||+ c0

k−2∑
s=0

σk−s−1αs

√
nL1 + 2αk−1L1.

As a consequence, for each j,

k∑
r=0

αr
1

n

n∑
i=1

||x̄(r)− xi(r)||

≤ 1

n

n∑
i=1

||x̄(0)− xi(0)||+ c0

k∑
r=1

σr||x(0)||

+ c0

k∑
r=2

αr

r−2∑
s=0

σr−s−1αs

√
nL1 + 2

k∑
r=1

αrαr−1L1

≤ 1

n

n∑
i=1

||x̄(0)− xi(0)||+
c0σ

1− σ
||x(0)||+ c0

√
nL1

1− σ

∞∑
r=0

α2
r + 2L1

∞∑
r=0

α2
r. (3.12)

Then it follows from the convexity of fi and || · ||p and (3.10) that

0 ≤ 1

n

n∑
i=1

(
fi

(∑k
r=0 αrxi(r)

λk

)
− f∗

i

)p

−min
X

1

n

n∑
i=1

(fi(x
∗)− f∗

i )
p

=
1

n

n∑
i=1

(
fi

(∑k
r=0 αrx̄(r)

λk

)
− f∗

i

)p

−min
X

1

n

n∑
i=1

(fi(x
∗)− f∗

i )
p

+
1

n

n∑
i=1

(
fi

(∑k
r=0 αrxi(r)

λk

)
− f∗

i

)p

− 1

n

n∑
i=1

(
fi

(∑k
r=0 αrx̄(r)

λk

)
− f∗

i

)p

≤ ϑ(k)

2λk
+

L2

∑k
r=0 αr

1
n

∑n
i=1 ||xi(r)− x̄(r)||
λk

.

Noting (3.12) and the relation ||x̄(0) − xi(0)|| ≤ maxr1,r2 ||xr1(0) − xr2(0)||, the conclusion
follows by taking the infimum over all x∗ ∈ argminX

1
n

∑n
i=1(fi(x)− f∗

i )
p on the right hand

side of the preceding inequality.

We also have

0 ≤ fi(ẑi(k))− f∗
i ≤ 1∑k

r=0 αr

(1
2
||zi(0)||2argminX fi +

L2
0

2

k∑
r=0

α2
r

)
. (3.13)
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By combining the estimate (3.13) with xi(0) = zi(0), the relations
∑k

r=0 αr ≥ 2(
√
k + 2−1),∑k

r=0 α
2
r ≤ ln(k + 1) + 1, we get that for αk = 1/

√
k + 1,

0 ≤ fi(ẑi(k))− f∗
i ≤ 1

4(
√
k + 2− 1)

(
||xi(0)||2argminX fi + L2

0(ln(k + 1) + 1)
)

and then it can be seen that when

k ≥ K0 = K0(ϵ, p)

= max
{(L4 max1≤i≤n ||xi(0)||2argminX fi

2ϵ
+ 1

)2

, min
{
k ≥ 1

∣∣∣ (ln(k + 1) + 1)2

(k + 2)
1
2 − 1

≤ 2ϵ

L4L2
0

}}
,

(3.14)

0 ≤ L4(fi(ẑi(k))− f∗
i ) ≤ ϵ for all i, where L4 is a positive number to be determined later.

The following corollary is straightforward from the estimate (3.3).

Corollary 3.4. Consider distributed subgradient optimization algorithm (3.2) with p ≥ 2.

Suppose
∑∞

k=0 αk = ∞, limk→∞

∑k
r=0 α2

r∑k
r=0 αr

= 0 and limk→∞
1∑k

r=0 αr

∑k
r=0

αr∑r+1
s=0 αs

∑r+1
s=0 α

2
s =

0. Then

lim
k→∞

1

n

n∑
i=1

(
fi

(∑k
r=0 αrxi(r)∑k

r=0 αr

)
− f∗

i

)p

= min
x∈X

1

n

n∑
i=1

(fi(x)− f∗
i )

p.

Furthermore, let αk = 1√
k+1

, we have

0 ≤ 1

n

n∑
i=1

(
fi

(∑k
r=0 αrxi(r)∑k

r=0 αr

)
− f∗

i

)p

−min
X

1

n

n∑
i=1

(
fi(x)− f∗

i

)p
≤ 1√

k + 2− 1
[c1 + c2(ln(k + 1) + 1) + c3(ln(k + 1) + 1

)2
], (3.15)

where

c1 =
1

4n

n∑
i=1

||xi(0)||2argminX
1
n

∑n
i=1(fi(x)−f∗

i )
p + L2 max

r1,r2
||xr1(0)− xr2(0)||+

L2c0σ

1− σ
||x(0)||

+
5L3L

2
0

8
+

L3

4n

n∑
i=1

||xi(0)||2argminX fi ,

c2 =
L2
1

4
+ 2L1L2 +

c0L1L2
√
n

1− σ
+

L3L
2
0

4
+

L3

8n

n∑
i=1

||xi(0)||2argminX fi ,

c3 =
L3L

2
0

4
.

Consequently,

0 ≤ 1

n

n∑
i=1

(
fi

(∑k
r=0 αrxi(r)∑k

r=0 αr

)
− f∗

i

)p

−min
X

1

n

n∑
i=1

(fi(x)− f∗
i )

p ≤ ϵ

when k ≥ K1 = K1(ϵ, p) = max
{
1, e

c1
c2

−1, e
c2
c3

−1,min
{
k ≥ 1

∣∣ (ln(k+1)+1)2

(k+2)
1
2 −1

≤ ϵ
3c3

}
,K0

}
.
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Remark 3.5. A distributed subgradient algorithm with constant stepsize was first pro-
posed in [25] to solve the unconstrained optimization problem min

∑n
i=1 gi, and the authors

established an upper bound on the error between the sum objective value at agents’ esti-
mates and the optimal objective value. Following that, the authors in [26] considered the
constrained optimization problem minX

∑n
i=1 gi by utilizing a distributed varying-stepsize

algorithm. The authors in [31] employed the distributed subgradient algorithm to solve a
SOOP, which is equivalent to the min-max problem minX maxi gi. The authors in [26, 31]
showed the optimal convergence under the classical stochastic approximation stepsize con-
ditions

∑∞
k=0 αk = ∞,

∑∞
k=0 α

2
k < ∞. Different from [26, 31], in order to guarantee the

optimal convergence of objective value rather than the convergence of agents’ estimates,
here we do not require stepsize αk to satisfy the condition

∑∞
k=0 α

2
k < ∞. Note that in this

paper we present an estimate of the upper bound on the approximate error between the
optimal objective value at an ergodic average of agents’ estimates and the optimal objective
value, while only optimal convergence is established in [31].

Under the stepsize αk = 1√
k+1

, the proposed subgradient algorithm (3.2) can achieve

the optimality with convergence rate O
( (ln k)2√

k

)
. Note that the convergence rate O

( (ln k)2√
k

)
is slightly slower than the convergence rate O

(
ln k√

k

)
achieved by the standard subgradient

method with stepsize O( 1√
k+1

) since in our algorithm agents do not know their own optimal

objective values f∗
i and use iterated estimates to approximate their minimum. In fact, from

the proof of the above theorem we can see that if agents know their own optimal objective
values, the convergence rate O

(
ln k√

k

)
can also be achieved by our algorithm (in this case, L3

can be taken as zero). Moreover, it is known that O
(

1√
k

)
is the optimal convergence rate that

the first-order subgradient method can achieve for general non-smooth convex optimization
problems when the number of iterations is fixed in advance (see Chapter 3 in [24]).

Remark 3.6. Here we give some discussions on the coefficients c1, c2, c3 in the upper bound
in (3.15). If we take the initial condition xi(0) = 0, i = 1, ..., n and assume that agents know
their own minimum f∗

i , then c1, c2, c3 reduce to the following ones, respectively

c∗1 =
1

4n

n∑
i=1

||xi(0)||2argminX
1
n

∑n
i=1(fi(x)−f∗

i )
p ,

c∗2 =
L2
1

4
+ 2L1L2 +

c0L1L2
√
n

1− σ
,

c∗3 = 0.

Similar to the upper bound estimate (3.7) of centralized algorithms, we can find that c∗1, c
∗
2

are essential for the convergence error of subgradient methods.

The obtained result presents an approximate estimate for minX
1
n

∑n
i=1(fi(x)−f∗

i )
p with

approximate error characterized by some model parameters. Based on this result, in next
section we will present an estimate for M .

4 Minimum Error Estimation

In this section, we will give an estimate for the minimum error M that guarantees the
existence of ε-optimal solutions in a fully distributed manner. According to the estimate

(3.15), agents need to cooperatively obtain the scalar 1
n

∑n
i=1

(
fi

(∑k
r=0 αrxi(r)∑k

r=0 αr

)
− f∗

i

)p

,
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however, which cannot be obtained by any particular agent. In fact, this global information
can be obtained by employing the well-known distributed averaging algorithm [14]:

qi(k + 1) =
∑
j∈Ni

aijqj(k), k ≥ 0, qi(0) = (fi(x̂i(K1))− wi(K1 + 1))p, i = 1, ..., n. (4.1)

Lemma 4.1. Consider distributed averaging algorithm (4.1). Then∣∣∣qi(k)− 1

n

n∑
j=1

qj(0)
∣∣∣ ≤ ϵ ∀i when k ≥ K2 = K2(ϵ) =

ln
(

ϵ
c0||q(0)||

)
lnσ

.

Proof. Clearly, for each k, 1
n

∑n
j=1 qj(k) =

1
n

∑n
j=1 qj(0) =

1
n

∑n
j=1

(
fj(x̂j(K1))− wj(K1 +

1)
)p

because the adjacency matrix A is doubly weighting. Therefore, from (2.1) we have
that for each i, ∣∣∣qi(k)− 1

n

n∑
j=1

qj(0)
∣∣∣ = ∣∣∣ n∑

j=1

(Ak)ijqj(0)−
1

n

n∑
j=1

qj(0)
∣∣∣

≤ c0||q(0)||σk.

Then the conclusion follows.

Algorithm 1 Minimum Error Estimation Algorithm

Input: 0 < ϵ < 1, Kℓ = Kℓ(ϵ, p), ℓ = 1, 2;

Output: qi(K2), i = 1, ..., n.

Step 1 : Run distributed algorithm (3.2) (K1 + 1) steps with p ≥ 2, αk = 1√
k+1

to get

fi(x̂i(K1)), wi(K1 + 1), i = 1, ..., n;
Step 2 : Run distributed averaging algorithm (4.1) K2 steps to get qi(K2), i = 1, ..., n.

Theorem 4.2. Let ϵ > 0 be any pre-specified positive number and qi(K2), i = 1, ..., n the
outputs after running Algorithm 1. Then for each j,

(qj(K2)− 3ϵ)
1
p ≤ M ≤ n

1
p (qj(K2) + 3ϵ)

1
p .

Furthermore, if M = 0, then qj(K2) ≤ 3ϵ, j = 1, ..., n.

Proof. Denote N(p) = minX
1
n

∑n
i=1(fi(x)− f∗

i )
p. It follows from the fact ||z||∞ ≤ ||z||p ≤

n
1
p ||z||∞ that 1

nM
p ≤ N(p) ≤ Mp and further

(N(p))
1
p ≤ M ≤ n

1
p (N(p))

1
p . (4.2)

First similar to (3.5) it is easy to see that for some βi ∈ [0, 1],∣∣∣ 1
n

n∑
i=1

(
fi(x̂i(K0))− wi(K0 + 1)

)p − 1

n

n∑
i=1

(
fi(x̂i(K0))− f∗

i

)p∣∣∣
=

∣∣∣ 1
n

n∑
i=1

p
[
fi(x̂i(K0))− (wi(K0 + 1) + βi(f

∗
i − wi(K0 + 1)))

]p−1
(f∗

i − wi(K0 + 1))
∣∣∣
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≤ L4 max
1≤i≤n

∣∣wi(K0 + 1)− f∗
i

∣∣ ≤ ϵ,

where L4 := p supi,x,y∈X,β∈[0,1]

[
fi(x) − (fi(y) + β(f∗

i − fi(x)))
]p−1

< ∞. By Lemma 4.1,
for any j,∣∣∣qj(K2)−

1

n

n∑
i=1

(
fi(x̂i(K1))− wi(K1 + 1)

)p∣∣∣ = ∣∣∣qj(K2)−
1

n

n∑
i=1

qi(0)
∣∣∣ ≤ ϵ.

Moreover, from Corollary 3.4 we have 0 ≤ 1
n

∑n
i=1(fi(x̂i(K1))− f∗

i )
p−N(p) ≤ ϵ. Therefore,

it follows from the preceding estimates that∣∣qj(K2)−N(p)
∣∣ ≤ 3ϵ. (4.3)

Thus, the first conclusion follows from (4.2) and (4.3), while the second one from the first
conclusion and the fact that M = 0 if and only if N(p) = 0 for all p > 0.

Remark 4.3. From Theorem 4.2 we can see that by letting p be sufficiently large such

that n
1
p approaches to 1 and then for this fixed p we execute Algorithm 1 with sufficiently

small ϵ and sufficiently large K1,K2 to get qi(K2), i = 1, ..., n. We can approximate M with
arbitrarily small approximate error by the proposed distributed algorithm.

5 Doubly Weighting Adjacency Matrices

To apply the proposed algorithm, the adjacency matrix A of distributed algorithms (3.2)
and (4.1) is required to be doubly weighting. In this section, we will provide an estimate
on the convergence for a class of weight-balanced adjacency matrix generating algorithms,
which are the same as the mirror imbalance-correcting algorithm proposed in [11] except
that it does not any specific node selection rule. From the generated weight-balanced matrix,
we can get a doubly weighting matrix by adjusting the weights of self-loops, as suggested
by [11].

Define the in-degree, out-degree and unbalance degree of node i in the induced graph of
a matrix E = (eij) as

d−i =

n∑
j=1

eji, d+i =

n∑
j=1

eij , νi = d−i − d+i ,

respectively. We say that matrix E is weight-balanced if the in-degree and out-degree of
each node are the same (i.e., d−i = d+i , or equivalently, νi = 0 for all i).

Let B(0) = (bij(0)) ∈ Zn×n be any given nonnegative integer-valued matrix with strongly
connected induced graph GB(0) = (V, EB(0)). Let us consider the following distributed
weight-balanced adjacency matrix generating algorithm:

For each k ≥ 0 and the matrix B(k) = (bij(k)) ∈ Zn×n at time k, the matrix B(k+1) =
(bij(k + 1)) ∈ Zn×n at time k + 1 is generated as follows: for each i,

if νi(k) ≤ 0, then

bij(k + 1) = bij(k) for all j;

if νi(k) > 0, then

bij(k + 1) =

{
bij(k) + νi(k) for j = ji(k);
bij(k) for j ∈ V/ji(k),

(5.1)
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where ji(k) ∈ argminj∈Ni/{i} νj(k), Ni = {j|(j, i) ∈ EB(0)} and νi(k) is the unbalance degree
of node i corresponding to matrix B(k).

Note that the only difference between the algorithm (5.1) and the mirror imbalance-
correcting algorithm proposed in [11] is that algorithm (5.1) does not specify any specific
selection rule of how to select node ji(k) from the set argminj∈Ni/{i} νj(k) only requiring
that ji(k) is taken from argminj∈Ni/{i} νj(k).

Before executing each iteration step of algorithm (5.1), all nodes first tell their out-
neighbors the weights they give to them and then compute their in-degrees based on the
received information from their in-neighbors. Finally, all nodes report their individual un-
balance degrees to their in-neighbors. Note that in this algorithm, nodes can just observe,
but cannot be allowed to change, the weights that their in-neighbors give.

Define nonnegative function

h(k) =
n∑

i=1

|νi(k)|,

which measures the imbalance of B(k). Clearly, B(k) is weight-balanced if and only if
h(k) = 0.

Proposition 5.1. If B(k) is weight-balanced, algorithm (5.1) terminates at time k and
otherwise,

h(k + 1) = h(k)− 2
( ∑

i∈V+
1 (k)

|νi(k)|+
∑

i∈V−
3 (k)

νi(k)
)
,

where the definitions of V+
1 (k) and V−

3 (k) are given in the proof. In particular, it holds that
h(k + 1) = h(k) if V1(k) ∩ V−(k) = ∅, and h(k + 1) ≤ h(k)− 2 if V1(k) ∩ V−(k) ̸= ∅.

Proof. The first conclusion is obvious. We now show the second one. Suppose that B(k) is
not weight-balanced. This implies that h(k) ≥ 2 because the matrix B(k) is integer-valued.
It follows from the weight-unbalance of B(k) and

∑n
i=1 d

−
i =

∑n
i=1 d

+
i that V+(k) ̸= ∅ and

V−(k) ̸= ∅. Moreover, it is easy to see that the arc sets EB(k), k ≥ 1 are equal to EB(0).
Define three node set sequences {V+(k)}k≥0, {V−(k)}k≥0, {V0(k)}k≥0, where

V+(k) = {i|i ∈ V, νi(k) > 0}, V−(k) = {i|i ∈ V, νi(k) < 0}, V0(k) = {i|i ∈ V , νi(k) = 0}.

Define node subsets

V1(k) =
{
j|j ∈ V−(k) ∪ V0(k), there exists i ∈ V+(k) such that j = ji(k)

}
.

and

V2(k) = (V−(k) ∪ V0(k))/V1(k),

V+
1 (k) = V1(k) ∩ V+(k + 1),

V−
1 (k) = V1(k) ∩

(
V−(k + 1) ∪ V0(k + 1)

)
,

V+
3 (k) = {i|i ∈ V+(k), ji(k) ∈ V+

1 (k)},
V−
3 (k) = {i|i ∈ V+(k), ji(k) ∈ V−

1 (k)}.

By the weight update rule (5.1), we have∑
i∈V+(k)

d+i (k + 1) =
∑

i∈V+(k)

d+i (k) +
∑

i∈V+(k)

νi(k),
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∑
i∈V+(k)

d−i (k + 1) =
∑

i∈V+(k)

d−i (k) +
( ∑

i∈V+(k)

νi(k)−
∑

i∈V3(k)

νi(k)
)
,

∑
i∈V+

1 (k)

νi(k + 1) =
∑

i∈V+
3 (k)

νi(k)−
∑

i∈V+
1 (k)

|νi(k)|,

∑
i∈V−

1 (k)

νi(k + 1) =
∑

i∈V−
3 (k)

νi(k)−
∑

i∈V−
1 (k)

|νi(k)|,

νi(k + 1) = νi(k), i ∈ V2(k).

These equalities lead to

h(k + 1) =
∑

i∈V+(k)

|νi(k + 1)|+
∑

i∈V+
1 (k)

|νi(k + 1)|

+
∑

i∈V−
1 (k)

|νi(k + 1)|+
∑

i∈V2(k)

|νi(k + 1)|

=
∑

i∈V+(k)

νi(k + 1) +
∑

i∈V+
1 (k)

νi(k + 1)−
∑

i∈V−
1 (k)

νi(k + 1) +
∑

i∈V2(k)

|νi(k)|

=
( ∑

i∈V+(k)

d−i (k)−
∑

i∈V+(k)

d+i (k)−
∑

i∈V3(k)

νi(k)
)
+

∑
i∈V2(k)

|νi(k)|

+
∑

i∈V+
3 (k)

νi(k)−
∑

i∈V+
1 (k)

|νi(k)| −
∑

i∈V−
3 (k)

νi(k) +
∑

i∈V−
1 (k)

|νi(k)|

=
( ∑

i∈V+(k)

νi(k) +
∑

i∈V1(k)

|νi(k)|+
∑

i∈V2(k)

|νi(k)|
)

− 2
( ∑

i∈V+
1 (k)

|νi(k)|+
∑

i∈V−
3 (k)

νi(k)
)

= h(k)− 2
( ∑

i∈V+
1 (k)

|νi(k)|+
∑

i∈V−
3 (k)

νi(k)
)
,

where the first equality follows from the fact that V+(k) ∪ V0(k) ⊆ V+(k + 1) ∪ V0(k + 1).
Then the second conclusion follows.

The last conclusion follows from the following analysis. If V1(k)∩V−(k) = ∅, then V1(k) ⊆
V0(k) and V−

1 (k) = ∅ by the update rule in (5.1). As a result, V+
1 (k) = V1(k) ⊆ V0(k) and

V−
3 (k) = ∅. This implies that

∑
i∈V+

1 (k) |νi(k)|+
∑

i∈V−
3 (k) νi(k) = 0. If V1(k)∩V−(k) ̸= ∅, we

can see that either V−
1 (k) ̸= ∅, implying V−

3 (k) ̸= ∅ and
∑

i∈V−
3 (k) νi(k) ≥ 1, or V−

1 (k) = ∅,
implying V1(k) ∩ V−(k) ⊆ V+

1 (k) and then
∑

i∈V+
1 (k) |νi(k)| ≥ 1.

The above proposition implies that the sequence {h(k)}k is nonincreasing and we can
get a weight-balanced matrix for any selection rule choosing ji that makes the condition

V1(k) ∩ V−(k) ̸= ∅ holding at least ⌈h(0)
2 ⌉ times, where ⌈z⌉ denotes the smallest integer

greater than or equal to z. Moreover, as suggested by [11], we can obtain a doubly weighting
matrix based on one generated weight-balanced matrix B = (bij) by adjusting the weights
of self-loops. In fact, it suffices to let

w = max
i=1,...,n

n∑
j=1

bij + 1
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and C = (cij) with cii = [bii + w −
∑n

j=1 bij ]/w, i = 1, ..., n; cij = bij/w, ∀j ̸= i. It is easy
to see that the matrix C is a doubly weighting matrix with positive diagonal elements.

Remark 5.2. The authors in [11] proposed a mirror imbalance-correcting algorithm, which
is a special case of algorithm (5.1) with a specific selection rule of how to select ji(k)
from argminj∈Ni/{i} νj(k) (called fair-decision rule therein), to generate a weight-balanced
adjacency matrix. The authors established its finite time convergence and convergence time
complexity analysis. Here the algorithm (5.1) does not specify any specific selection rule
and clearly, its convergence time depends on the specific selection rule. However, we should
note that generally only the single selection condition ji(k) ∈ argminj∈Ni/{i} νj(k) without
further selection rule cannot guarantee the convergence of algorithm (5.1), as pointed out
in Example 4.8 in [11].

6 Conclusions

We developed a fully distributed method to consider the COS problem and the minimum
error estimation problem of ε-optimal solutions in multi-objective optimization. We first
proposed a distributed subgradient algorithm and then present an optimal convergence es-
timate. Based on this estimate, we established an approximate estimate on the minimum
error that can guarantee the existence of ε-optimal solutions. We also obtained an estimate
on the convergence of a class of weight-balanced adjacency matrix generating algorithms.
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