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However, these are not the focus of this paper.
Model-based DFO methods use past information about the objective function f to create

a model function f̃ that approximates f . Recent years have seen a significant amount of
research focused on how to construct a ‘good’ model function for use in DFO [8, 9, 13, 27]
(among others).

Among the most common used in practice are models formed from linear interpola-
tion [24], quadratic interpolation [7,25], or minimum Frobenius norms [12,26]. (Although, it
should be noted that other techniques exist, for example radial basis function models [29,30],
stochastic models [3], and models based on the Gaussian process [28].) In Rn, linear interpo-
lation uses n+ 1 (well-poised) points to create an approximate gradient [10, §2.3]. Alterna-
tively, quadratic interpolation requires (n+ 1)(n+ 2)/2 (well-poised) points, but creates an
approximate gradient and an approximate Hessian [10, §3.4]. Details on linear interpolation
and quadratic interpolation are given in Section 2.

As linear interpolation only provides approximate gradients, one would expect that, in
terms of the number of iterations the resulting algorithm will probably converge similar to
typical first order methods (i.e., linearly). Conversely, as quadratic interpolation provides
the benefit of an approximate Hessian, one might conjecture that the resulting algorithm
converges similar to a second order method (i.e., quadratically). Of course, in DFO, opti-
mizers typically measure convergence in terms of number of function calls, not in terms of
iterations. (The assumption is that a function call takes significantly longer than any other
portion of the algorithm.) This means, one can take (n+ 2)/2 iterations of a method using
linear interpolation for every single iteration of a method using quadratic interpolation.

This led to the development and use of minimum Frobenius norm models [12, 26]. Min-
imum Frobenius norm models provide some balance between the extremes of linear and
quadratic interpolation. Using between n + 1 and (n + 1)(n + 2)/2 (well-poised) points, a
minimum Frobenius norm model creates an approximate gradient that is more accurate than
linear interpolation, along with an approximate Hessian that is less accurate than quadratic
interpolation. (Details on minimum Frobenius norms are given in Section 2.) It is hoped
that this balance can lead to DFO algorithms with strong convergence rates in terms of
number of iterations, without the need for excessive function calls per iteration.

The availability of these three common models raises some natural questions in model-
based DFO research. First, how many points should be used to create the model function,
i.e., how many points should be in the sample set? Second, should the number of points in
the sample set be static throughout the algorithm or can it be dynamically updated based on
how the algorithm performed in the previous iteration? In this paper, we present the results
of a case study examining these questions. Our case study focuses on the Derivative-Free
Proximal Point (DFPP) algorithm introduced by Hare and Lucet in 2014 [14]. We test 64
basic strategies for updating the size of the sample set, and compare the strategies across
60 test problems. Numerical results suggest that the number of points in the sample set has
a huge impact on algorithm performance, and adaptive strategies can both help and harm
algorithm convergence.

The remainder of this paper is organized as follows. In Section 2, we provide back-
ground details on how to construct linear interpolation, quadratic interpolation, and mini-
mum Frobenius norm models. In Section 3, we outline the DFPP algorithm and present our
adaptive strategies for determining the size of the interpolation set. In Section 4, we discuss
our numeric tests, present the results, and provide some qualitative remarks. In Section 5,
we provide some conclusions. Tables of results appear in the appendix.

Throughout, B∆(y
0) denotes the closed ball of radius ∆ centred at y0: B∆(y

0) = {x :
∥x− y0∥ ≤ ∆},
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2 Model Construction Techniques

Let Pd
n be the space of polynomials of degree less than or equal to d in Rn. For d = 1

and d = 2, the dimension of this space is dim(P1
n) = n + 1 and dim(P2

n) = (n+1)(n+2)
2 ,

respectively. A basis Φ = {ϕ1, ..., ϕq} of Pd
n is a set of q polynomials of degree less than or

equal to d such that q = dim(Pd
n) and the polynomials span Pd

n. If Φ is a basis in Pd
n, then

any polynomial m ∈ Pd
n can be formulated as m(x) =

∑q
j=1 αjϕj(x), where {α1, α2, ...αq}

is a uniquely determined set of real coefficients.
We say the polynomial m interpolates the function f at a given point y if m(y) = f(y).

Suppose we are given a set Y = {y0, y1, ..., yp} of interpolation points, and we seek a
polynomial, m, with degree less than or equal to d that interpolates a given function f at
the points in Y . Since it must be possible to write m in the form of

∑q
j=1 αjϕj , we seek

interpolation coefficients, αj , that satisfy the interpolation conditions

m(yi) =

q∑
j=1

αjϕj(y
i) = f(yi), i = 0, ..., p. (2.1)

Conditions (2.1) form a linear system in terms of the interpolation coefficients, which we
will write in matrix form as M(Φ, Y )αϕ = f(Y ), where

M(Φ, Y ) =


ϕ0(y

0) ϕ1(y
0) . . . ϕq(y

0)
ϕ0(y

1) ϕ1(y
1) . . . ϕq(y

1)
...

...
...

...
ϕ0(y

p) ϕ1(y
p) . . . ϕq(y

p)

 ,

αϕ =


α0

α1

...
αq

 , and f(Y ) =


f(y0)
f(y1)

...
f(yp)

 .

If conditions (2.1) have a unique solution, then their solution provides m. If conditions
(2.1) have multiple solutions, then m is said to be under determined, and we must impose
additional conditions to select m. If conditions (2.1) have no solution, then m cannot exist,
but a least-squares solution could be used to find an approximate solution and create an m
that approximates f in the sense of statistical regression.

2.1 Linear Interpolation

Linear interpolation sets the maximum degree of the polynomial to d = 1; i.e., linear in-
terpolation applies in P1

n. The natural basis for this space is Φ = {1, x1, x2, ...xn}. Our
interpolation conditions (equation (2.1)), can be simplified to

M(Y )α = f(Y )

where

M(Y ) =


1 y01 . . . y0n
1 y11 . . . y1n
...

...
...

...
1 yn1 . . . ynn

 , α =


α0

α1

...
αn

 , and f(Y ) =


f(y0)
f(y1)

...
f(yn)

 .
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Clearly, M(Y ) is invertible if and only if conditions (2.1) have a unique solution. More im-
portantly, the error in the gradient approximation from linear interpolation can be quantified
in terms of several constants and the approximate radius of the sample set.

Theorem 2.1 ((Error bound for Linear interpolation) [10, Thm 2.11]). Let Y =
{y0, y1, . . . , yn} ⊆ Rn be poised for linear interpolation. Define ∆ = ∆(Y ) = max1≤i≤n ∥yi−
y0∥. Suppose the function f is continuously differentiable in an open domain Ω containing
B∆(y

0), and ∇f is Lipschitz continuous in Ω with constant ν > 0. Let m be the linear
function that interpolates f over all points in Y . Then for all points y ∈ B∆(y

0), we have

∥∇f(y)−∇m(y)∥ ≤ κeg∆,

where κeg is a constant based on ν, n, and the geometry of the interpolation set.

2.2 Quadratic Interpolation

Quadratic interpolation sets the maximum degree of the polynomial to d = 2; i.e., quadratic
interpolation applies in P2

n. One natural basis for quadratic interpolation is

Φ = {1, x1, x2, ...xn,
1

2
(x1)

2, x1x2, ...x1xn,
1

2
(x2)

2, x2x3, ...
1

2
(xn)

2}.

Using this basis, one can again write conditions (2.1) as a linear system. (For the sake of
space, we do not rewrite the system here.) The system results in the matrix M(Φ, Y ) being
a (n + 1)(n + 2)/2 × (n + 1)(n + 2)/2 square matrix. Like linear interpolation, the error
in the gradient approximation from quadratic interpolation can be quantified using several
constants and the approximate radius of the sample set.

Theorem 2.2 ((Error bounds for quadratic interpolation) [10, Thm 3.16]). Let Y =
{y0, y1, . . . , yp} ⊆ Rn be poised for quadratic interpolation. Define ∆ = ∆(Y ) =
max1≤i≤p ∥yi − y0∥. Suppose the function f is twice continuously differentiable in an open
domain Ω containing B∆(y

0), and ∇2f is Lipschitz continuous in Ω with constant ν2 > 0.
Let m be the quadratic function that interpolates f over all points in Y . Then, for all points
y ∈ B∆(y

0), we have

∥∇2f(y)−∇2m(y)∥ ≤ κeh∆, and

∥∇f(y)−∇m(y)∥ ≤ κeg∆
2,

where κeh and κeg are constants based on ν2, p, and the geometry of the interpolation set.

2.3 Minimum Frobenius Norm Models

Minimum Frobenius norm models set the maximum degree of the polynomial to d = 2, but
work in the case when the number of interpolation points is less than the (n+ 1)(n+ 2)/2
required for quadratic interpolation.

In this case, the M(Φ, Y ) defining the interpolating conditions has more columns than
rows and the interpolation polynomials are no longer unique.

Let us split the natural basis Φ into linear and quadratic parts: ΦL = {1, x1, ..., xn} and
ΦQ = { 1

2x
2
1, x1x2, ...,

1
2x

2
n}. The interpolation model can now be written as

m(x) = αT
LΦL(x) + αT

QΦQ(x),



ADAPTIVE INTERPOLATION STRATEGIES IN DFO 331

where αL and αQ are the appropriate parts of the coefficient vector α.
In a DFO framework with under determined interpolation, it is desirable to construct

accurate linear models and then enhance them with curvature information, hoping that the
actual accuracy of the model is better than that of a purely linear model. (Hence, it is
important to construct sample sets that are poised for linear interpolation.)

Since the interpolation set is too small to create a unique quadratic interpolation, we
must impose some additional requirements to determine the final model. As our Hessian
approximation will be of a lower accuracy than our gradient approximation, in derivative-
free optimization it makes sense to seek a model for which the norm of the Hessian is small
or moderate. Therefore, we define the minimum Frobenius norm solution as a solution to
the following optimization problem in αL and αQ:

min
1

2
∥ αQ ∥22

M(ΦL, Y )αL +M(ΦQ, Y )αQ = f(Y ). (2.2)

The name minimum Frobenius norm solution comes from the equivalence of minimizing the
norm of αQ and minimizing the Frobenius norm of the Hessian of m.

The condition for the existence and uniqueness of the minimum Frobenius norm model
is that the following matrix is nonsingular

F (Φ, Y ) =

(
M(ΦQ, Y )M(ΦQ, Y )T M(ΦL, Y )

M(ΦL, Y )T 0

)
. (2.3)

We say that a set Y is poised for minimum Frobenius norm interpolation if problem (2)
has a unique solution or, equivalently, if the matrix F (Φ, Y ) is non-singular. Like linear
and quadratic interpolation, the error bounds of the resulting model can be bounded using
constants and the approximate radius of the sample set.

Theorem 2.3 ((Error bounds for minimum Frobenius norm models) [10, Thm 5.4]). Let
Y = {y0, y1, . . . , yp} ⊆ Rn be poised for minimum Frobenius norm interpolation. Define
∆ = ∆(Y ) = max1≤i≤p ∥ yi − y0 ∥. Suppose the function f is continuously differentiable in
an open domain Ω containing B∆(y

0), and ∇f is Lipschitz continuous in Ω with constant
ν > 0. Let m be the quadratic function that results from the minimum Frobenius norm
interpolation of f over all points in Y . Then, for all points y ∈ B∆(y

0), we have

∥∇f(y)−∇m(y)∥ ≤ κeg∆,

and κeg is a constants based on ν, p, the geometry of the interpolation set, and the norm of
the model Hessian.

3 Derivative-Free Proximal Point Method

Much like Newton’s method is a standard tool for solving smooth optimization problems,
proximal point algorithms can be viewed as an analogous tool for nonsmooth optimization.
The basic (theoretical) method solves the minimization of f through iterative solutions to
the proximal point problem

xk+1 = proxrf(x
k) where proxrf(x

k) = argmin{f(y) + r

2
∥y − xk∥2}. (3.1)



332 W. HARE AND M. JABERIPOUR

In practice, it is unnecessary to solve proxrf(x
k) exactly, which has lead to a variety of

practical implementations based on the proximal point framework [17,18,23] (and references
therein).

Most common are the proximal-bundle methods, where the objective function f is re-
placed by a sequence of piecewise linear model functions fk, see [17, 18, 23]. Such methods
essentially replace the minimization of f with a sequence of quadratic programming prob-
lems.

Recently, Hare and Lucet introduced a Derivative-Free Proximal Point (DFPP) method
[14]. Within the framework, xk denotes the prox-centre of the algorithm during iteration k.
At each iteration, the algorithm shall make use of a sample set Y = {y0, y1, ..., yp} ⊆ Rn with
y0 = xk to construct a model of the objective function. In the algorithm, the approximate
sampling radius of Y is defined ∆(Y ) = maxyi∈Y ∥yi − y0∥, and λn(H) is used to denote
the minimum eigenvalue of H. Pseudo-code of the DFPP algorithm follows.

Derivative-Free Proximal Point Method (DFPP)

0. Initialize: Set k = 0 and input

x0 - an initial prox-centre,

Y 0 - an initial poised interpolation set with x0 ∈ Y 0,

r0 - an initial prox-parameter, r0 > 0

m - an Armijo-like parameter, 0 < m < 1,

Γ - a minimal radius decrease parameter, 0 < Γ < 1,

rtol - stopping tolerance for prox-parameter, rtol > 0,

∆tol - stopping tolerance for search radius, ∆tol ≥ 0, and

ε∇tol, ε
∆
tol - stopping tolerances for approximate gradient, ε∇tol, ε

∆
tol > 0.

1. Model and Stopping Conditions:
Create qk, a model of f over Y k:

qk(x) := ak + ⟨gk, x⟩+ 1

2
⟨x,Hkx⟩.

If ∥∇qk(xk)∥ < ε∇tol and ∆(Y k) < ε∆tol, then STOP (‘success’).
If ∆(Y k) < ∆tol, then STOP.

2. Prox-feasiblity Check:
If rk ≤ −λn(H

k), then (qk + rk 1
2∥ · ∥

2 is not strictly convex):

– reset rk = −λn(H
k) + 1,

3. Prox Trial Point:
Compute the trial point

{x̃k} = proxrkq
k(xk) = {(Hk + rkId)−1(rkxk − gk)}.

Compute the predicted decrease

δk = qk(xk)− qk(x̃k).

4. Serious/Null Check:
If f(x̃k) ≤ f(xk)−mδk, then declare a serious step:

– select xk+1 such that f(xk+1) ≤ f(xk)−mδk,
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– generate an interpolation set Y k+1 such that xk+1 ∈ Y k+1 and ∆(Y k+1) ≤
∆(Y k).

Else (if f(x̃k) > f(xk)−mδk), then declare a null step:

– if x̃k /∈ B∆(Y k)(x
k), then declare the null step to be type 1, increase rk+1 →

2rk, set xk+1 = xk and Y k+1 with Y k ⊆ Y k+1 and ∆(Y k+1) = ∆(Y k),

– if x̃k ∈ B∆(Y k)(x
k), then declare the null step to be type 2, set xk+1 = xk and

generate an interpolation set Y k+1 such that xk+1 ∈ Y k+1 and ∆(Y k+1) ≤
Γ∆(Y k).

5. Loop:

Increment k → k + 1 and return to Step 1.

3.1 Adaptive Strategies in DFPP

The DFPP framework has two interesting features that make it well-suited to exploring adap-
tive updating of the number of points in the sample set at each iteration.

First, in order for the algorithm to converge the model functions qk must satisfy the
following assumption (see [14]).

Assumption 3.1. Assume f ∈ C1. Furthermore, assume that there exists constants C and
M such that, for any point y0 and any sampling radius ∆ > 0, we are able to generate a
sampling set Y = {y0, y1, . . . yp} ⊆ Rn and a corresponding quadratic model function q such
that ∆(Y ) = ∆ and

∥f(y)− q(y)∥ ≤ C∆2 for all y ∈ B∆(y
0),

∥∇f(y)−∇q(y)∥ ≤ C∆ for all y ∈ B∆(y
0), and

∥∇2q(y)∥ ≤ M.

Note that the Assumption 3.1 can be satisfied through

a) a linear interpolation model, by noting ∇2q = 0 in this case,

b) a quadratic interpolation model, see [14, Lem 3.1], or

c) a minimum Frobenius norm model, see [14, p. 209].

Moreover, the algorithm can use a different model construction technique at each iteration,
without compromising the convergence analysis.

The second interesting feature of the DFPP framework is that the algorithm ends step 4
with one of three possible declarations: serious step, null step type 1, or null step type 2. In
a serious step, the algorithm was successful in finding a new proximal centre, which shows
notable decrease over the previous proximal centre. In a null step type 1, the algorithm was
unable to find a new proximal centre and the predicted new centre was outside of the radius
of accuracy for the model. In this case, the prox-parameter is increased, but the old sample
set can be reused (possibly with additional points added). Finally, in a null step type 2, the
algorithm was unable to find a new proximal centre, despite the fact that the predicted new
centre was inside of the radius of accuracy for the model. In this case, the desired accuracy
of the model is increased (i.e., ∆(Y ) is decreased), and a new model must be constructed.
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As each outcome suggests a different situation, and each iteration can use a different
model construction technique, the DFPP algorithm naturally lends itself to the idea of using
an adaptive strategy for selecting sample set size at each iteration. The adaptive strategies
explored in this paper can be viewed as selecting the number of points in the sample set in
the next iteration based on the declaration in step 4:

i. if step 4 of the DFPP method declares a serious step, then use a sample set of size Ns

in the next iteration,

ii. if step 4 of the DFPP method declares a null step type 1, then use a sample set of size
Nn1 in the next iteration, and

iii. if step 4 of the DFPP method declares a null step type 2, then use a sample set of size
Nn2 in the next iteration.

For our testing, Ns, Nn1, and Nn2 are each taken from{
n+ 1, 2n+ 1,

⌊
1

2

(
(n+ 1) +

(n+ 1)(n+ 2)

2

)⌋
,
(n+ 1)(n+ 2)

2

}
,

where n is the problem dimension. In order to simplify presentation, we use the following
notation for these four strategies

Sn = n+ 1,
S2n = 2n+ 1,

Sn2/4 =
⌊
1
2

(
(n+ 1) + (n+1)(n+2)

2

)⌋
,

Sn2/2 = (n+1)(n+2)
2 .

As there are 3 possible ways to conclude step 4, and we examine 4 different strategies for
each conclusion, we explore a total of 43 = 64 different adaptive strategies.

3.2 Sample Set Construction Techniques

The error bounds provided in Theorems 2.1, 2.2, and 2.3, all rely on the “geometry of the
interpolation set”. This phrase actually hides a deep literature on the topic. While, in order
for the sample set to be poised, we require an appropriate matrix, M(Φ, Y ) or F (Φ, Y ),
to be invertible, in practice it is important that this matrix is ‘stable’. This stability is
dependent on the “geometry of the interpolation set”. Details on quantifying the geometry
of the interpolation set, and how to control the quality of this geometry, are outside of
the scope of this work (we refer interested readers to [10, Chpt 2–6]). Nonetheless, some
comments are in order.

For the numerical testing in this paper, we use Algorithms 6.2 and 6.3 of [10] to construct
our interpolation sets and improve their geometry. The interpolation set Y k is built based
on three possible declarations in step 4.

i. If step 4 of the DFPP method declares a serious step, then

– place xk+1 into an interpolation set Y in position of x = y0,

– place any previously sampled points in B∆(Y k)(x
k+1) into Y ,

– use [10, Alg 6.2 & 6.3] to expand Y into a well-poised set of (n+ 1)(n+ 2)/2
points, and

– select Ns points from Y to define Y k+1.
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ii. If step 4 of the DFPP method declares a null step type 1, then

– if the number of points in Y k is greater or equal to Nn1, then select Nn1 points
from Y k to define Y k+1,

– if the number of points in Y k is less than Nn1, then use [10, Alg 6.2 & 6.3] to
create a well-poised set of (n+ 1)(n+ 2)/2 points and select Nn1 points from
it to define Y k+1.

iii. If step 4 of the DFPP method declares a null step type 2, then

– place xk+1 into an interpolation set Y in position of x = y0,

– place any previously sampled points in BΓ∆(Y k)(x
k+1) into Y ,

– use [10, Alg 6.2 & 6.3] to expand Y into a well-poised set of (n+ 1)(n+ 2)/2
points, and

– select Nn2 points from Y to define Y k+1.

In all of the cases above, the selection of the final subset of Nx points from Y is done by
taking the first Nx points, and then a safety check is used to ensure the final interpolation
set is well-poised. If it is not, then we use [10, Alg 6.2 & 6.3] to create a well-poised set of
(n + 1)(n + 2)/2 points and select the first Nx points from it to define Y k+1 (again with a
safety check to ensure well-poised).

4 Numerical Results

The DFPP method is implemented in MATLAB [14]. Minor adaptations to the original
code allowed for the adaptive strategies in Subsection 3.1 to be incorporated. Minor tuning
to select algorithmic parameters was performed. Specifically, Armijo-like parameters m ∈
{0.1, 0.5, 0.9} were tested and radius decrease parameters Γ ∈ {0.25, 0.5} were tested. The
values m = 0.1 and Γ = 0.5 provided the best overall performance across all strategies. The
initial prox-parameter was set to r0 = 1. (As improvement based on these parameters was
extremely minor, we do not present results from other parameter combinations; however,
these results are available through contacting the corresponding author.) Finally, in Step
4, if a serious step is declared, the user has the option of performing a line search (or other
search method) to seek xk+1 that provides some further improvement over x̃k. We tested
using no additional searching and using a backtracking line search.

The strategies were tested on the 60 problems from [1, 16, 21]. Test problems were
separated into two groups: low dimension and high dimension. Table 1 lists the name and
the dimension of each test problem.

For each test problem, each strategy was run until a total of 100n function calls was
exceeded, where n is the dimension of the test problem.

In order to rank the strategies, we consider the following improvement metric

imp(Ns, Nn1, Nn2) =
∑
P

min

{
− log10

|(f − fbest)|
|(f0 − fbest)|

, 16

}
where P is the set of all test problems, f is the objective function value obtained by DFPP,
fbest is the best known objective function value, and f0 is the initial objective function

value. The value − log10
|(f−fbest)|
|(f0−fbest)| can loosely be interpreted as the number of new digits

of accuracy (in function value) obtained on a given test problem. The minimization with 16
deals with the (few) problems that end up being solved exactly and return unrealistic values
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like − log10
|(f−fbest)|
|(f0−fbest)| > 1000. Without capping, these problems can massively skew the

data analysis. Finally, these values are summed over all test problems, to give each strategy
a total improvement.

The aggregate results when no line search was used appear in Tables 2 to 4 (in the
Appendix) and the aggregate results when a backtracking line search was used appear in
Tables 5 to 7 (in the Appendix). Tables 2 and 5 provide the results when all test problems
are considered. Tables 3 and 6 provide the results when only low dimension test problems
are considered. Tables 4 and 7 provide the results when only high dimension test problems
are considered.

4.1 Interpretation of the Results

To ease interpretation, Tables 2 to 7 are sorted from the highest imp value to the lowest imp
value.

Examining Tables 2 and 5 (which contain all test problems grouped), we note that the
line search has a strong positive impact on the performance of the algorithm. This was also
noted in [14]. In fact, the line search is so effective that the worst result in Table 5, would

rank 7th if it were placed in Table 2.
Across all tables we see a common trend of Ns = Sn. That is, if a serious step occurred,

then the next model should be as simple to create as possible. This makes sense, as serious
steps correspond with success and movement of the prox-centre. If a serious step occurred,
then the next model essentially starts from scratch, so it makes sense to build a simple model
and only increase complexity if the next iteration induces a null step.

Comparing low dimension to high dimension problems presents some enlightening results.
In both Tables 3 and 6 (low dimensions), we see 4 of the top 5 strategies involve building com-
plex models when a null step occurs (i.e., Nn1 ∈ {Sn2/4, Sn2/2} or Nn2 ∈ {Sn2/4, Sn2/2}). Con-
versely, in Tables 4 and 7 (high dimensions), we see complex models are generally avoided:
in Table 4, Nn1 ∈ {Sn, S2n} and Nn2 ∈ {Sn, S2n} for all of the top 5, while in Table 7,
Nn1 ∈ {Sn, S2n} and Nn2 ∈ {Sn, S2n} for 3 of the top 5.

4.2 Data Profiles

While Tables 2 and 5 provide some insight into the performance, they rely strongly on data
aggregation. As such, it is possible that certain problems are being solved to very high
precision and skewing the results. In this subsection we present data profiles [22] of select
strategies.

Data profiles are designed to capture both speed and robustness of a solver, by plotting
the portion of problems solved using less than or equal to α × n + 1 function calls, where
α is the number of ‘simplex gradients equivalents’ used and n + 1 represent the number
of function calls required to create a simplex gradient in Rn. For further details on data
profiles, we refer the reader to [22].

With 128 strategies tested (64 adaptive approaches times 2 for the use/disuse of a line
search), presenting all data profiles would result in an unreadable figure. Instead, we present
data profiles containing:

– the ‘most basic’ non-adaptive strategy – Ns = Nn1 = Nn2 = Sn,

– the ‘most complex’ non-adaptive strategy – Ns = Nn1 = Nn2 = Sn2/2, and

– the top two adaptive strategies – Ns = Sn, Nn1 = Sn, Nn2 = S2n, and Ns = Sn,
Nn1 = S2n, Nn2 = Sn.

For more detailed results please contact the corresponding author.
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Data profiles are created including the no line search and with a line search option. The
data profile for a solving tolerance of 10−3 appears in Figure 1 and data profile for a solving
tolerance of 10−6 appears in Figure 2.

Figure 1: Data profile for 8 strategies and a solving tolerance of 10−3.

Figure 1 and 2 show the expected results and a few surprising results. First, it is
again clear that the line search provides an excellent performance boost to the algorithm.
Examining just methods that use a line search, we note that strategy Ns = Nn1 = Nn2 = Sn
outperforms all other methods. However, examining the no line search methods, we see that
for solving tolerance of 10−3 strategy Ns = Nn1 = Sn, Nn2 = S2n outperforms the other
no line search methods. Meanwhile, for solving tolerance of 10−6 strategy Ns = Nn2 = Sn,
Nn1 = S2n outperforms the other no line search methods. Neither of these victories are
resounding, but it nonetheless suggests that adaptive strategies may have some place in
future DFO algorithms.

5 Conclusions

Model-based DFO methods work by constructing local models of the objective function
using a set of function evaluations. In this paper, we explore the questions of how many
function evaluations should be used to construct the model, and should this number be fixed,
or adaptively selected by the algorithm? We approach the question numerically, by making
use of the flexibility and iteration decision structure within the DFPP algorithm of [14]. The
results suggest that, for this algorithm, and this implementation, adaptive strategies can
provide some improvement, particularly in higher dimensions. However, the results also
show that a poorly selected adaptive strategy can greatly hinder performance, both in low
and high dimensions. Finally, the results generally suggest that, for this algorithm and
implementation, basic models using fewer function evaluations outperform complex models
that require many function evaluations to build.

It should be noted that there are many model-building methods that were not consid-
ered in this paper: e.g., linear regression models, centered simplex gradients, radial basis
functions, models based on the Gaussian process, etc. Also, while past points within the
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Figure 2: Data profile for 8 strategies and a solving tolerance of 10−6.

sampling radius were used when building new models, advance techniques on minimum
Frobenius norm based model updating was not applied within this paper. This leaves sig-
nificant opportunity for further research in this area.
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Table 1: Test problems.

Low Dim. Problems High Dim. Problems
Function Name Dim. Function Name Dim.
Bard 3 Ackley 10
Beale 2 Ackley 20
Biggs EXP6 6 Arrowhead 10
Box 3D 3 Arrowhead 20
Brown almost-linear 3 Epistatic Michalewicz 10
Brown & Dennis 4 Exponential 10
Brown badly scaled 2 Exponential 20
Broyden banded 3 Griewank 10
Broyden tridiagonal 3 Griewank 20
Discrete boundary value 3 Levy & Montalvo I 10
Discrete integral eq. 3 Levy & Montalvo I 20
Freudenstein & Roth 2 Levy & Montalvo II 10
Gaussian 3 Levy & Montalvo II 20
Gulf 3 Modified Langerman 10
Helical valley 3 Neumaier 3 10
Jennrich & Sampson 2 Neumaier 3 20
Kowalik & Osborne 4 Powell singular 12
Linear rank-1 3 Powell singular 20
Linear rank full 4 Rastrigin 10
Linear rank-1 with zeros 3 Rastrigin 20
Meyer 3 Rosenbrock 10
Osborne I 5 Rosenbrock 20
Penalty I 4 Sinusoidal 10
Penalty II 4 Sinusoidal 20
Powell badly scaled 2 Variably dimensional 10
Rosenbrock 2 Variably dimensional 20
Trigonometric 3 Wood 10
Variably dimensional 3 Wood 20
Watson 6 Zakharov 10
Wood 4 Zakharov 20
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Table 2: Results of each strategy of DFPP with no line search over all test problems.

Ns Nn1 Nn2 imp Ns Nn1 Nn2 imp

Sn Sn S2n 249.01 Sn2/2 Sn S2n 118.98
Sn S2n Sn 247.74 S2n Sn2/4 Sn2/2 118.09
Sn S2n S2n 234.25 Sn2/4 Sn2/4 Sn 117.51
Sn Sn Sn 226.75 Sn2/4 Sn2/4 S2n 117.23
Sn Sn2/4 Sn 212.73 S2n S2n Sn2/2 115.45
Sn Sn2/4 S2n 209.35 S2n Sn Sn2/2 115.45
Sn Sn2/2 Sn 205.58 Sn2/4 S2n S2n 115.08
Sn Sn Sn2/4 204.31 Sn2/4 Sn S2n 115.08
Sn Sn Sn2/2 204.19 Sn2/2 Sn2/4 S2n 113.97
Sn Sn2/4 Sn2/4 202.25 Sn2/2 S2n Sn2/4 113.80
Sn S2n Sn2/2 202.06 Sn2/2 Sn2/4 Sn2/4 113.80
S2n Sn Sn 200.75 Sn2/2 Sn Sn2/4 113.80
Sn S2n Sn2/4 199.24 Sn2/2 Sn2/2 Sn 112.78
Sn Sn2/4 Sn2/2 198.53 Sn2/2 Sn2/2 Sn2/4 110.35
Sn Sn2/2 Sn2/4 197.41 Sn2/2 Sn2/2 S2n 110.23
Sn Sn2/2 S2n 195.55 Sn2/4 S2n Sn2/4 108.27
Sn Sn2/2 Sn2/2 175.70 Sn2/4 Sn2/4 Sn2/4 108.27
S2n S2n Sn 169.67 Sn2/4 Sn Sn2/4 108.27
S2n Sn2/4 Sn 143.23 Sn2/4 Sn2/2 Sn 105.59
S2n S2n S2n 143.02 S2n Sn2/2 S2n 103.94
S2n Sn S2n 143.02 S2n Sn2/2 Sn2/4 102.79
Sn2/4 Sn Sn 137.59 Sn2/2 S2n Sn2/2 102.45
S2n Sn2/4 S2n 131.18 Sn2/2 Sn2/2 Sn2/2 102.45
Sn2/2 S2n Sn 130.88 Sn2/2 Sn2/4 Sn2/2 102.45
Sn2/2 Sn2/4 Sn 130.83 Sn2/2 Sn Sn2/2 102.45
S2n Sn2/4 Sn2/4 126.90 Sn2/4 S2n Sn2/2 99.11
S2n S2n Sn2/4 126.10 Sn2/4 Sn2/4 Sn2/2 99.11
S2n Sn Sn2/4 126.10 Sn2/4 Sn Sn2/2 99.11
Sn2/4 S2n Sn 124.79 Sn2/4 Sn2/2 S2n 94.82
Sn2/2 Sn Sn 123.47 Sn2/4 Sn2/2 Sn2/4 91.17
S2n Sn2/2 Sn 121.25 S2n Sn2/2 Sn2/2 91.08
Sn2/2 S2n S2n 118.98 Sn2/4 Sn2/2 Sn2/2 84.84
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Table 3: Results of each strategy of DFPP with no line search for low dimensional problems.

Ns Nn1 Nn2 imp Ns Nn1 Nn2 imp

Sn Sn2/2 Sn 148.88 Sn2/2 S2n S2n 78.55
Sn Sn Sn2/2 143.69 Sn2/2 Sn Sn2/4 77.74
Sn Sn Sn2/4 142.21 Sn2/2 S2n Sn2/4 77.74
Sn Sn S2n 140.87 Sn2/2 Sn2/4 Sn2/4 77.74
Sn Sn2/2 Sn2/4 140.02 Sn2/4 Sn2/2 Sn 77.65
Sn Sn2/4 Sn2/2 137.87 S2n Sn S2n 76.91
Sn Sn2/2 S2n 135.96 S2n S2n S2n 76.91
Sn Sn2/4 Sn2/4 135.85 S2n Sn Sn2/4 76.74
Sn Sn Sn 134.79 S2n S2n Sn2/4 76.74
Sn S2n Sn 134.66 Sn2/4 Sn Sn2/4 76.05
Sn Sn2/4 Sn 134.60 Sn2/4 S2n Sn2/4 76.05
Sn Sn2/4 S2n 134.07 Sn2/4 Sn2/4 Sn2/4 76.05
Sn S2n Sn2/2 131.24 Sn2/2 Sn2/2 Sn 75.57
Sn S2n S2n 131.15 S2n Sn2/4 Sn2/4 75.24
Sn S2n Sn2/4 127.92 S2n Sn2/4 Sn2/2 74.75
Sn Sn2/2 Sn2/2 123.08 Sn2/2 Sn2/2 S2n 74.71
S2n Sn Sn 109.17 Sn2/2 Sn2/2 Sn2/4 74.32
Sn2/4 Sn Sn 102.88 S2n Sn Sn2/2 71.73
S2n S2n Sn 94.27 S2n S2n Sn2/2 71.73
S2n Sn2/4 Sn 93.35 S2n Sn2/2 S2n 70.87
Sn2/2 Sn2/4 Sn 93.10 Sn2/4 Sn Sn2/2 69.64
Sn2/2 S2n Sn 93.09 Sn2/4 S2n Sn2/2 69.64
Sn2/4 S2n Sn 90.17 Sn2/4 Sn2/4 Sn2/2 69.64
Sn2/2 Sn Sn 86.09 S2n Sn2/2 Sn2/4 68.04
S2n Sn2/2 Sn 85.88 Sn2/4 Sn2/2 S2n 66.80
Sn2/4 Sn2/4 Sn 84.56 Sn2/2 Sn Sn2/2 64.68
Sn2/4 Sn2/4 S2n 80.79 Sn2/2 S2n Sn2/2 64.68
S2n Sn2/4 S2n 78.81 Sn2/2 Sn2/4 Sn2/2 64.68
Sn2/4 Sn S2n 78.71 Sn2/2 Sn2/2 Sn2/2 64.68
Sn2/4 S2n S2n 78.71 Sn2/4 Sn2/2 Sn2/4 63.56
Sn2/2 Sn2/4 S2n 78.57 S2n Sn2/2 Sn2/2 60.18
Sn2/2 Sn S2n 78.55 Sn2/4 Sn2/2 Sn2/2 55.04
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Table 4: Results of each strategy of DFPP with no line search for high dimensional problems.

Ns Nn1 Nn2 imp Ns Nn1 Nn2 imp

Sn S2n Sn 113.09 Sn2/2 S2n Sn2/2 37.77
Sn Sn S2n 108.14 Sn2/2 Sn2/4 Sn2/2 37.77
Sn S2n S2n 103.09 Sn2/2 Sn2/2 Sn2/2 37.77
Sn Sn Sn 91.96 Sn2/2 Sn2/4 Sn 37.73
S2n Sn Sn 91.58 Sn2/2 Sn Sn 37.38
Sn Sn2/4 Sn 78.13 Sn2/2 Sn2/2 Sn 37.21
S2n S2n Sn 75.40 Sn2/4 Sn2/4 S2n 36.44
Sn Sn2/4 S2n 75.28 Sn2/4 Sn S2n 36.36
Sn S2n Sn2/4 71.32 Sn2/4 S2n S2n 36.36
Sn S2n Sn2/2 70.82 Sn2/2 Sn Sn2/4 36.06
Sn Sn2/4 Sn2/4 66.39 Sn2/2 S2n Sn2/4 36.06
S2n Sn S2n 66.11 Sn2/2 Sn2/4 Sn2/4 36.06
S2n S2n S2n 66.11 Sn2/2 Sn2/2 Sn2/4 36.02
Sn Sn Sn2/4 62.10 Sn2/2 Sn2/2 S2n 35.51
Sn Sn2/4 Sn2/2 60.66 Sn2/2 Sn2/4 S2n 35.40
Sn Sn Sn2/2 60.50 S2n Sn2/2 Sn 35.37
Sn Sn2/2 S2n 59.59 S2n Sn2/2 Sn2/4 34.75
Sn Sn2/2 Sn2/4 57.39 Sn2/4 Sn Sn 34.71
Sn Sn2/2 Sn 56.70 Sn2/4 S2n Sn 34.62
Sn Sn2/2 Sn2/2 52.62 S2n Sn2/2 S2n 33.07
S2n Sn2/4 S2n 52.37 Sn2/4 Sn2/4 Sn 32.96
S2n Sn2/4 Sn2/4 51.66 Sn2/4 Sn Sn2/4 32.22
S2n Sn2/4 Sn 49.88 Sn2/4 S2n Sn2/4 32.22
S2n Sn Sn2/4 49.36 Sn2/4 Sn2/4 Sn2/4 32.22
S2n S2n Sn2/4 49.36 S2n Sn2/2 Sn2/2 30.90
S2n Sn Sn2/2 43.72 Sn2/4 Sn2/2 Sn2/2 29.80
S2n S2n Sn2/2 43.72 Sn2/4 Sn Sn2/2 29.47
S2n Sn2/4 Sn2/2 43.33 Sn2/4 S2n Sn2/2 29.47
Sn2/2 Sn S2n 40.43 Sn2/4 Sn2/4 Sn2/2 29.47
Sn2/2 S2n S2n 40.43 Sn2/4 Sn2/2 S2n 28.03
Sn2/2 S2n Sn 37.78 Sn2/4 Sn2/2 Sn 27.93
Sn2/2 Sn Sn2/2 37.77 Sn2/4 Sn2/2 Sn2/4 27.61
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Table 5: Results of each strategy of DFPP with line search over all test problems.

Ns Nn1 Nn2 imp Ns Nn1 Nn2 imp

Sn Sn Sn 377.91 S2n Sn2/2 Sn 237.10
Sn S2n Sn 305.56 Sn2/4 Sn2/4 Sn 234.47
Sn Sn S2n 298.57 Sn2/2 S2n Sn2/4 233.97
Sn Sn2/2 Sn 297.85 Sn2/2 Sn2/4 Sn2/4 233.97
Sn Sn2/4 Sn 296.60 Sn2/2 Sn Sn2/4 233.97
Sn Sn Sn2/2 282.40 Sn S2n Sn2/4 233.34
S2n Sn Sn 282.27 S2n Sn2/4 Sn2/2 232.09
Sn S2n Sn2/2 279.63 Sn2/2 Sn2/2 Sn2/4 231.28
Sn Sn2/2 S2n 279.53 Sn2/4 S2n Sn2/2 229.72
Sn S2n S2n 278.18 Sn2/4 Sn2/4 Sn2/2 229.72
Sn Sn2/4 Sn2/2 271.84 Sn2/4 Sn Sn2/2 229.72
S2n S2n Sn 267.72 Sn2/2 S2n Sn2/2 228.39
Sn Sn Sn2/4 266.60 Sn2/2 Sn2/2 Sn2/2 228.39

Sn2/2 Sn Sn 263.12 Sn2/2 Sn2/4 Sn2/2 228.39
Sn Sn2/2 Sn2/2 258.12 Sn2/2 Sn Sn2/2 228.39

Sn2/2 S2n Sn 256.75 S2n Sn2/2 Sn2/2 227.36
Sn2/2 Sn2/4 Sn 254.52 Sn2/4 Sn2/2 Sn 226.71
S2n Sn2/4 Sn 251.04 Sn2/4 S2n S2n 226.51
Sn Sn2/4 S2n 250.89 Sn2/4 Sn S2n 226.51

Sn2/2 Sn2/2 Sn 246.53 S2n Sn2/4 S2n 225.04
S2n S2n S2n 245.19 Sn2/4 Sn2/4 S2n 224.73
S2n Sn S2n 245.19 Sn2/4 Sn2/2 S2n 223.34
Sn2/4 S2n Sn 242.61 S2n S2n Sn2/4 223.05
Sn2/4 Sn Sn 242.11 S2n Sn Sn2/4 223.05
Sn2/2 S2n S2n 241.41 S2n Sn2/2 S2n 222.63
Sn2/2 Sn S2n 241.41 Sn2/4 Sn2/2 Sn2/2 219.03
Sn2/2 Sn2/4 S2n 239.60 S2n Sn2/4 Sn2/4 214.59
S2n S2n Sn2/2 238.97 S2n Sn2/2 Sn2/4 214.35
S2n Sn Sn2/2 238.97 Sn2/4 Sn2/2 Sn2/4 210.46
Sn2/2 Sn2/2 S2n 238.53 Sn2/4 S2n Sn2/4 208.80
Sn Sn2/2 Sn2/4 237.97 Sn2/4 Sn2/4 Sn2/4 208.80
Sn Sn2/4 Sn2/4 237.64 Sn2/4 Sn Sn2/4 208.80
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Table 6: Results of each strategy of DFPP with line search for low dimensional problems.

Ns Nn1 Nn2 imp Ns Nn1 Nn2 imp

Sn Sn Sn 153.38 Sn2/2 Sn2/4 S2n 128.62
Sn Sn Sn2/2 149.57 Sn2/2 Sn2/2 Sn 128.58
Sn S2n Sn2/2 147.67 Sn Sn2/4 S2n 128.43
Sn Sn2/4 Sn2/2 146.20 Sn2/2 Sn Sn2/2 127.88
Sn Sn Sn2/4 142.24 Sn2/2 S2n Sn2/2 127.88
Sn Sn2/2 Sn 141.89 Sn2/2 Sn2/4 Sn2/2 127.88

Sn2/2 Sn Sn 141.23 Sn2/2 Sn2/2 Sn2/2 127.88
S2n Sn2/4 Sn2/2 141.03 Sn2/2 Sn2/2 Sn2/4 127.86
Sn2/4 Sn Sn2/2 140.20 Sn S2n Sn2/4 126.56
Sn2/4 S2n Sn2/2 140.20 Sn Sn2/4 Sn2/4 125.88
Sn2/4 Sn2/4 Sn2/2 140.20 Sn2/4 Sn2/4 S2n 125.31
Sn Sn2/2 Sn2/2 138.87 Sn2/4 Sn S2n 125.21
S2n Sn Sn2/2 138.75 Sn2/4 S2n S2n 125.21
S2n S2n Sn2/2 138.75 Sn2/2 Sn2/2 S2n 125.20
Sn Sn S2n 138.48 Sn S2n S2n 124.94
Sn Sn2/2 S2n 138.35 Sn2/4 Sn Sn2/4 124.50
Sn Sn2/2 Sn2/4 137.88 Sn2/4 S2n Sn2/4 124.50
S2n Sn Sn 136.62 Sn2/4 Sn2/4 Sn2/4 124.50
Sn2/4 Sn Sn 136.49 Sn2/4 Sn2/2 Sn 124.07
Sn2/2 Sn2/4 Sn 136.46 S2n Sn2/2 Sn 123.75
Sn2/2 S2n Sn 136.32 S2n Sn Sn2/4 123.05
S2n S2n Sn 135.27 S2n S2n Sn2/4 123.05
Sn2/4 Sn2/4 Sn 134.27 S2n Sn2/4 Sn2/4 123.04
S2n Sn2/4 Sn 133.99 S2n Sn2/4 S2n 121.54
Sn2/4 Sn2/2 Sn2/2 133.51 Sn S2n Sn 121.36
Sn2/4 S2n Sn 133.43 Sn2/4 Sn2/2 S2n 120.69
S2n Sn2/2 Sn2/2 130.36 Sn Sn2/4 Sn 120.03
Sn2/2 Sn S2n 130.11 S2n Sn2/2 Sn2/4 119.10
Sn2/2 S2n S2n 130.11 Sn2/4 Sn2/2 Sn2/4 118.97
Sn2/2 Sn Sn2/4 130.05 S2n Sn S2n 118.19
Sn2/2 S2n Sn2/4 130.05 S2n S2n S2n 118.19
Sn2/2 Sn2/4 Sn2/4 130.05 S2n Sn2/2 S2n 117.63
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Table 7: Results of each strategy of DFPP with line search for high dimensional problems.

Ns Nn1 Nn2 imp Ns Nn1 Nn2 imp

Sn Sn Sn 224.53 Sn2/2 Sn Sn2/4 103.92
Sn S2n Sn 184.19 Sn2/2 S2n Sn2/4 103.92
Sn Sn2/4 Sn 176.56 Sn2/2 Sn2/4 Sn2/4 103.92
Sn Sn S2n 160.09 S2n Sn2/4 S2n 103.51
Sn Sn2/2 Sn 155.96 Sn2/2 Sn2/2 Sn2/4 103.43
Sn S2n S2n 153.24 Sn2/4 Sn2/2 S2n 102.65
S2n Sn Sn 145.65 Sn2/4 Sn2/2 Sn 102.65
Sn Sn2/2 S2n 141.18 Sn2/4 Sn S2n 101.30
Sn Sn Sn2/2 132.83 Sn2/4 S2n S2n 101.30
S2n S2n Sn 132.45 Sn2/2 Sn Sn2/2 100.51
Sn S2n Sn2/2 131.96 Sn2/2 S2n Sn2/2 100.51
S2n Sn S2n 127.00 Sn2/2 Sn2/4 Sn2/2 100.51
S2n S2n S2n 127.00 Sn2/2 Sn2/2 Sn2/2 100.51
Sn Sn2/4 Sn2/2 125.63 S2n Sn Sn2/2 100.23
Sn Sn Sn2/4 124.36 S2n S2n Sn2/2 100.23
Sn Sn2/4 S2n 122.46 Sn2/4 Sn2/4 Sn 100.19

Sn2/2 Sn Sn 121.89 Sn Sn2/2 Sn2/4 100.09
Sn2/2 S2n Sn 120.43 S2n Sn Sn2/4 100.00
Sn Sn2/2 Sn2/2 119.25 S2n S2n Sn2/4 100.00

Sn2/2 Sn2/4 Sn 118.06 Sn2/4 Sn2/4 S2n 99.42
Sn2/2 Sn2/2 Sn 117.95 S2n Sn2/2 Sn2/2 97.00
S2n Sn2/4 Sn 117.05 S2n Sn2/2 Sn2/4 95.24
S2n Sn2/2 Sn 113.35 S2n Sn2/4 Sn2/4 91.55
Sn2/2 Sn2/2 S2n 113.32 Sn2/4 Sn2/2 Sn2/4 91.49
Sn Sn2/4 Sn2/4 111.75 S2n Sn2/4 Sn2/2 91.06

Sn2/2 Sn S2n 111.30 Sn2/4 Sn Sn2/2 89.52
Sn2/2 S2n S2n 111.30 Sn2/4 S2n Sn2/2 89.52
Sn2/2 Sn2/4 S2n 110.99 Sn2/4 Sn2/4 Sn2/2 89.52
Sn2/4 S2n Sn 109.18 Sn2/4 Sn2/2 Sn2/2 85.52
Sn S2n Sn2/4 106.78 Sn2/4 Sn Sn2/4 84.30

Sn2/4 Sn Sn 105.62 Sn2/4 S2n Sn2/4 84.30
S2n Sn2/2 S2n 105.00 Sn2/4 Sn2/4 Sn2/4 84.30


