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necessary and sufficient optimality conditions for a set-valued optimization problem. Khanh
and Tuan [13] proposed the concept of higher-order variational sets for set-valued maps, by
virtue of these sets, they established higher-order necessary and sufficient conditions. In
classic Kuhn-Tucker optimality conditions (see Theorems 4.2.10, 4.2.11, 4.3.6, 4.3.7 in [5]),
the gradient of the objective function is a linear combination of those of constraint functions.
However, in Refs. [1, 2, 3, 6, 7, 9, 13, 14, 15, 20, 21, 26] in the expressions of optimality
conditions, the derivatives of objective and constraint functions are not separated, thus
the properties for the derivative of objective function are not easily obtained from those of
constraint function.

On the other hand, various generalizations of convex functions have appeared in the liter-
ature [17, 19, 22, 24, 25]. Sometimes, the driving force has been the fact that convexity plays
a key role in optimization theory. Yang, Li and Wang [24] introduced a new class of general-
ized convexity, termed near cone-subconvexlikeness, for set-valued functions, which is a gen-
eralization of cone-subconvexlikeness introduced by Li [17]. Xu [22] has demonstrated that
near cone-subconvexlikeness is also a generalization of generalized cone-subconvexlikeness
introduced by Yang, Yang and Chen [25]. Sach [19] introduced a new convexity notion
for set-valued maps, called ic-cone-convexlikeness. Xu and Song [23] obtained the following
results: (i) when the ordering cone has nonempty interior, ic-cone-convexness is equivalent
to near cone-subconvexlikeness; (ii) when the ordering cone has empty interior, ic-cone-
convexness implies near cone-subconvexlikeness, a counter example was given to show that
the converse implication is not true. Hence, near cone-subconvexlikeness is a kind of very
generalized convexity.

The above discussions motivate the aim of this paper: to introduce a new kind of higher-
order tangent set and with which to introduce a new kind of higher-order tangent derivative
for a set-valued function. Also we will use it to investigate weak minimizers for set-valued
optimization problem under the assumption of near cone-subconvexlikeness.

2 Basic Concepts

Throughout the paper, let X, Y and Z be three real normed linear spaces, 0X , 0Y and
0Z denote the original points of X,Y and Z, respectively. Let C and D be closed convex
pointed cones in Y and Z, respectively, Y ∗ and Z∗ be the topological dual spaces of Y and
Z, respectively. The dual cones of C and D be defined respectively by

C∗ = {f ∈ Y ∗ : f(c) ≥ 0, ∀c ∈ C},

D∗ = {f ∈ Z∗ : f(d) ≥ 0, ∀d ∈ D}.

Let M be a nonempty subset of Y , the interior, closure and cone hull of M are denoted
by intM , clM and coneM , respectively. The cone hull of M is defined by

coneM = {tm : t ≥ 0,m ∈ M}.

Let F : X → 2Y be a set-valued map. The domain image, graph and epigraph of F are
defined respectively by

domF := {x ∈ X : F (x) ̸= ∅},

ImF := {y ∈ Y : y ∈ F (X)},

graphF := {(x, y) ∈ X × Y : y ∈ F (x)},

epiF := {(x, y) ∈ X × Y : y ∈ F (x) + C}.
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Definition 2.1 ([10]). Let F : X → 2Y be a set-valued map and S be a nonempty convex
subset of X. Then F is said to be C−convex on S if only if for all x1, x2 ∈ S and λ ∈ [0, 1],
we have

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) + C.

Remark 2.2. If F is C−convex on a convex set S, y ∈ Y , then F − y is also C−convex on
S.

Definition 2.3 ([24]). Let E ⊂ X. A set-valued map F : X → 2Y is said to be nearly
C−subconvexlike on E if clcone(F (E) + C) is convex.

Remark 2.4 ([24]). If F is C−convex on a convex set S, then F is nearly C−subconvexlike
on S.

Definition 2.5 ([4]). Let S ⊂ X. A set-valued map F : S → 2Y is called lower semicon-
tinuous at x̂ ∈ S if for any xn ∈ S with xn → x̂ and any ŷ ∈ F (x̂), there exists a sequence
yn ∈ F (xn) such that yn → ŷ.

F is called lower semicontinuous on S if F is lower semicontinuous at any x ∈ S.

Definition 2.6 ([4]). Let A be a nonempty subset of Y , ŷ ∈ clA, v1, v2, . . . , vm−1 ∈ Y . The
mth−order contingent set of A at (ŷ, v1, . . . , vm−1), denoted by T (m)(A, ŷ, v1, . . . , vm−1), is
given by

T (m)(A, ŷ, v1, . . . , vm−1) := lim sup
h→0+

A− ŷ − hv1 − · · · − hm−1vm−1

hm
. (2.1)

Remark 2.7 ([4]). (2.1) is equivalent to

T (m)(A, ŷ, v1, . . . , vm−1) := {y ∈ Y : ∃tn → 0+, yn → y, such that
ŷ + tnv1 + t2nv2 + · · ·+ tm−1

n vm−1 + tmn yn ∈ A,∀n ∈ N}.

Definition 2.8 ([4]). Let F : X → 2Y be a set-valued map, (x̂, ŷ) ∈ graphF . The
mth−order contingent derivative of F at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1) is de-
fined by

graphD(m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) := T (m) (graphF, x̂, ŷ, u1, v1, . . . , um−1, vm−1) .

In the following, we introduce a new kind of higher-order tangent set.

Definition 2.9. Let Q be a nonempty subset of X × Y , (x̂, ŷ) ∈ clQ. The higher-order
M−tangent set of Q at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1), denoted by
M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1), is given by

M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1) := {(u, v) ∈ X × Y : ∀tn → 0+, ∀u′
n → u,∃v′n → v,

such that (x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn u′

n,

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn v′n) ∈ Q}.

3 The Second-Order M-Composed Tangent Derivative

In this setion, by virtue of the higher-order M−tangent set, we will introduce the concept
of higher-order M−tangent derivative. Furthermore, some important properties of higher-
order M−tangent derivative will be proposed.
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Definition 3.1. Let F : X → 2Y be a set-valued map, (x̂, ŷ) ∈ graphF . The mth−order
M−tangent derivative of F at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1) is defined by

graphM (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) := M (m) (epiF, x̂, ŷ, u1, v1, . . . , um−1, vm−1) .

If M (m) (epiF, x̂, ŷ, u1, v1, . . . , um−1, vm−1) ̸= ∅, then F is called higher-order M− deriv-
able at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1), or the higher-order M−tangent deriva-
tive of F at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1) exists.

Remark 3.2. From Remark 2.7 and Definition 2.9, it follows that

graphM (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) ⊂ graphD(m)F+(x̂, ŷ, u1, v1, . . . , um−1, vm−1),

where F+ = F (x) + C, ∀x ∈ domF . However, the inverse inclusion is not necessarily true,
as is shown in the following example.

Example 3.3. Let R be the set of real numbers, X = Y = R, C = {t ∈ R : t ≥ 0}. A
set-valued map F : X → 2Y is defined by

F (x) =

{
{y ∈ R : y ≥ x}, if x ≥ 0,
{y ∈ R : y ≥ −

√
−x}, otherwise.

Let (x̂, ŷ) = (0, 0), a direct calculation gives

T (1)(epiF, (0, 0)) = {(x, y) : x > 0, y ≥ x} ∪ {(x, y) : x ≤ 0, y ∈ R},

M (1)(epiF, (0, 0)) = {(x, y) : x ≥ 0, y ≥ x} ∪ {(x, y) : x < 0, y ∈ R},

D(1)F+(0, 0)(x) =

{
{y : y ≥ x}, x > 0,

R, x ≤ 0,

M (1)F (0, 0)(x) =

{
{y : y ≥ x}, x ≥ 0,

R, x < 0.

Consequently,
graphD(1)F+(0, 0) ̸⊂ graphM (1)F (0, 0).

The following property of higher-order M−tangent derivative is of importance to estab-
lish higher-order necessary optimality condition in the next Theorem 4.1.

Proposition 3.4. Suppose that E ⊂ X, the higher-order M -tangent derivative of F : X →
2Y at (x̂, ŷ) ∈ graphF for vectors (u1, v1), . . . , (um−1, vm−1) exists, then

M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)
(
T (m)(E, x̂, u1, . . . , um−1)

)
⊂ clcone (cone(· · · cone(cone(F (E) + C − ŷ)− v1)− · · · − vm−2)− vm−1) ,

where the number of “cone”in above expression is m.

Proof. Let v ∈ M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)
(
T (m)(E, x̂, u1, . . . , um−1)

)
, then there

exists a u ∈ T (m)(E, x̂, u1, . . . , um−1) such that

v ∈ M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(u).

Thus

(u, v) ∈ graphM (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)
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= M (m) (epiF, x̂, ŷ, u1, v1, . . . , um−1, vm−1) . (3.1)

From u ∈ T (m)(E, x̂, u1, . . . , um−1), it follows that there exist sequences tn → 0+, u′
n → u

such that
x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn u′
n ∈ E.

For above tn and u′
n, it follows from (3.1) that there exists a sequence v′n → v such that

(x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn u′

n, ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn v′n) ∈ epiF,

which implies

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn v′n ∈ F (x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn u′
n) + C.

Consequently,

v′n ∈ 1

tmn

(
F (x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn u′
n) + C − ŷ − tnv1 − · · · − tm−1

n vm−1

)
⊂ 1

tmn

(
F (E) + C − ŷ − tnv1 − · · · − tm−1

n vm−1

)
=

1

tn

(
1

tn

(
· · · 1

tn

(
1

tn

(
1

tn
(F (E) + C − ŷ)− v1

)
− v2

)
− · · · − vm−2

)
− vm−1

)
⊂ cone (cone(· · · cone(cone(F (E) + C − ŷ)− v1)− · · · − vm−2)− vm−1) .

Taking n → ∞, one gets

v ∈ clcone (cone(· · · cone(cone(F (E) + C − ŷ)− v1)− · · · − vm−2)− vm−1) .

Remark 3.5. If we substitute D(m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) for M (m)F (x̂, ŷ, u1,
v1, . . . , um−1, vm−1) in Proposition 3.4, the following inclusion

D(m)F+(x̂, ŷ, u1, v1, . . . , um−1, vm−1)
(
T (m)(E, x̂, u1, . . . , um−1)

)
⊂ clcone (cone(· · · cone(cone(F (E) + C − ŷ)− v1)− · · · − vm−2)− vm−1) .

is not necessarily true, as is shown in the following example.

Example 3.6. Let R be the set of real numbers, X = R, Y = R2, E = {x : x ≥ 0},
C = {(t1, t2) ∈ R2 : t1 ≥ 0, t2 ≥ 0}. A set-valued map F : X → 2Y is defined by

F (x) =

{
{(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}, if x ≥ 0,
{(y1, y2) ∈ R2 : y1 ≥ −

√
−x, y2 ≥ 3

√
x}, otherwise.

Let (x̂, ŷ) = (0, 0), a direct calculation gives

T (1)(E, 0) = [0,+∞),

T (1)(graphF, (0, 0)) = T (1)(epiF, (0, 0)) = {(x, y) ∈ R×R2 : x > 0, y1 ≥ 0, y2 ≥ 0}
∪{(x, y) ∈ R×R2 : x ≤ 0, y1 ∈ R, y2 ∈ R},

D(1)F+(0, 0)(x) =

{
R×R, x ≤ 0,
{(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}, x > 0,
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M (1)(epiF, (0, 0)) = {(x, y) ∈ R×R2 : x ≥ 0, y1 ≥ 0, y2 ≥ 0}
∪{(x, y) ∈ R×R2 : x < 0, y1 ∈ R, y2 ∈ R},

M (1)F (0, 0)(x) =

{
R×R, x < 0,
{(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}, x ≥ 0.

Consequently,

D(1)F+(0, 0)(T
(1)(E, 0)) = R×R,

M (1)F (0, 0)(T (1)(E, 0)) = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0},

clcone(F (E) + C − ŷ) = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}.

Thus, the conclusion of Proposition 3.4 is true. However,

D(1)F+(x̂, ŷ)
(
T (1)(E, x̂)

)
̸⊂ clcone(F (E) + C − ŷ).

Proposition 3.7. Suppose that Q ⊂ X×Y is convex, (x̂, ŷ) ∈ clQ, then M (m)(Q, x̂, ŷ, u1, v1,
. . . , um−1, vm−1) is convex.

Proof. Let (u′, v′), (u′′, v′′) ∈ M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1). For any λ ∈ (0, 1), we
shall prove

λ(u′, v′) + (1− λ)(u′′, v′′) ∈ M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1),

that is,

(λu′ + (1− λ)u′′, λv′ + (1− λ)v′′) ∈ M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1).

In fact, for any tn → 0+, pn → λu′ +(1−λ)u′′, let qn := pn −λu′ − (1−λ)u′′, then qn → 0.
Thus

1

λ

(
pn − (1− λ)u′′

)
− qn → u′.

Since (u′, v′) ∈ M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1), there exists a sequence v′n → v′ such
that (

x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn

(
pn−(1−λ)u′′

λ − qn

)
,

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn v′n

)
∈ Q. (3.2)

In the similar way, 1
1−λ (pn − λu′) − qn → u′′, thus there exists a sequence v′′n → v′′ such

that (
x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn

(
pn−λu′

1−λ − qn

)
,

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn v′′n

)
∈ Q. (3.3)

Since Q is convex, multiplying (3.2) and (3.3) by λ and 1− λ, respectively, one obtains(
x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn (pn − (1− λ)u′′ + pn − λu′ − qn) ,

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn (λv′n + (1− λ)v′′n)

)
∈ Q.
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From qn = pn − λu′ − (1− λ)u′′, it follows that(
x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn pn,

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn (λv′n + (1− λ)v′′n)

)
∈ Q.

Let v̄n := λv′n + (1− λ)v′′n, then v̄n → λv′ + (1− λ)v′′. Consequently(
x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn pn, ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn v̄n

)
∈ Q.

By the definition of M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1), we have

(λu′ + (1− λ)u′′, λv′ + (1− λ)v′′) ∈ M (m)(Q, x̂, ŷ, u1, v1, . . . , um−1, vm−1).

Proposition 3.8. Suppose that S ⊂ X is convex, F : S → 2Y is C−convex and lower
semicontinuous on S, the higher-order M−tangent derivative of F at (x̂, ŷ) for vectors (u1−
x̂, v1 − ŷ), . . . , (um−1 − x̂, vm−1 − ŷ) exists, then

F (x)− {ŷ} ⊂ M (m)F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ)(x− x̂), ∀x ∈ S,

where u1, u2, . . . , um−1 ∈ S and (ui, vi) ∈ epiF, i = 1, 2, . . . ,m− 1.

Proof. Let x ∈ S, y ∈ F (x), we shall prove

y − ŷ ∈ M (m)F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ)(x− x̂).

It suffices to show

(x− x̂, y − ŷ) ∈ graphM (m)F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ).

By Definition 3.1, it suffices to demonstrate

(x− x̂, y − ŷ) ∈ M (m) (epiF, x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ) .

In fact, let tn → 0+, xn → x− x̂, then xn + x̂ → x. From F is lower semicontinuous at x, it
follows that there exists a sequence yn ∈ F (xn+ x̂) such that yn → y. Then yn− ŷ → y− ŷ.
Since S is convex, one obtains

x̂+ 2tmn xn = 2tmn (xn + x̂) + (1− 2tmn )x̂ ∈ S

and
x̂+ 2

(
tn(u1 − x̂) + · · ·+ tm−1

n (um−1 − x̂)
)

= 2tnu1 + · · ·+ 2tm−1
n um−1 + (1− 2tn − · · · − 2tm−1

n )x̂
∈ S.

Then

x̂+ tn(u1 − x̂) + · · ·+ tm−1
n (um−1 − x̂) + tmn xn

= 1
2 (x̂+ 2tmn xn) +

1
2

(
x̂+ 2

(
tn(u1 − x̂) + · · ·+ tm−1

n (um−1 − x̂)
))

∈ S.

It follows from F is C−convex on S that

ŷ + 2tmn (yn − ŷ) = 2tmn yn + (1− 2tmn )ŷ ∈ F (2tmn (xn + x̂) + (1− 2tmn )x̂) + C
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= F (x̂+ 2tmn xn) + C. (3.4)

Since (ui, vi) ∈ epiF, i = 1, 2, . . . ,m− 1 and F is C−convex on S, we have

ŷ + 2
(
tn(v1 − ŷ) + · · ·+ tm−1

n (vm−1 − ŷ)
)

= 2tnv1 + · · ·+ 2tm−1
n vm−1 + (1− 2tn − · · · − 2tm−1

n )ŷ

∈ F (2tnu1 + · · ·+ 2tm−1
n um−1 + (1− 2tn − · · · − 2tm−1

n )x̂) + C

= F
(
x̂+ 2

(
tn(u1 − x̂) + · · ·+ tm−1

n (um−1 − x̂)
))

+ C,

which together with (3.4) gives

ŷ + tn(v1 − ŷ) + · · ·+ tm−1
n (vm−1 − ŷ) + tmn (yn − ŷ)

=
1

2
(ŷ + 2tmn (yn − ŷ)) +

1

2

(
ŷ + 2

(
tn(v1 − ŷ) + · · ·+ tm−1

n (vm−1 − ŷ)
))

∈ 1

2
F (x̂+ 2tmn xn) +

1

2
F
(
x̂+ 2

(
tn(u1 − x̂) + · · ·+ tm−1

n (um−1 − x̂)
))

+ C

⊂ F (x̂+ tn(u1 − x̂) + · · ·+ tm−1
n (um−1 − x̂) + tmn xn) + C.

Hence

(x̂, ŷ) + tn(u1 − x̂, v1 − ŷ) + · · ·+ tm−1
n (um−1 − x̂, vm−1 − ŷ) + tmn (xn, yn − ŷ) ∈ epiF.

Consequently,

(x− x̂, y − ŷ) ∈ graphM (m)F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ).

Proposition 3.9. Let Fi : X → 2Y , x̂ ∈ domF1 ∩ domF2, ŷi ∈ Fi(x̂), i = 1, 2. The higher-
order M -tangent derivative of F1 at (x̂, ŷ1) for vectors (u1, v1,1), . . . , (um−1, v1,m−1) and the
higher-order M -tangent derivative of F2 at (x̂, ŷ2) for vectors (u1, v2,1), . . . , (um−1, v2,m−1)
exist, then for any x ∈ domF1 ∩ domF2,

M (m)F1(x̂, ŷ1, u1, v1,1, . . . , um−1, v1,m−1)(x)

+M (m)F2(x̂, ŷ2, u1, v2,1, . . . , um−1, v2,m−1)(x)

⊂ M (m)(F1 + F2)(x̂, ŷ1 + ŷ2, u1, v1,1 + v2,1, . . . , um−1, v1,m−1 + v2,m−1)(x).

Proof. For any tn → 0+, xn → x, let y1 ∈ M (m)F1(x̂, ŷ1, u1, v1,1, . . . , um−1, v1,m−1)(x)
and y2 ∈ M (m)F2(x̂, ŷ2, u1, v2,1, . . . , um−1, v2,m−1)(x), then for above tn and xn,
“ is replaced by” Let y1 ∈ M (m)F1(x̂, ŷ1, u1, v1,1, . . . , um−1, v1,m−1)(x), y2 ∈
M (m)F2(x̂, ŷ2, u1, v2,1, . . . , um−1, v2,m−1)(x), tn → 0+ and xn → x, then there exist y1n → y1
and y2n → y2 such that

ŷ1 + tnv1,1 + · · ·+ tm−1
n v1,m−1 + tmn y1n ∈ F1(x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn xn) + C

and

ŷ2 + tnv2,1 + · · ·+ tm−1
n v2,m−1 + tmn y2n ∈ F2(x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn xn) + C.

Thus

(ŷ1 + ŷ2) + tn(v1,1 + v2,1) + · · ·+ tm−1
n (v1,m−1 + v2,m−1) + tmn (y1n + y2n)

∈ (F1 + F2)(x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn xn) + C + C

⊂ (F1 + F2)(x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn xn) + C.
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Hence,

y1 + y2 ∈ M (m)(F1 + F2)(x̂, ŷ1 + ŷ2, u1, v1,1 + v2,1, . . . , um−1, v1,m−1 + v2,m−1)(x).

Proposition 3.10. Let G : X → 2Y , F : Y → 2Z with ImG ⊂ domF , (x̂, ŷ) ∈ graphG,
(ŷ, ẑ) ∈ graphF and (ui, vi, wi) ∈ X × Y × Z, i = 1, 2, . . . ,m − 1. The higher-order M -
tangent derivative of F at (ŷ, ẑ) for vectors (v1, w1), . . . , (vm−1, wm−1) and the higher-order
M -tangent derivative of G at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1) exist, then

M (m)F (ŷ, ẑ, v1, w1, . . . , vm−1, wm−1)
(
M

(m)
c G(x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
⊂ M (m)(F ◦G)(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x),∀x ∈ domG,

where F ◦G(x) = F (G(x)) and

graphM (m)
c G(x̂, ŷ, u1, v1, . . . , um−1, vm−1) = M (m)(graphG, x̂, ŷ, u1, v1, . . . , um−1, vm−1).

Proof. Let

z ∈ M (m)F (ŷ, ẑ, v1, w1, . . . , vm−1, wm−1)
(
M (m)

c G(x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)
)
,

then there exists y ∈ M
(m)
c G(x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x) such that

z ∈ M (m)F (ŷ, ẑ, v1, w1, . . . , vm−1, wm−1)(y).

For any tn → 0+, xn → x, it follows from y ∈ M
(m)
c G(x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x) that

there exists yn → y such that

ŷ + tnv1 + · · ·+ tm−1
n vm−1 + tmn yn ∈ G(x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn xn). (3.5)

For above tn and yn, it follows from z ∈ M (m)F (ŷ, ẑ, v1, w1, . . . , vm−1, wm−1)(y) that there
exists zn → z such that

ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn ∈ F (ŷ + tnv1 + · · ·+ tm−1

n vm−1 + tmn yn) + C,

which together with (3.5) gives

ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn ∈ F (G(x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn xn)) + C.

Then

ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn ∈ F ◦G(x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn xn) + C.

Therefore,

z ∈ M (m)(F ◦G)(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x).



358 YIHONG XU AND ZHENHUA PENG

4 Higher-Order Kuhn-Tucker Optimality Conditions

Let F : X → 2Y , G : X → 2Z , (F,G) : X → 2Y×Z be defined by (F,G)(x) = F (x)×G(x).
Consider the following optimization problem with set-valued maps:

(VP) min F (x),
s.t. G(x) ∩ (−D) ̸= ∅, x ∈ X.

The feasible set of (VP) is denoted by Ê, i.e., Ê = {x ∈ X : G(x) ∩ (−D) ̸= ∅}.

Definition 4.1. Suppose x̂ ∈ Ê, ŷ ∈ F (x̂). A pair (x̂, ŷ) is called a weak minimizer of (VP),
if

(F (Ê)− ŷ) ∩ (−intC) = ∅.

Theorem 4.2 (Fritz John necessary optimality condition). Suppose that (x̂, ŷ) is a weak
minimizer of (VP), ẑ ∈ G(x̂)∩(−D), (ui, vi, wi) ∈ X×(−C)×(−D), i = 1, 2, . . . ,m−1, F is
higher-order M -derivable at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1), G is higher-order
M -derivable at (x̂, ẑ) for vectors (u1, w1), . . . , (um−1, wm−1), and

domM (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) = domM (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1) = X.

The set-valued map

φ∗(x) =
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x),

M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)
)
: X → 2Y×Z

is nearly C×D−subconvexlike on X, then there exist s∗ ∈ C∗, k∗ ∈ D∗, (s∗, k∗) ≠ (0Y ∗ , 0Z∗)
such that

infx∈X

(
s∗

(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
+

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

) )
≥ 0, (4.1)

where

s∗
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
=

∪
y∈M(m)F (x̂,ŷ,u1,v1,...,um−1,vm−1)(x)

s∗(y)

and

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

)
=

∪
z∈M(m)G(x̂,ẑ,u1,w1,...,um−1,wm−1)(x)

k∗(z).

Proof. Since (x̂, ŷ) is a weak minimizer of (VP),

(F (Ê)− ŷ) ∩ (−intC) = ∅.

In what follows, we prove

cone (φ∗(X) + C ×D) ∩ ((−intC)× (−intD)) = ∅, (4.2)
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where

φ∗(X) =
∪

x∈X

φ∗(x) =
∪

x∈X

(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x),

M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)
)
.

On the contrary suppose that (4.2) does not hold, from (0Y , 0Z) ̸∈ (−intC) × (−intD), it
follows that there exist λ̄ > 0, x̄ ∈ X, such that(

λ̄
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x̄),

M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x̄)
))

∩ ((−intC)× (−intD)) ̸= ∅.

Hence there exist ȳ ∈ M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x̄), z̄ ∈ M (m)G(x̂, ẑ, u1, w1,
. . . , um−1, wm−1)(x̄), such that

λ̄(ȳ, z̄) ∈ (−intC)× (−intD).

Since −intC and −intD are cones, one obtains

ȳ ∈ −intC (4.3)

and
z̄ ∈ −intD. (4.4)

From z̄ ∈ M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x̄), it follows that

(x̄, z̄) ∈ graphM (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)
= M (m) (epiG, x̂, ẑ, u1, w1, . . . , um−1, wm−1)
⊂ T (m) (epiG, x̂, ẑ, u1, w1, . . . , um−1, wm−1) .

Hence there exist tn → 0+, xn → x̄, zn → z̄ such that

(x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn xn, ẑ + tnw1 + · · ·+ tm−1

n wm−1 + tmn zn) ∈ epiG.

Thus

ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn ∈ G(x̂+ tnu1 + · · ·+ tm−1

n um−1 + tmn xn) +D. (4.5)

A set of positive integers is denoted by N . From (4.4) and zn → z̄, it follows that there
exists N1 ∈ N such that

zn ∈ −intD, ∀n > N1.

Since −intD and −D are convex cones, one obtains

ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn ∈ −D − · · · −D − intD = −intD, ∀n > N1. (4.6)

It follows from (4.5) that there exists z̃n ∈ G(x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn xn) such that

ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn ∈ z̃n +D.

Since D is a convex cone, from (4.6) one dedues

z̃n ∈ ẑ + tnw1 + · · ·+ tm−1
n wm−1 + tmn zn −D ⊂ −intD −D = −intD ⊂ −D,
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which gives

G(x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn xn) ∩ (−D) ̸= ∅,

that is

x̂+ tnu1 + · · ·+ tm−1
n um−1 + tmn xn ∈ Ê.

From tn → 0+, xn → x̄, it follows that x̄ ∈ T (m)(Ê, x̂, u1, . . . , um−1), which along with
Proposition 3.4 and ȳ ∈ M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x̄) leads to

ȳ ∈ M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)
(
T (m)(Ê, x̂, u1, . . . , um−1)

)
⊂ clcone

(
cone(· · · cone(cone(F (Ê) + C − ŷ)− v1)− · · · − vm−2)− vm−1

)
.

It follows from (4.3) that

clcone
(
cone(· · · cone(cone(F (Ê) + C − ŷ)− v1)− · · · − vm−2)− vm−1

)
∩ (−intC) ̸= ∅.

Since −intC is open, one obtains

cone
(
cone(· · · cone(cone(F (Ê) + C − ŷ)− v1)− · · · − vm−2)− vm−1

)
∩ (−intC) ̸= ∅.

Consequently, there exists a sequence {λi : λi ≥ 0, i = 0, 1, 2, . . . ,m− 1} such that

λm−1

(
λm−2(· · ·λ1(λ0(F (Ê) + C − ŷ)− v1)− · · · − vm−2)− vm−1

)
∩ (−intC) ̸= ∅,

then

Πm−1
i=0 λi(F (Ê) + C − ŷ) ∩ (λm−1vm−1 + λm−1λm−2vm−2 + · · ·+Πm−1

i=1 λiv1−intC) ̸= ∅.

It follows from vi ∈ −C, i = 1, 2, . . . ,m− 1 and −C is a convex cone that

λm−1vm−1 + λm−1λm−2vm−2 + · · ·+ Pim−1
i=1 λiv1−intC ⊂ −C − · · · − C−intC = −intC.

Consequently,

Πm−1
i=0 λi(F (Ê) + C − ŷ) ∩ (−intC) ̸= ∅.

From 0 /∈ −intC, it follows that Πm−1
i=0 λi > 0. Together with C is a cone gives

(F (Ê) + C − ŷ) ∩ (−intC) ̸= ∅.

Since C is a pointed cone, one obtains

(F (Ê)− ŷ) ∩ (−intC) ̸= ∅.

This is a contradiction to the assumption that (x̂, ŷ) is a weak minimizer of (VP). Hence,

cone (φ∗(X) + C ×D) ∩ ((−intC)× (−intD)) = ∅.

Since −intC and −intD are open, one deduces

clcone (φ∗(X) + C ×D) ∩ ((−intC)× (−intD)) = ∅.
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By the assumption that φ∗(x) is nearly C ×D−subconvexlike on X we know clcone(φ∗(X)
+C ×D) is convex. By a separation theorem for convex sets, there exists (s∗, k∗) ∈ Y ∗ ×
Z∗ \ {(0Y ∗ , 0Z∗)}, such that

(s∗, k∗) (clcone (φ∗(X) + C ×D)) ≥ s∗(−intC) + k∗(−intD). (4.7)

Since clcone(φ∗(X)+C×D) is a cone and on which (s∗, k∗) has a lower bound, we conclude

(s∗, k∗)(clcone(φ∗(X) + C ×D)) ≥ 0. (4.8)

In view of (0Y , 0Z) ∈ clcone(φ∗(X) + C ×D) and (4.7),

s∗(−intC) + k∗(−intD) ≤ 0. (4.9)

It follows from (0Y , 0Z) ∈ C ×D and (4.8) that (s∗, k∗)(φ∗(X)) ≥ 0. Hence (s∗, k∗) (φ∗(x))
≥ 0, ∀x ∈ X. In other words,

s∗
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
+

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

)
≥ 0,

Therefore,

infx∈X

(
s∗

(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
+

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

) )
≥ 0,

Then, we prove k∗ ∈ D∗ and s∗ ∈ C∗.
In view of (4.9),

k∗(intD) ≥ s∗(−intC).

Since intD is a cone and on which k∗ is bounded blow, we derive

k∗(intD) ≥ 0.

Since D is a closed convex cone, we get D = cl(intD). For any d ∈ D, there exists a net
{dα} ⊂ intD such that d = lim dα. Hence,

k∗(d) = lim k∗(dα) ≥ 0,

which implies k∗(D) ≥ 0, thus k∗ ∈ D∗. In the similar way, we conclude s∗ ∈ C∗. The proof
is completed.

Corollary 4.3. Suppose that (x̂, ŷ) is a weak minimizer of (VP), ẑ ∈ G(x̂) ∩ (−D),
(ui, vi, wi) ∈ X × (−C)× (−D), i = 1, 2, . . . ,m− 1, F is higher-order M -derivable at (x̂, ŷ)
for vectors (u1, v1), . . . , (um−1, vm−1), G is higher-order M -derivable at (x̂, ẑ) for vectors
(u1, w1), . . . , (um−1, wm−1), F and G are C−convex and D−convex on X, respectively,

domM (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) = domM (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1) = X.

Then there exist s∗ ∈ C∗, k∗ ∈ D∗, (s∗, k∗) ̸= (0Y ∗ , 0Z∗) such that

infx∈X

(
s∗

(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
+
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k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

) )
≥ 0,

where

s∗
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
=

∪
y∈M(m)F (x̂,ŷ,u1,v1,...,um−1,vm−1)(x)

s∗(y)

and

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

)
=

∪
z∈M(m)G(x̂,ẑ,u1,w1,...,um−1,wm−1)(x)

k∗(z).

Proof. Since F andG are C−convex andD−convex, respectively, we conclude epiF and epiG

are convex. From Proposition 3.7, one decluces thatM (m)
(
epiF, x̂, ŷ, u1, v1, . . . , um−1, vm−1

)
and M (m)

(
epiG, x̂, ẑ, u1, w1, . . . , um−1, wm−1

)
are convex. Consequently, graphM (m)F (x̂,

ŷ, u1, v1, . . . , um−1, vm−1) and graphM (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1) are convex. Then,
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) andM (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1) are C−convex
and D−convex, respectively. Since

φ∗(x) =
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x),

M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)
)
,

we get φ∗ is C ×D−convex. Thus, φ∗ is nearly C ×D−subconvexlike on X. Therefore, the
conditions of Theorem 4.2 are satisfied, we complete the proof.

Theorem 4.4 (Kuhn-Tucker necessary optimality condition). Suppose that (x̂, ŷ) is a weak
minimizer of (VP), ẑ ∈ G(x̂)∩(−D), (ui, vi, wi) ∈ X×(−C)×(−D), i = 1, 2, . . . ,m−1, F is
higher-order M -derivable at (x̂, ŷ) for vectors (u1, v1), . . . , (um−1, vm−1), G is higher-order
M -derivable at (x̂, ẑ) for vectors (u1, w1), . . . , (um−1, wm−1), and

domM (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) = domM (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1) = X.

The set-valued map

φ∗(x) =
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x),

M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)
)
: X → 2Y×Z

is nearly C ×D−subconvexlike on X. If there exists an x′′ ∈ X such that M (m)G(x̂, ẑ, u1,
w1, . . . , um−1, wm−1)(x

′′)∩ (−intD) ̸= ∅, then there exist s∗ ∈ C∗ \{0Y ∗} and k∗ ∈ D∗ such
that

infx∈X

(
s∗

(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
+

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

) )
≥ 0,

where

s∗
(
M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)(x)

)
=

∪
y∈M(m)F (x̂,ŷ,u1,v1,...,um−1,vm−1)(x)

s∗(y)
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and

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x)

)
=

∪
z∈M(m)G(x̂,ẑ,u1,w1,...,um−1,wm−1)(x)

k∗(z).

Proof. From Theorem 4.2, it suffices to show s∗ ̸= 0Y ∗ . Suppose to the contrary that
s∗ = 0Y ∗ , then from (s∗, k∗) ̸= (0Y ∗ , 0Z∗) it follows that k∗ ̸= 0Z∗ . By the assumption of the
theorem, there exists z′′ ∈ M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x

′′) such that z′′ ∈ −intD,
which together with k∗ ∈ D∗\{0Z∗} gives k∗(z′′) < 0. On the other hand, by the assumption
of the theorem and s∗ = 0Y ∗ , we get

k∗
(
M (m)G(x̂, ẑ, u1, w1, . . . , um−1, wm−1)(x

′′)
)
≥ 0.

This is a contradiction.The proof is completed.

We give the following example to illustrate Theorems 4.2 and 4.4.

Example 4.5. Suppose R is the set of real numbers, X = Y = Z = R, C = D = {t : t ≥ 0},
set-valued maps F : X → 2Y and G : X → 2Z are defined respectively by

F (x) = {y : y ≥ x4}, x ∈ R,

G(x) =

{
{y : y ≥ x2}, if x ≥ 0,
{y : y ≥ x}, otherwise.

Let (x̂, ŷ) = (0, 0), (ui, vi, wi) = (−1, 0,−1), i = 1, 2, 3, x′′ = −1, a direct calculation gives

ẑ ∈ G(0) ∩ (−D) = {0},

M (4)(epiF, 0, 0,−1, 0,−1, 0,−1, 0) = {(x, y) : x ∈ R, y ≥ 1},
M (4)(epiG, 0, 0,−1,−1,−1,−1,−1,−1) = {(x, y) : y ≥ x, x ∈ R},

M (4)F (0, 0,−1, 0,−1, 0,−1, 0)(x) = [1,+∞), x ∈ R,

M (4)G(0, 0,−1,−1,−1,−1,−1,−1)(x) = {y : y ≥ x}, x ∈ R,

M (4)G(0, 0,−1,−1,−1,−1,−1,−1)(−1) ∩ (−intD) = [−1, 0).

Thus, φ∗(x) =
(
M (4)F (0, 0,−1, 0,−1, 0,−1, 0)(x),M (4)G(0, 0,−1,−1,−1,−1,−1,−1)(x)

)
is nearly C×D−subconvexlike on X. Consequently, the conditions of Theorems 4.1 and 4.2
are satisfied. Taking s∗ = 1 and k∗ = 0, one has

infx∈X

(
s∗

(
M (4)F (0, 0,−1, 0,−1, 0,−1, 0)(x)

)
+

k∗
(
M (4)G(0, 0,−1,−1,−1,−1,−1,−1)(x)

) )
= 1 ≥ 0.

Then, the conclusions of Theorems 4.2 and 4.4 are true.

Theorem 4.6 (Kuhn-Tucker sufficient optimality condition). Suppose that F : Ê → 2Y

and G : Ê → 2Z are C−convex and D−convex on the convex set Ê, respectively. F and
G are lower semicontinuous on Ê. ẑ ∈ G(x̂) ∩ (−D), (x̂, ŷ) ∈ graphF , (ui, vi) ∈ epiF, i =
1, 2, . . . ,m − 1, (ui, wi) ∈ epiG, i = 1, 2, . . . ,m − 1. If there exist s∗ ∈ C∗ \ {0Y ∗} and
k∗ ∈ D∗ such that k∗ (ẑ) = 0 and

infx∈X

(
s∗

(
M (m)F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ)(x− x̂)

)
+k∗

(
M (m)G(x̂, ẑ, u1 − x̂, w1 − ẑ, . . . , um−1 − x̂, wm−1 − ẑ)(x− x̂)

) )
≥ 0, (4.10)

then (x̂, ŷ) is a weak minimizer of (VP).
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Proof. On the contrary suppose that (x̂, ŷ) is not a weak minimizer of (VP), then

(F (Ê)− ŷ) ∩ (−intC) ̸= ∅,

Hence, there exist x̃ ∈ Ê, ỹ ∈ F (x̃) such that

ỹ − ŷ ∈ −intC.

It follows from x̃ ∈ Ê that we can find a z̃ ∈ G(x̃)∩ (−D). Along with Proposition 3.8 gives

ỹ − ŷ ∈ M (m)F (x̂, ŷ, u1 − x̂, v1 − ŷ, . . . , um−1 − x̂, vm−1 − ŷ)(x̃− x̂)

and
z̃ − ẑ ∈ M (m)G(x̂, ẑ, u1 − x̂, w1 − ẑ, . . . , um−1 − x̂, wm−1 − ẑ)(x̃− x̂).

From (4.10), one gets
s∗(ỹ − ŷ) + k∗(z̃ − ẑ) ≥ 0. (4.11)

On the other hand, from s∗ ∈ C∗ \ {0Y ∗} and ỹ − ŷ ∈ −intC, it follows that

s∗(ỹ − ŷ) < 0.

Since k∗ (ẑ) = 0, z̃ ∈ G(x̃) ∩ (−D) and k∗ ∈ D∗, one obtains

k∗(z̃ − ẑ) = k∗(z̃)− k∗(ẑ) = k∗(z̃) ≤ 0.

So,
s∗(ỹ − ŷ) + k∗(z̃ − ẑ) < 0,

which contradicts (4.11). The proof is completed.

We end this section by presenting an example to illustrate the higher-order sufficient
optimality condition established above.

Example 4.7. Suppose that R is the set of real numbers, X = Y = Z = R, C = D = {t :
t ≥ 0}, set-valued maps F : X → 2Y and G : X → 2Z are defined respectively by

F (x) = {y : y ≥ |x|}, x ∈ R,

G(x) = {y : y ≥ x}, x ∈ R.

Then F is C−convex and lower semicontinuous on R and G is D−convex and lower semi-
continuous on R. Let (x̂, ŷ) = (0, 0), (ui, vi, wi) = (−1, 1,−1), i = 1, 2, . . . ,m − 1, a direct
calculation gives

ẑ ∈ G(0) ∩ (−D) = {0},
M (m)(epiF, 0, 0,−1, 1, . . . ,−1, 1) = {(x, y) : y ≥ −x, x ∈ R},
M (m)(epiG, 0, 0,−1,−1, . . . ,−1,−1) = {(x, y) : y ≥ x, x ∈ R},

M (m)F (0, 0,−1, 1, . . . ,−1, 1)(x) = {y : y ≥ −x}, x ∈ R,

M (m)G(0, 0,−1,−1, . . . ,−1,−1)(x) = {y : y ≥ x}, x ∈ R.

Taking s∗ = k∗ = 1, one has

inf
x∈X

(
s∗

(
M (m)F (0, 0,−1, 1, . . . ,−1, 1)(x)

)
+ k∗

(
M (m)G(0, 0,−1,−1, . . . ,−1,−1)(x)

))
= 0

and
k∗(ẑ) = k∗(0) = 0.

Consequently, the conditions of Theorem 4.6 are satisfied and (0, 0) is a weak minimizer of
(VP). Then, the conclusion of Theorem 4.6 holds.
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5 Conclusions

In this paper, we introduced a new kind of higher-order M -tangent set and with which,
higher-order M -tangent derivative for a set-valued function was introduced. Compared with
the higher-order contingent derivative D(m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1), higher-order
M−tangent derivative M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1) has a nice property:

M (m)F (x̂, ŷ, u1, v1, . . . , um−1, vm−1)
(
T (m)(E, x̂, u1, . . . , um−1)

)
⊂ clcone (cone(· · · cone(cone(F (E) + C − ŷ)− v1)− · · · − vm−2)− vm−1) .

which is demonstrated by Proposition 3.4, while the higher-order contingent derivative has
not the property, see Remark 3.5. Just applying the property, we established higher-order
Fritz John and Kuhn-Tucker necessary optimality conditions for a point pair to be a weak
minimizer of set-valued optimization problem, where the higher-order tangent derivatives of
multiobjective function and constraint function are separated.
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