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HIGHER-ORDER KUHN-TUCKER OPTIMALITY
CONDITIONS FOR SET-VALUED OPTIMIZATION*

YIHONG XU AND ZHENHUA PENG

Abstract: A new kind of higher-order tangent set is introduced, with which a new kind of higher-order
tangent derivative, higher-order M-tangent derivative, is introduced for set-valued maps. Some properties of
them are discussed. When both the objective function and constraint function are higher-order M —derivable,
under the assumption of near cone-subconvexlikeness, by applying a separation theorem for convex sets,
higher-order Fritz John and Kuhn-Tucker necessary optimality conditions are obtained for a point pair to
be a weak minimizer of set-valued optimization problem. Under the assumption of lower semicontinuity, a
higher-order Kuhn-Tucker sufficient optimality condition is obtained for a point pair to be a weak minimizer
of set-valued optimization problem.
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Introduction

In the last several decades, nonsmooth set-valued vector optimization has attracted increas-
ing attentions. To consider optimality conditions, many generalized derivatives have been in-
troduced with fruitful applications [4, 5, 6, 7, 9]. Corley [7] established optimality conditions
for maximization of set-valued maps by derivatives for the set-valued maps in real normed
linear spaces. Bigi and Castellani [6] addressed a generalized concept of K —epiderivative
and employed it to develop a quite general scheme for necessary optimality conditions in
set-valued problems. For many of the mentioned notions, second-order optimality condi-
tions in set-valued optimization have also been proposed [4, 8, 11, 12, 16, 18, 26]. For
example, Jahn, Khan and Zeilinger [11] proposed second-order epiderivatives for set-valued
maps, by using these concepts, they gave second-order necessary optimality conditions and
a sufficient optimality condition for set optimization. Zhu, Li and Teo [26] proposed the con-
cept of second-order composed contingent derivative for set-valued maps, by virtue of the
second-order composed contingent derivative, they established some second-order Karush-
Kuhn-Tucker necessary and sufficient optimality conditions for a set-valued optimization
problem. Rather few results on higher-order optimality conditions have been developed
(1, 2, 3, 13, 14, 15, 20, 21]. Li, Teo and Yang [15] established higher-order Fritz John type
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necessary and sufficient optimality conditions for a set-valued optimization problem. Khanh
and Tuan [13] proposed the concept of higher-order variational sets for set-valued maps, by
virtue of these sets, they established higher-order necessary and sufficient conditions. In
classic Kuhn-Tucker optimality conditions (see Theorems 4.2.10, 4.2.11, 4.3.6, 4.3.7 in [5]),
the gradient of the objective function is a linear combination of those of constraint functions.
However, in Refs. [1, 2, 3, 6, 7, 9, 13, 14, 15, 20, 21, 26] in the expressions of optimality
conditions, the derivatives of objective and constraint functions are not separated, thus
the properties for the derivative of objective function are not easily obtained from those of
constraint function.

On the other hand, various generalizations of convex functions have appeared in the liter-
ature [17, 19, 22, 24, 25]. Sometimes, the driving force has been the fact that convexity plays
a key role in optimization theory. Yang, Li and Wang [24] introduced a new class of general-
ized convexity, termed near cone-subconvexlikeness, for set-valued functions, which is a gen-
eralization of cone-subconvexlikeness introduced by Li [17]. Xu [22] has demonstrated that
near cone-subconvexlikeness is also a generalization of generalized cone-subconvexlikeness
introduced by Yang, Yang and Chen [25]. Sach [19] introduced a new convexity notion
for set-valued maps, called ic-cone-convexlikeness. Xu and Song [23] obtained the following
results: (i) when the ordering cone has nonempty interior, ic-cone-convexness is equivalent
to near cone-subconvexlikeness; (ii) when the ordering cone has empty interior, ic-cone-
convexness implies near cone-subconvexlikeness, a counter example was given to show that
the converse implication is not true. Hence, near cone-subconvexlikeness is a kind of very
generalized convexity.

The above discussions motivate the aim of this paper: to introduce a new kind of higher-
order tangent set and with which to introduce a new kind of higher-order tangent derivative
for a set-valued function. Also we will use it to investigate weak minimizers for set-valued
optimization problem under the assumption of near cone-subconvexlikeness.

Basic Concepts

Throughout the paper, let X, Y and Z be three real normed linear spaces, Ox,0y and
0z denote the original points of X,Y and Z, respectively. Let C' and D be closed convex
pointed cones in Y and Z, respectively, Y* and Z* be the topological dual spaces of Y and
Z, respectively. The dual cones of C' and D be defined respectively by

C*={feY": f(c) >0,VceC},
D*={feZ*: f(d) >0,vd € D}.

Let M be a nonempty subset of Y, the interior, closure and cone hull of M are denoted
by intM, cIM and coneM, respectively. The cone hull of M is defined by

coneM = {tm:t>0,m e M}.

Let F: X — 2Y be a set-valued map. The domain image, graph and epigraph of F are
defined respectively by
domF :={z € X : F(z) # 0},

ImF:={yeY: :ye F(X)},
graphF := {(z,y) e X xY :y € F(z)},
epiF == {(z,y) e X xY :y € F(z) + C}.
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Definition 2.1 ([10]). Let F : X — 2¥ be a set-valued map and S be a nonempty convex
subset of X. Then F is said to be C—convex on S if only if for all 1,22 € S and A € [0, 1],
we have

AF(21) + (1 = N\)F(x2) C F(Axy + (1 — M) + C.

Remark 2.2. If F' is C'—convex on a convex set S, y € Y, then ' — y is also C—convex on

S.

Definition 2.3 ([24]). Let E C X. A set-valued map F : X — 2Y is said to be nearly
C—subconvexlike on E if clcone(F(E) + C') is convex.

Remark 2.4 ([24]). If F is C—convex on a convex set S, then F is nearly C'—subconvexlike
on S.

Definition 2.5 ([4]). Let S C X. A set-valued map F : S — 2Y is called lower semicon-
tinuous at & € S if for any x,, € S with z,, — & and any § € F(&), there exists a sequence
Yn € F(x,) such that y, — 9.

F is called lower semicontinuous on S if F' is lower semicontinuous at any x € S.

Definition 2.6 ([4]). Let A be a nonempty subset of Y, § € clA, v1,v9,...,0:-1 €Y. The
mt" —order contingent set of A at (4, v1,...,Vm_1), denoted by TU™ (A, §,v1,...,0m_1), is

given by

A—G—hvy—---—h™ Ly,
T("l) (Aa g7 U1y 7’U’m71) = lim sup y U1 v 1 .

2.1
h—0+t hm ( )

Remark 2.7 ([4]). (2.1) is equivalent to

T (A, §,v1,. .., 0m_1) = {y €Y :3t, =0Ty, — y,such that
§+tyvr + 20+ -+t o, + Ty, € AVn € N}

Definition 2.8 ([4]). Let F : X — 2Y be a set-valued map, (2,9) € graphF. The
mth—order contingent derivative of F at (Z,9) for vectors (u1,v1),. .., (Um—1,Vm—_1) is de-
fined by

graphD(m)F(:i:, Gy UL, U1y e ey U1, U1 ) 2= 7 (graphF, &, 4, u1,v1, - -, Up—1, Vm—1) -
In the following, we introduce a new kind of higher-order tangent set.

Definition 2.9. Let Q be a nonempty subset of X x Y, (#,9) € cl@Q. The higher-order
M—tangent set of @ at (&,y) for vectors (ui,v1),...,(Um—1,Vm—1), denoted by
M(m) (Qafi'a gvulavlv e 7um717’0m71)7 is given by

M(Q, 2, §,u1, V1, -+ U1, Um—1) = {(u,v) € X XY :¥t, = 0F, V!, = u, I/, = v,
such that (&4 tpug + -+ 7 Yup g + 7!,

G4 tpvg + - F " o, H 1)) € Q).

The Second-Order M-Composed Tangent Derivative

In this setion, by virtue of the higher-order M —tangent set, we will introduce the concept
of higher-order M —tangent derivative. Furthermore, some important properties of higher-
order M —tangent derivative will be proposed.
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Definition 3.1. Let F : X — 2 be a set-valued map, (#,7) € graphF. The m*"—order
M —tangent derivative of F at (&,§) for vectors (u1,v1),. .., (Um—1,Vm—1) is defined by

graphM(m)F(:i, gauhvb cee 7um—1avm—1) = M(m) (epiFvi'ayaulavlv s 7um—1avm—1) .

If M™) (epiF, &, 4, u1,v1, ..., Um—1,Vm_1) 7# 0, then F is called higher-order M — deriv-
able at (&, ¢) for vectors (u1,v1),..., (Um—1,Vm—1), or the higher-order M —tangent deriva-
tive of F at (&,7) for vectors (u1,v1),. .., (Um—1,Um—1) exists.

Remark 3.2. From Remark 2.7 and Definition 2.9, it follows that
graphM "™ F (&, 5, w1, v1, ..., Um—1,0m—1) C graphD"™ Fy (3,5, u1,v1, ..., U1, Um—1),

where Fly = F(z) + C, Yo € domF. However, the inverse inclusion is not necessarily true,
as is shown in the following example.

Example 3.3. Let R be the set of real numbers, X =Y =R, C={t€ R:t>0}. A
set-valued map F : X — 2Y is defined by

{ye R:y >z}, if >0,
{ye R:y>—+/—x}, otherwise.

Let (£,9) = (0,0), a direct calculation gives

F(z) =

T (epiF, (0,0)) = {(z,y) : x> 0,y > 2} U{(2,y) : © < 0,y € R},
MW (epiF, (0,0)) = {(z,y) : 2 >0,y > a} U{(z,y) : 2 < 0,y € R},

ry>at, x>0,
R A

Ty > >
M(l)F(0,0)(x) _ { {y: %Rf T}, i ; 87

Consequently,
graph DM F,(0,0) ¢ graph MM F(0,0).

The following property of higher-order M —tangent derivative is of importance to estab-
lish higher-order necessary optimality condition in the next Theorem 4.1.

Proposition 3.4. Suppose that E C X, the higher-order M -tangent derivative of F': X —
2Y at (£,9) € graphF for vectors (u1,v1),. .., (Um—1,Vm_1) exists, then

M(m)F(QA?,Q,Ul,"Ul, cee ,um—lvvm—l) (T(m)(Ea‘%a ULy .- 7um—1))
C clcone (cone(- - - cone(cone(F(E) +C —§) —v1) — -+ — Um—2) — Um—1)

where the number of “cone”in above expression is m.

Proof. Let v € MU™ F(&, 4, u1,v1,. .., Um—1,Vm—1) (T(m)(E,i,ul, . ,um_l)), then there
exists a u € T (E, &, u1, ..., Up_1) such that

NS M(m)F(£7g?ula’U17 e aumfhv’m/*l)(u)'
Thus

(u,v) € graphM "™ F (&, 4, uq, v1, . . ., Upm—1, Urm—1)
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= M) (epiF, &, 6, u1, U1, - - -, U1, Um—1) - (3.1)

From u € TU")(E, &, uy,. .., Un,_1), it follows that there exist sequences t,, — 0%, u/, — u
such that

&4 tpuy 4+ gy, g T, € E.

For above t,, and u/, it follows from (3.1) that there exists a sequence v}, — v such that
(& +tpuy 4+t g F UG F vy o+ T o+ ET)) € epiF,
which implies

G+ tpvr + -t o, U™ € F(2 4 tyug + - A 7 gy A 7)) + C.

Consequently,
1 5 m— m ~ m—
UZGE(F(x+tnu1+~~+tn Y1 + 7))+ C — § — tpvg — - — L7 YWm—1)

1 . .

Cﬁ(F(E)+C'—y—tnvl—~-~—tn YWm—1)
1 1 1 1 1

=—(=1... 2 (F(EY+C —4) - _ o | — U
t (tn( tn (tn (tn( (e Ul) Uz) ° 2) ’ 1)

C cone (cone(- - - cone(cone(F(E)+ C —§) —v1) — -+ — Uym—2) — Un—1) -

Taking n — oo, one gets
v € clcone (cone(- - - cone(cone(F(E) +C —§) —v1) — -+ — Um—2) — Um—1) -

O

Remark 3.5. If we substitute DU F (&, §,u1,v1,. .., Un_1,VUm_1) for MO E (& 7§, uy,
V1y.v s Um—1,Um—1) in Proposition 3.4, the following inclusion

D™ E (&, §,u1,v1,. .., Um—1,Vm—1) (T™(E, 2, u1,. .., Un-1))
C clcone (cone(- - - cone(cone(F(E) + C —§) —wv1) — -+ — Uyp—2) — Um—1) -

is not necessarily true, as is shown in the following example.

Example 3.6. Let R be the set of real numbers, X = R, Y = R?>, E = {z : 2 > 0},
C = {(t1,t2) € R? : t; > 0,t2 > 0}. A set-valued map F : X — 2Y is defined by

F(z) = {(y1,42) € R? 11 > 0,2 > 0}, if x>0,
{(y1,y2) € R? 1 y1 > —/—x,y2 > Yx}, otherwise.

Let (Z,4) = (0,0), a direct calculation gives

TM(E,0) = [0, +00),

T (graphF, (0,0)) = TM (epiF, (0,0)) = {(z,y) € Rx R>:2 > 0,y; > 0,12 > 0}
U{(z,y) e Rx R? :x < 0,41 € R,y € R},
R xR, xz <0,

(1) —
b F+(070)(1.) { {(ylayQ) € R2 B Z 071/2 Z 0}7 T > 07
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M (epiF, (0,0)) = {(z,y) € Rx R?:x>0,y1 > 0,y2 > 0}
U{(z,y) e Rx R?: 2 < 0,11 € R,y2 € R},

(1) N R X R, x <0,
F(0,0)(z) = { {(y1,92) € R? 11 > 0,y > 0}, x> 0.

Consequently,
DWF(0,0)(T™M(E,0)) = R x R,

MW F©0,0)(TM(E,0)) = {(y1,42) € R*: y1 > 0,y > 0},
clcone(F(E) + C —9) = {(y1,v2) € R* : y1 > 0,92 > 0}.
Thus, the conclusion of Proposition 3.4 is true. However,
DWE, (2,9) (T<1>(E, ;a)) ¢ cleone(F(E) + C — §).
Proposition 3.7. Suppose that Q C X xY is convez, (,9) € clQ, then M) (Q, &, 9, uy,v1,
e Um—1,VUm—1) 1§ cONveEL.

Proof. Let (u/,v'), (v, v") € M) (Q,Z, 9, u1,v1,...,Un_1,Vm_1). For any X € (0,1), we
shall prove

)\(u/’vl)+(1_)\)( )EM (an y7u17v17"'aum—17vm—1);
that is,
(M 4+ (1= A", M+ (1= A)") € MU(Q, 2, i, w1, v1, - .+, Upe1s Upp—1)-

In fact, for any ¢, — 07, p, = A/ + (1 = X)u”, let g, := pp — A/ — (1 — A\)u”, then ¢, — 0.
Thus

1

X( n— (1 — /\)u”) —qn — .
Since (u/,v") € M"™)(Q, &, 4, u1,V1, ..., Un_1,Vm_1), there exists a sequence v/, — v such
that

(4t + oot gyt (P g ),

G+ tnor 4+t 1+tm’>eQ (3.2)

In the similar way, = /\ (pn — M) — g, — u”, thus there exists a sequence v], — v” such
that

(jc +tpuy + o+ T gy, g T (p"l ’>\” - qn) ,
G+ tpvr + - g + tm;{) €Q. (3.3)
Since @ is convex, multiplying (3.2) and (3.3) by A and 1 — A, respectively, one obtains
(:z Ftaus 4 A P gy 7 (D — (1= A+ po — M — q)

G+ tavr -+ B o B () + (1= )0 ) € Q.
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From ¢, = p, — Au/ — (1 — A)u”, it follows that
(i Ftpur - g+ E
G+ bavr B o B2 () (1= X)) ) € Q.
Let 9, := Av), + (1 — A)v), then 4, — Av’ 4+ (1 — A\)v”. Consequently
(& +tour + - A0 Uy 0P, G tavr o T 0y + E0D,) € Q.
By the definition of M ™) (Q, &, 9, u1,v1, ..., Um_1,VUm_1), we have
O+ (1= X", M+ (1= A") € MO(Q, &, §,u1,v1, -+ ., U1, V1)
O

Proposition 3.8. Suppose that S C X is conver, F : S — 2V is C—convexr and lower
semicontinuous on S, the higher-order M —tangent derivative of F' at (Z,9) for vectors (u; —
Z,01 =)y oy (Um—1 — &y Vm—1 — §) exists, then

F(z)—{§} € M"F(&, §,u1 — &,01 — Gy -+ .y U1 — & U1 — §)(x — 2),Vz € S,
where uy, U, ..., Um—1 € S and (u;,v;) € epiF,i=1,2,...,m— 1.
Proof. Let x € S, y € F(x), we shall prove
y—9gEe M(m)F(fc,@,ul — 201 — Yy U1 — Ty U1 — §)(x — ).

It suffices to show

(x — i,y —9) € graphM ™ F(&,§,u1 — Z,01 — §y ..oy U1 — &, V-1 — §).
By Definition 3.1, it suffices to demonstrate

(x— 2,y —9) € M"™ (epiF, &, §,u1 — Z,01 — .+ oy U1 — &y U1 — §) -

In fact, let ¢, — 0", z, —  — 2, then z, + £ — z. From F is lower semicontinuous at x, it
follows that there exists a sequence y,, € F(x,, + &) such that y, = y. Theny, —§ — y—9.
Since S is convex, one obtains

B4 247w, = 2 (0, +3)+ (1 —20)E € S

and
EA2(tn(ur — &) + -+ 7 (um—1 — £))
= Qtnul + 4 2t:’:71um—1 —+ (]_ — 2tn e — 2t2171)£
es.
Then
Bt (un = &)+ B (U1 — ) + 7
= % ('i + Qt;nxn) + % (i‘ + 2 (tn(ul — i‘) + -+ t'rTil(Um—l _ iﬁ)))
e s.

It follows from F is C—convex on S that

G+ 207 (g — §) = 20090 + (L= 20)5 € FED (00 + ) + (1 267)2) + C
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=F(&+2t0x,) + C. (3.4)
Since (u;,v;) € epiF,i =1,2,...,m —1 and F is C—convex on S, we have
J+2(tn(vr —9) + 157 (Vmo1 — )
=2t v1 -+ 2 A+ (1 =2, — =2t )G
€ F(2tpuy + -+ 2" Yy g+ (1 =2, — - =207 H2) + C
=F (& 42 (tn(ur — &)+ + 17 Hum—1 — 2))) + C,
which together with (3.4) gives

g‘i’tn(vl *Z,AI) + - +tzl71(vm—l *Z:/) +tzl(yn 71/)

= G2 =) g (042 (o —5) 17 (s~ 9))

€ %F(JE + 24, + %F (@42 (ta(ur — &)+ -+t (up1 — 2))) + C
CF@+ty(uy — &)+ + 1" Yy — 2) +t"2,) + C.
Hence
(#,9) + tp(ug — 2,01 —§) 4+ A+t N1 — 2, 0m-1 — §) + 7 (T, Yn — J) € epiF.
Consequently,

(.’E - jf.vy - Q) € graphM(m)F(i7ga ur — ‘%vvl - ga sy Um—1 — ii’,Um,1 - g)

O
Proposition 3.9. Let F; : X — 2Y, & € domF, NdomFy, §; € Fy(&),i = 1,2. The higher-
order M-tangent derivative of Fy at (&,91) for vectors (u1,v11) ..., (Um—1,V1,m—1) and the
higher-order M -tangent derivative of Fy at (&,32) for vectors (u1,v2,1), .-, (Um—1,V2,m—1)

exist, then for any x € domF; N domFs,
M(m)Fl(fi'vghulaUl,la ey U1, V1m—1) ()
+ MU Fy (&, G2, w1, 02,1, -, U1, V2,m—1)(2)

C M™(Fy + Fo) (&, 61 + 92, 1,011 + 0215+ s U1, V1m—1 + V2,m—1)(2).

Proof. For any t, — 07, z, — =z, let y; € M(m)Fl(i",gjl,ul,vm,...,um_l,vl,m_l)(a:)
and y, € M(m)FQ(JA;yQ,Ul,’Ug’l, ey Um—1,VU2m—1)(x), then for above t, and z,,
“is replaced by” Let wy; € M(m)Fl(ﬁ,gjl,ul,le, ey Um—1,V1m—1)(T), Y2 €
M(m)FQ(IIA%Z)Q,’LLl,UQ’l, ey Um—1,V2 m—1)(2), t, = 0T and z,, — x, then there exist y. — y1
and y2 — y such that

G Ftavig o T 0 g Ty € Fy (@ tpug e A T g+t ) + O
and

G2t tnvan + -+t g1 Uy € Fo(& + taun + -+ U gy + £ ) + C.
Thus

(G + 92) + tn(vig +v21) + -+ (01 et + vo,m—1) + (YL + y2)
€ (B + F) @+ taur + - +t" Yy g +tMa,) +C + C
C (F1 + Fg)(-f? +thur + -+ t;n_lum—l + tnml‘n) + C.
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Hence,
y1+y2 € M(m)(Fl + I5) (2,91 + 2, u1,01,10 F V2,15 - Um—1,V1,m—1 + V2,m—1)(Z)-

O

Proposition 3.10. Let G : X — 2Y, F : Y — 2% with ImG C domF, (#,9) € graphG,
(9,2) € graphF and (u;,v;,w;) € X xY x Z,i = 1,2,...,m — 1. The higher-order M-
tangent derivative of F at (4, 2) for vectors (vi,w1), ..., (Vm—1,Wm—1) and the higher-order
M -tangent derivative of G at (Z,9) for vectors (uy,v1), ..., (Um—1,Vm—1) exist, then

M(m)F(Qv 2avl7w1u cee 7Umflvwmfl) (Mc(m)G(‘%7g7ulavl7 e 7um717vm71)(x)>
C MU(FoG) (&, 2,u1, Wi, ... Unm—1,Wnm_1)(z), V2 € domG,

where F o G(z) = F(G(z)) and
graphMc(m)G(i'v ga UL, V1y- oo Um—1, vmfl) = M(m)(gratha ‘%7 Qv UL, V1y vy Um—1, Um71)~
Proof. Let

Z € M(m)F(gvévvlawlv DR 7Um717wm71) (Mc(m)G(f)Af,:lj,Ul, Viyenny umfl,vmfl)(x)) 9

then there exists y € MC(m)G(aﬁ7 Gy U1, U1y« oy Un—1,Vm—1)(x) such that
z € M(m)F(g), 2,01, W1, oy U1y Win—1) (Y)-

For any t,, — 0%, z,, — =, it follows from y € Mc(m)G(i‘,gj,ul,vl, ey U1, Um—1)(x) that
there exists y,, — y such that

GAtpvr + -t o, Ty, € G(E A tpug o T g ). (3.5)

For above t,, and ¥, it follows from z € M"™ F(§, 2, vy, w1, ..., Um—1, Wm—1)(y) that there
exists z,, — z such that

Etpwr+ A w820 € F(+ tavs + -+ 60 o1 + 10 yn) + C,
which together with (3.5) gives
Fdtpwy + oot w ) F 72, € F(G(E 4+ tpug + -+t Yy +t7,)) + C.
Then
Zdtpwy 4 AT w2, € Fo G2+ tyuy + - A+ 7 Mgy g + 17, + C.

Therefore,
z€ MU™(F o G) (&, 2,u1, w1, .. U1, Wn—1) ().
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Higher-Order Kuhn-Tucker Optimality Conditions

Let F: X —»2Y, G: X — 2%, (F,G): X - 2Y*Z be defined by (F,G)(z) = F(z) x G(z).
Consider the following optimization problem with set-valued maps:

(VP) min F(x),
st. Glz)N(=D)#0,z e X.

The feasible set of (VP) is denoted by E, ie., E={z € X : G(z) N (=D) # 0}.
Definition 4.1. Suppose & € E, § € F(&). A pair (&, ) is called a weak minimizer of (VP),
if
(F(E) — )N (~=intC) = 0.
Theorem 4.2 (Fritz John necessary optimality condition). Suppose that (Z,9) is a weak
minimizer of (VP), 2 € G(Z)N(=D), (us,vi, w;) € X x(=C)x(=D),i=1,2,...,m—1, F is
higher-order M-derivable at (&,9) for vectors (ui,v1),..., (Um—1,Vm—1), G is higher-order
M -derivable at (z,2) for vectors (ui,w1), ..., (Um—1,Wm—1), and
domM(m)F(i",g), UL, ULy e ey U1, Up—1) = domM(m)G(i‘, Z UL, Wy ey U1, Wip—1) = X.
The set-valued map
30*('7;) = (M(m)F(i‘a :gv U1,V1y---5Un—1, Um_l)(l'),
M G(&, 2, uy, w, ... 7um,hwm,l)(x)) c X —2YxZ

is nearly C x D—subconvexlike on X, then there exist s* € C*, k* € D*, (s*,k*) # (0y+,0z2~)
such that

inszX (5* (M(m)F(ivgaulvvla s 7umflavm71)(1’)) +

(MG, 2,u1,wy, ... ,um_l,wm_l)(x))) >0, (4.1)
where
s* (M(m)F(i,Q,ul,vl,...,um_l,vm_l)(x)> = U s*(y)
yEM (M) F(&,§,u1,01, s Um—1,Vm—1)(x)
and
E* (M(m)G(:%,é,ul,wl,...,um,l,wm,l)(x)) = U k*(2).

2€EM M G(Z,2,U1,W1 5.y Um—1,Wm—1)(T)
Proof. Since (&,9) is a weak minimizer of (VP),
(F(E) —§) N (—=intC) = 0.

In what follows, we prove

cone (¢*(X) +C x D) N ((—intC) x (—intD)) = 0, (4.2)
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where

QO*(X) = U QD*(I) = U (M(m)F(iazJ)ulavh'"auﬂl—l?Um—l)(x)a
reX rzeX

M(m)G(it, 20U, W, U1, wm_l)(x)>.

On the contrary suppose that (4.2) does not hold, from (0y,0z) ¢ (—intC) x (—intD), it
follows that there exist A > 0, Z € X, such that

<;\<M(m)F(i‘7?J7u17U17 ce 7um—17U7rL—1)(£)7

M™G(z, 2, uy,wi,. .. ,um,l,wm,l)(i:))) N ((=intC) x (—intD)) # 0.

Hence there exist § € M F (&, §,u1,v1,. .., Um_1,Vm_1)(Z), 2 € M™G(&,2,u1,ws,
ey Um—1,Wm—1)(Z), such that

A7, 2) € (—intC) x (—intD).

Since —intC' and —intD are cones, one obtains

y € —intC (4.3)
and
% € —intD. (4.4)
From z € M"™G(Z, 2,u1, w1, ..., Um—1, Wm_1)(Z), it follows that
(z,2) € graphM™G(&, 2, u1, w1, ..., U1, Wn_1)
= M(m) (eplGu ‘%727u17w17 o 7um717wm71>
C T(m) (epiG7fi7 27”17 Wiy - - - 7um71awmfl) .

Hence there exist ¢, — 0T, x,, — T, 2, — Z such that
(& 4 tpuy 4+ " gy F T 2wy T w1 2,) € epiGl
Thus
Fttpwy o AT Wy 2, € G(E F tpuy o P g + 8P ,) + DL (4.5)

A set of positive integers is denoted by N. From (4.4) and z, — Z, it follows that there
exists N1 € N such that
zp € —intD,Vn > Nj.

Since —intD and —D are convex cones, one obtains
Fdtpwy Aty F 12, € =D — - — D —intD = —intD,Vn > N;.  (4.6)
It follows from (4.5) that there exists Z, € G(& + tpous + -+ + t™ tup,—1 + t™a,) such that
et tpwy o+t Mg g+ T2, € 3, + D.
Since D is a convex cone, from (4.6) one dedues

Zn € 24 thwy + - —I—tnm_lwm_l +t'z, — D C —intD — D = —intD C —D,
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which gives
G(Z 4 tpuy + -+ "y +t7,) N (=D) # 0,

that is
Ettpug + ot g F T, € E.

From t, — 0%, z, — z, it follows that z € T(m)(E,i,ul, <+, Um—1), which along with
Proposition 3.4 and § € M"™) F(&, 4, w1, v1,. .., Um—1,Vm—1)(Z) leads to

Yy € M(m)F(QA?,Q,Uh’Ul, Ce ,Umfl,vmfl) (T(m)(E,cﬁ,ul, Ce ,um,l))

C clcone (cone(- .- cone(cone(F(E) +C —§) —v1) — -+ — Upp_2) — vm,l) .

It follows from (4.3) that

clcone (cone(- .- cone(cone(F(E) +C —§) —v1) — - — Upy_2) — vm_l) N (—intC) # 0.
Since —intC' is open, one obtains

cone <cone(~ .- cone(cone(F(E) +C —§) —v1) — -+ — Upy_2) — vm_l) N (—intC) # 0.
Consequently, there exists a sequence {\; : A\; > 0,4 =0,1,2,...,m — 1} such that

A1 (Am,z(. CMN(F(E)+C —§) —v1) — -+ — Uma) — vm,l) N (—intC) # 0,

then

HZ’;_Ol)\l(F(E) +C - :9) N (Am_lvm_l + A1 Am—2Um—2 + ++ + H;’;_ll)\ivl—intC) =+ .

It follows from v; € —C,i=1,2,...,m — 1 and —C is a convex cone that
)\m_lvm_l + )\m_1>\m_211m_2 + -+ Pi;’;_ll)\,;vlfintc C —C —---—C—intC = —intC.
Consequently,

M N(F(E) + C — ) N (—intC) # 0.
From 0 ¢ —intC, it follows that Hﬁgl)\i > 0. Together with C' is a cone gives
(F(E) +C —§) N (—intC) # 0.
Since C' is a pointed cone, one obtains
(F(E) —§) N (—=intC) # 0.
This is a contradiction to the assumption that (Z, %) is a weak minimizer of (VP). Hence,
cone (¢™(X) + C x D) N ((—intC) x (—intD)) = 0.
Since —intC' and —intD are open, one deduces

cleone (¢*(X) + C x D) N ((—intC) x (—intD)) = 0.
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By the assumption that ¢*(z) is nearly C' x D—subconvexlike on X we know clcone(p*(X)
+C x D) is convex. By a separation theorem for convex sets, there exists (s*,k*) € Y* x
Z*\ {(Oy~,0z~)}, such that

(s*, k%) (cleone (9" (X) + C x D)) > s*(—intC) + k*(—intD). (4.7
Since clcone(¢*(X)+C x D) is a cone and on which (s*, k*) has a lower bound, we conclude
(s, k™) (clcone(p*(X) + C x D)) > 0. (4.8)

In view of (0y,0z) € clcone(¢*(X) + C x D) and (4.7),
s*(—intC) + k*(—intD) < 0. (4.9)

It follows from (0y,0z) € C x D and (4.8) that (s*, k*)(¢*(X)) > 0. Hence (s*, k*) (¢*(x))
>0, Vx € X. In other words,

s* (M(m)F(it,g, UL, U1y - ey U1, vm_l)(x)) +
k* (M(m)G(i“, 2,U1, W1, Upp—1, Win—1)(2)) >0,

Therefore,

inf,cx (s* (M(m)F(i",gLul,vh . ,um,l,vm,l)(x)) +
k* (M(m)G(ia évul7w17 LR urn—lywm—l)(x)) ) > 07

Then, we prove k* € D* and s* € C*.
In view of (4.9),
E*(intD) > s*(—intC).

Since intD is a cone and on which £* is bounded blow, we derive
E*(intD) > 0.

Since D is a closed convex cone, we get D = cl(intD). For any d € D, there exists a net
{da} C intD such that d = limd,. Hence,

k*(d) = lim k*(da) > 0,

which implies £*(D) > 0, thus k* € D*. In the similar way, we conclude s* € C*. The proof
is completed. O

Corollary 4.3. Suppose that (&,9) is a weak minimizer of (VP), 2 € G(&) N (=D),
(us,vi,w;) € X x (=C) x (=D),i=1,2,...,m —1, F is higher-order M-derivable at (&,)
for vectors (ui,v1),..., (Um—1,Um—1), G is higher-order M-derivable at (&,%) for vectors
(ur,w1),. .., (Um—1,Wm-1), F and G are C—convex and D—convex on X, respectively,

domM ™ F(&, 4, u1,v1, ..., -1, Vm—1) = domM "™ G (&, 2, u1, w1, .. ., Up—1, Wm—1) = X.

Then there exist s* € C*, k* € D*, (s*,k*) # (Oy~«,0z+) such that

infxeX (S* (M(m)F(i‘,g],ul,vl, . ,um_l,vm_l)(m)) +
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k* (M(m)G(i,é,ul,wl, . ,um_l,wm_l)(x)) ) >0,

where
s* (M(m)F(fc,g),uhvl,...,um,l,vm,l)(x)) = U s*(y)
YEM ™) F(&,0,11,01 0 e Uim—1,0m —1) ()
and
k* (M(m)G(i,é,ul,wl,...,um_l,wm_l)(x)) = U k*(2).

2€M M) G(&,2,u1,W1 5. U — 1, Wi —1)(T)

Proof. Since F and G are C'—convex and D—convex, respectively, we conclude epiF’ and epiG

are convex. From Proposition 3.7, one decluces that M (™) (epiF, TyY, U, V15 e ey Upp—1, vm_1>
and M (™) (epiG, Ty 2, U1, Wy e ey Upp—1, wm_1> are convex. Consequently, graphM(m)F(:i,

Gy UL, V1,5« o U1, V1) and graphM ™ G(&, 2, uy, wy, . . ., Upm—1, Wp—1) are convex. Then,

M(m)F(:%, Yy UL, U1y v oy Up—1, Up—1) and M(m)G(a%, Z,U1, W1,y ..oy Um—1, Wyp—1) are C'—convex
and D—convex, respectively. Since

QO*(J?) = (M(m)F(iv Uy UL, V15 v s U — 1, Um—l)($)a
MIVG(@, 2,1, w1t 1, w-1)(@)),

we get ¢* is C' x D—convex. Thus, ¢* is nearly C' x D—subconvexlike on X. Therefore, the
conditions of Theorem 4.2 are satisfied, we complete the proof. O

Theorem 4.4 (Kuhn-Tucker necessary optimality condition). Suppose that (Z, ) is a weak
minimizer of (VP), 2 € G(Z)N(—D), (ui,vi,w;) € X x(=C)x(=D),i=1,2,...,m—1, Fis

higher-order M -derivable at (&,9) for vectors (ui,v1),..., (Um—1,Vm—1), G is higher-order
M -derivable at (£,2) for vectors (uy,w1), ..., (Um—1,Wm—1), and
domM(m)F(i, Q, U1, V15, Um—1, ’Um_l) = domM(m)G(:i", ?:’, UL, Wlye ooy Um—1, wm_l) = X.

The set-valued map

o (@) = (M F (@, gun, 1,1, 0m 1) (@),

M G(&, 2, uy, wr, ... ,um,hwm,l)(x)) c X - 2YxZ

is nearly C' x D—subconvezlike on X . If there exists an z” € X such that M"™G(Z, 2, u;,
Wiy vy U1, Wn—1) (@) N (=intD) # 0, then there exist s* € C*\ {0y+} and k* € D* such
that

infrex (8* (MM F (2,9, u1,v1, ..., Um—1, Um—1)(7)) +
k* (M(m)G(aAj7 2a Uy, Wi, - .- 7um717wm71)(x)) ) > 07
where

s* (M(m)F(:i",g],ul,vl,...,um,l,vm,l)(x)> = U s*(y)

yEM (™) F(2,9,U1,V1,-,Um—1,0m—1)(T)
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and
E* (M(m)G(:%,é,ul,wl,...,um,l,wm,l)(x)> = U k*(z).
2e€M ™ G(&,2,u1,W1,...,Um—1,Wm—1)(T)

Proof. From Theorem 4.2, it suffices to show s* # Oy«. Suppose to the contrary that
s* = Oy~, then from (s*, k*) # (Oy~,0z~) it follows that k* # 0z-. By the assumption of the
theorem, there exists 2’ € M™G(&, 2, u1, w1, ..., Um—_1,Wn_1)(x") such that 2" € —intD,
which together with k* € D*\{0z-} gives k*(2”) < 0. On the other hand, by the assumption
of the theorem and s* = Oy«, we get

E* (M(m)G(:E, 2, u1, wi, . .. ,um_l,wm_l)(x")> > 0.
This is a contradiction.The proof is completed. O

We give the following example to illustrate Theorems 4.2 and 4.4.
Example 4.5. Suppose R is the set of real numbers, X =Y =Z =R, C =D = {t: t > 0},
set-valued maps F : X — 2¥ and G : X — 22 are defined respectively by
Fa)={y:y>a'}z€R,
. 2 :
G(x) = { {{Z.:yyzz‘i}}; fthirvzvi(s)é.
Let (£,9) = (0,0), (u;,v;, w;) = (—1,0,—-1),4 =1,2,3, 2" = —1, a direct calculation gives
z2e€ G(0)n (—=D) = {0},
M® (epiF,0,0,-1,0,—1,0,—1,0) = {(z,y) : € R,y > 1},
M® (epiG,0,0,-1,—1,-1,—1,-1,—-1) = {(z,y) : y > z,x € R},
M@WF(©0,0,-1,0,-1,0,—1,0)(z) = [1,+0),z € R,
MWG0,0,-1,-1,-1,-1,-1,-1)(z) = {y : y > z},z € R,
M®G(0,0,-1,-1,-1,—1,—1,-1)(=1) N (—=intD) = [~1,0).

Thus, ¢*(z) = (MWF(0,0,-1,0,-1,0,-1,0)(z), MY G(0,0,—1,-1,—1,-1,—1,-1)(z))
is nearly C x D—subconvexlike on X. Consequently, the conditions of Theorems 4.1 and 4.2
are satisfied. Taking s* =1 and k* = 0, one has

inf,cx (s* (M®WF(0,0,-1,0,-1,0,—1,0)(x)) +
kF* (MWG(0,0,-1,-1, 1,1, —1,—1)(33))) —1>0.

Then, the conclusions of Theorems 4.2 and 4.4 are true.

Theorem 4.6 (Kuhn-Tucker sufficient optimality condition). Suppose that F : E =2y
and G : E — 27 are C—convex and D—convex on the convex set E, respectively. F and
G are lower semicontinuous on E. 2 € G(&) N (=D), (&,9) € graphF, (u;,v;) € epiF,i =
1,2,....m —1, (u,w;) € epiG,i = 1,2,...,m — 1. If there exist s* € C*\ {Oy~} and
k* € D* such that k* (2) =0 and

infmGX (S* (M(m)F(iagaul - :i'avl - g7 sy Um—1 — javm—l - g)(l‘ - i'))
+k* (M™G(E, 2,u1 — &,w1 — 2, U1 — &, Wip—1 — 2) (2 — 7)) ) >0, (4.10)

then (Z,4) is a weak minimizer of (VP).
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Proof. On the contrary suppose that (&, %) is not a weak minimizer of (VP), then
(F(E) - §) N (~intC) £0,
Hence, there exist # € E, § € F(i) such that
g —9 € —intC.
It follows from & € E that we can find a z € G(Z) N (—D). Along with Proposition 3.8 gives

§—9€M™F(&,§,u1 —&v1 —§y. ooy Ume1 — &, V1 — §)(F — &)

and
F—2e MG, 2,01 — &w1 — 2, U1 — & W1 — 2)(& — &).
From (4.10), one gets
S — ) + k(2 — 2) > 0. (4.11)
On the other hand, from s* € C* \ {Oy-} and § — § € —intC, it follows that
S5 —5) < 0.

Since k* (2) =0, Z € G(Z) N (—D) and k* € D*, one obtains
E*(Z2-2)=k*(2) - k" (3) =k"(2) <O.
So,
s'(g—9)+E(2—2) <0,
which contradicts (4.11). The proof is completed. O

We end this section by presenting an example to illustrate the higher-order sufficient
optimality condition established above.

Example 4.7. Suppose that R is the set of real numbers, X =Y =Z =R, C =D ={t:
t > 0}, set-valued maps F : X — 2¥ and G : X — 2% are defined respectively by

F(z)={y:y>|z|},x € R,

Glz)={y:y>a},z €R.
Then F' is C—convex and lower semicontinuous on R and G is D—convex and lower semi-
continuous on R. Let (£,9) = (0,0), (u;,v;,w;) = (—=1,1,—-1),i =1,2,...,m — 1, a direct

calculation gives
2e G(0)n(=D) = {0},

M) (epiF,0,0,—1,1,...,—1,1) = {(z,y) : y > —x,x € R},
M(m)(epiG,QO7 -1,-1,...,—-1,-1) ={(z,y) : y > =,z € R},
M™F0,0,-1,1,...,-1,1)(z) = {y: y > —2},z € R,
M™G(0,0,-1,-1,...,—1,—-1)(z) = {y:y > z},z € R.

Taking s* = k* = 1, one has

inf (5* (M(m)F(O,Q—l, 1,...,—171)(:5)) e (M(m)G(0,0, 1,1, —1,—1)(x))> -0
S

and

k*(2) = k*(0) =0.
Consequently, the conditions of Theorem 4.6 are satisfied and (0, 0) is a weak minimizer of
(VP). Then, the conclusion of Theorem 4.6 holds.
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Conclusions

In this paper, we introduced a new kind of higher-order M-tangent set and with which,
higher-order M-tangent derivative for a set-valued function was introduced. Compared with
the higher-order contingent derivative D(m)F(:E, Uy U1, U1,y oy Upp—1, Um—1), higher-order
M —tangent derivative M ™ F(&, 4, u1,v1,. .., Um_1,VUm_1) has a nice property:

M(m)F(JA?,Q, UL, V1. -, u?n—hvm—l) (T(m)(E7j"au17 s 7u’m—1))
C clcone (cone(- - - cone(cone(F(E) +C —§) —wv1) — -+ — Upp—2) — Um—1) -

which is demonstrated by Proposition 3.4, while the higher-order contingent derivative has
not the property, see Remark 3.5. Just applying the property, we established higher-order
Fritz John and Kuhn-Tucker necessary optimality conditions for a point pair to be a weak
minimizer of set-valued optimization problem, where the higher-order tangent derivatives of
multiobjective function and constraint function are separated.
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