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where ∥ · ∥ is the standard Euclidean norm.

The dual to primal CQSOCP (1.1) can be derived directly using Lagrangian method,
which is described as

max bT y − 1
2x

TQx
s.t. AT y + z −Qx = c

z ∈ K,
(1.3)

where y ∈ Rn is the Lagrange multiplier.

Convex quadratic second-order cone programming is a nonlinear programming problem,
which can be seen as a trust region subproblem or a convex quadratic subproblem in the
trust region method and the successive quadratic programming method for the nonlinear
second-order cone programming [24, 8]. Since Q is symmetric positive semidefinite, we can

compute its positive semidefinite square root Q
1
2 by the singular value decomposition (SVD)

method. Then the CQSOCP problem (1.1) can be equivalently transformed as the following
linear second-order cone programming [25]

min t+ cTx
s.t. Ax = b√

(t− 1)2 + 2∥Q 1
2x∥ ≤ t+ 1,

x ∈ K

(1.4)

In paper [24, 8], the authors use those well developed and publicly available softwares, based
on interior point methods, such as SeDuMi [16] and SDPT3 [19] to solve the equivalent linear
second-order cone programming (1.4).

For linear second-order cone problems, interior-point methods have been well developed
[10, 1, 12]. However, since at each iteration these solvers require to formulate and solve
a dense Schur complement matrix, which for the CQSOCP amounts to a linear system of
dimension (m+n+3)×(m+n+3). In addition, the transformed method needs compute the
square root of semidefinite matrix Q by the SVD method. When n is large, because of the
very large size and ill-conditioning of the linear system of equations, interior point method
are difficult to solve the transformed linear second-order cone programming problem [25].

The alternating direction method has been an effective first-order approach for solving
large optimization problems, such as, linear programming [3], linear semidefinite program-
ming (LSDP) [23, 11], linear second-order cone programming [13], nonlinear convex opti-
mization [18], and nonsmooth l1 minimization arising from compressive sensing [20, 22].
Paper [17] proposes a modified alternating direction method for convex quadratically con-
strained quadratic semidefinite programs. The method is a primal alternating direction
method. In the thesis [25], a semismooth Newton-CG augmented Lagrangian method is
proposed for large scale convex quadratic symmetric cone programming. The method is
also a primal alternating direction method. In paper [21], an alternating direction dual
augmented Lagrangian method for solving linear semidefinite programming problems in
standard form is presented and is extended to the SDP with inequality constraints and
positivity constraints.

In the paper, an alternating directions method of multipliers (ADMM) for the CQSOCP
problems is proposed. Our algorithm applies the alternating direction method within a
dual augmented Lagrangian framework. At each iteration, the algorithm minimizes the
augmented Lagrangian function for the dual CQSOCP problem sequentially, first with re-
spect to the dual variables corresponding to the linear constraints, and then with respect
to the dual slack variables, while in each minimization keeping the other variables fixed,



AN ALTERNATING DIRECTIONS METHOD OF MULTIPLIERS 371

after which it updates the primal variables. Numerical experiments on, for example, ran-
dom convex quadratic second-order cone programming problems, show that our method is
efficient.

2 The Projection on the Second-order Cone

We make the following assumption throughout our presentation.
Assumption 1.1 The matrix A has full row rank and the strictly feasible primal and dual
points of CQSOCP exist.

Based on the strong duality theorem for general conic programming problems [15], the
KKT condition is given as  Ax = b,

AT y + z −Qx = c,
xT z = 0, x, z ∈ K.

(2.1)

For the purpose of studying the metric projection operator over second-order cone, we
need some knowledge about Euclidean Jordan algebras, which can be found from the stan-
dard references [5, 14, 9].

Let xi =

[
xi1

xi0

]
∈ Rni−1 ×R for i = 1, 2, · · · , N , then the spectral decomposition of xi

associate with second-order cone Kni can be described as [5, 14, 9].

xi = λ1(xi)c1(xi) + λ2(xi)c2(xi), i = 1, 2, · · · , N,

where
λ1(xi) = xi0 − ||xi1 ||, λ2(xi) = xi0 + ||xi1 ||

and

c1(xi) =
1
2

[
−w
1

]
, c2(xi) =

1
2

[
w
1

]
with w =

−xi1

||xi1 ||
if xi1 ̸= 0, and any vector in Rni−1 satisfying ||w|| = 1 if xi1 = 0.

Next we introduce the projection lemma over the second-order cone [5, 14, 9].

Lemma 2.1 ([5, 14, 9]). For any xi =

[
xi1

xi0

]
∈ Rni−1 ×R, let PKni (xi) be the projection

of xi onto the second-order cone Kni , then we have

PKni (xi) = (λ1(xi))+c1(xi) + (λ2(xi))+ c2(xi), i = 1, 2, · · · , N. (2.2)

where s+ := max(0, s) for s ∈ R.

Let x = [x1, · · · , xN ] ∈ Rn1 × · · ·RnN , then the projection PK(x) of x over the cone K
is described as

PK(x) =
[
PKn1

(x1), · · · , PKnN
(xN )

]
∈ Rn1 × · · ·RnN . (2.3)

Next we will give the following important conclusion.

Lemma 2.2 ([13]). Assume z ∈ Rn, then we have

z1 = PK(z), z2 = −P−K(z) ⇐⇒ z = z1 − z2, z
T
1 z2 = 0, z1, z2 ∈ K. (2.4)

In fact, Lemma 2.2 is a special case of the Theorem 3.2.5 in [7].
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3 An Alternating Directions Method of Multipliers for CQSOCP

In this section, we give an alternating directions method of multipliers for convex quadratic
second-order cone programming.

The augmented Lagrangian function for the dual CQSOCP is defined as:

Lλ(x, y, z) =
1

2
xTQx− bT y + xT (AT y + z −Qx− c) +

1

2λ
∥AT y + z −Qx− c∥22 (3.1)

where x ∈ Rn and λ > 0.
Suppose the initial point of x, z is x0, z0, at the k-th iteration, the alternating directions

method of multipliers solves problem (3.1) by the following

yk+1 = arg min
y∈Rm

Lλ(x
k, y, zk), (3.2)

zk+1 = arg min
z∈Rn

Lλ(x
k, yk+1, z), s.t. z ∈ K, (3.3)

xk+1 = xk + ρ
1

λ
(AT yk+1 + zk+1 −Qxk − c), (3.4)

where ρ ∈ (0, 1+
√
5

2 ).
The first-order optimality conditions for (3.2) are

∇yLλ(x
k, yk+1, zk) = Axk − b+

1

λ
A(AT yk+1 + zk −Qxk − c)

Since AAT is invertible by Assumption 1, we obtain yk+1 = y(zk, xk), where

y(z, x) = −(AAT )−1(λ(Ax− b) +A(z − c−Qx)). (3.5)

For problem (3.3), it is easily verified that it is equivalent to

min
z∈Rn

∥ z − vk+1 ∥22, z ∈ K, (3.6)

where vk+1 = v(zk, xk) and the function v(z, x) is defined as

v(z, x) = Qx+ c−AT y(z, x)− λx. (3.7)

Hence, we obtain the solution zk+1 = vk+1
1 = PK(vk+1).

In Eq. (3.4), the Lagrange multiplier is updated by adding the step size, which is
an efficient method to improve the numerical performance of the alternating directions
method of multipliers. The method has been used in many alternating direction methods
[18, 21, 2, 6]. It follows from the updating Eq. (3.4) that

xk+1 = xk + ρ
1

λ
(AT yk+1 + zk+1 −Qxk − c)

= (1− ρ)xk + ρ

(
xk +

1

λ
(AT yk+1 + zk+1 −Qxk − c)

)
= (1− ρ)xk + ρ

1

λ
(zk+1 − vk+1)

= (1− ρ)xk + ρ
1

λ
vk+1
2 .
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where vk+1
2 = −P−K(vk+1). Let x̄k+1 = 1

λv
k+1
2 , we have

xk+1 = (1− ρ)xk + ρx̄k+1. (3.8)

From the above observation, we give the alternating directions method of multipliers as
follows:

The alternating directions method of multipliers

Given x0 ∈ K, z0 ∈ K, and λ > 0, ρ(0, 1+
√
5

2 ).
For k = 0, 1, 2, · · · , then
Step 1. Compute yk+1 = y(xk, zk) according to (3.5).
Step 2. Compute vk+1 and its projection, then set zk+1 = PK(vk+1).
Step 3. Compute x̄k+1 = 1

λ (z
k+1 − vk+1).

Step 4. Update the Lagrange multiplier by xk+1 = (1− ρ)xk + ρx̄k+1.
If AAT = I, step (3.5) is very inexpensive. If AAT ̸= I, we can compute AAT and its

inverse (or its Cholesky factorization). If computing the Cholesky factorization of AAT is
very expensive, the iterative method in paper [2, 4] is used to solve the system of linear
equations corresponding to (3.5).

4 The Convergence Result

Coupled with the convergence results of the alternating direction methods for variational
inequalities in paper [6] and for the linear semidefinite programming in paper [21], we give
the convergence analysis of the alternating direction method of multipliers for CQSOCP.

Similar to the conclusions in [21, 6], we obtain the following Lemma.

Lemma 4.1. Let (x∗, y∗, z∗) be a primal and dual optimal solution of (1.1) and (1.3),

ρ ∈ (0, 1+
√
5

2 ) and T = 2− 1
2 (1 + ρ− ρ2). Then we have

∥xk+1 − x∗∥2 + ρ

λ2
∥zk+1 − z∗∥2 + ρ(T − ρ)

λ2
∥AT yk+1 + zk+1 −Qxk − c∥2

≤ ∥xk − x∗∥2 + ρ

λ2
∥zk − z∗∥2 + ρ(T − ρ)

λ2
∥AT yk + zk −Qxk−1 − c∥2

− ρ(1 + ρ− ρ2)

3λ2

(
∥zk+1 − zk∥2 + ∥AT yk+1 + zk+1 −Qxk − c∥2

)
Hence, we obtain

lim
k→∞

(
∥zk+1 − zk∥2 + ∥AT yk+1 + zk+1 −Qxk − c∥2

)
= 0. (4.1)

To prove Lemma 4.1, we can use the similar analysis as in paper [6]. Now, we give the
convergence result.

Theorem 4.2. The sequence {(xk, yk, zk)} generated by the alternating directions method
of multipliers converges to a primal and dual optimal solution (x∗, y∗, z∗) of (1.1) and (1.3).

Proof. From (3.8), we have

∥xk+1 − x̄k+1∥ = |ρ− 1| · ∥x̄k+1 − xk∥ =
|ρ− 1|

λ
∥AT yk+1 + zk+1 −Qxk − c∥. (4.2)

It follows from From (3.5) and (3.7) that

∥Ax̄k+1 − b)∥ = ∥ 1
λ
A(zk+1 − vk+1)− b∥
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≤ ∥ 1
λ
A(zk+1 −Qxk − c) +

1

λ
AAT y(xk, zk) +Axk − b∥

≤ ∥ 1
λ
A(zk+1 −Qxk − c)− (Axk − b)− 1

λ
A(zk − c−Qxk) +Axk − b∥

≤ 1

λ
∥A(zk+1 − zk)∥. (4.3)

From (3.8) and (4.3), we have

∥Axk+1 − b∥ = ∥Axk+1 −Ax̄k+1 +Ax̄k+1 − b)∥
≤ ∥Axk+1 −Ax̄k+1∥+ ∥Ax̄k+1 − b)∥
≤ ∥A∥2∥xk+1 − x̄k+1∥+ 1

λ∥A∥2∥z
k+1 − zk∥.

(4.4)

We obtain from (3.8) that

∥⟨xk+1, zk+1⟩∥ = |1− ρ| · ∥⟨xk, zk+1⟩∥
≤ |1− ρ| ·

(
∥⟨xk − x̄k+1, zk+1⟩∥+ ∥⟨x̄k+1, zk+1⟩∥

)
= |1− ρ| · ∥⟨xk − x̄k+1, zk+1⟩∥
≤ |1− ρ| · ∥xk − x̄k+1∥ · ∥zk+1∥. (4.5)

In addition, we have

∥AT yk+1 + zk+1 −Qxk+1 − c∥
= ∥AT yk+1 + zk+1 −Qxk − c+Q(xk − xk+1)∥
≤ ∥AT yk+1 + zk+1 −Qxk − c∥+ ∥Q(xk − xk+1)∥
≤ ∥AT yk+1 + zk+1 −Qxk − c∥+ ∥Q∥2∥(xk − xk+1)∥. (4.6)

It follows from (3.4), (4.1) and (4.2) that

lim
k→∞

∥xk+1 − xk∥ = 0,

lim
k→∞

∥xk+1 − x̄k+1∥ = 0,

lim
k→∞

∥x̄k+1 − xk∥ = 0. (4.7)

Combining (4.3)-(4.7), we obtain

lim
k→∞

∥Axk+1 − b∥ = 0,

lim
k→∞

∥AT yk+1 + zk+1 −Qxk+1 − c∥ = 0,

lim
k→∞

∥⟨xk+1, zk+1⟩∥ = 0.

We obtain from (4.7) that xk+1 ∈ K, and it is obvious that zk+1 ∈ K. So we know that
{(xk, yk, zk)} convergent to a primal and dual optimal solution (x∗, y∗, z∗) of (1.1) and
(1.3).

5 Simulation Experiments

In this section we present computational results by comparing the alternating directions
method of multipliers with the interior point method. The interior point method is used
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to solve the transformed linear second-order cone programming problems (1.4). All the
algorithms are run in the MATLAB 7.0 environment on an Inter Core processor 1.80 GHz
personal computer with 2.00 GB of Ram.

The test problems are formulated by random method as follows:

Step 1. Given the values of n,m,N ,ni, i = 1, 2, · · · , N with
N∑
i=0

ni = n.

Step 2. Generate a random matrix Q̃ ∈ Rn×n with density = 0.2, and set Q = Q̃T Q̃. At
the same time, generate a random matrix A ∈ Rm×n with full row rank.

Step 3. Given x = [x1, x2, · · · , xN ] ∈ Rn1 × · · ·×RnN , then generate the random vector xi

and make it be an interior point of second-order cone Kni for i = 1, 2, · · · , N .

Step 4. Generate a random vector y ∈ Rm, and generate z and make it be an interior point
of second-order cone K.

Step 5. We obtain b and c by computing b = Ax and c = AT y + z −Qx, respectively.

From Step 3-5, we know that the test problems have strick primal and dual feasible points,
which is a sufficient condition for the optimal condition (2.1).

The first set of test problems includes 16 small scale CQSOCP problems, which is shown
in Table 1. In Table 1,3, an entry of the form “20 × 5” in the “SOC” column means that
there are 20 5-dimensional second-order cones, and the “ratio” denotes the ratio between
the number of the second-order cones and the value of n.

Table 1: The test problems with small scale

Problems m n SOC ratio
P01 40 100 1× 100 1.00%
P02 40 100 1× 40; 20× 3 21.00%
P03 40 100 20× 5 20.00%
P04 40 100 1× 4; 32× 3 33.00%
P05 120 200 1× 200 0.50%
P06 120 200 1× 100; 1× 4; 32× 3 17.00%
P07 120 200 40× 5 20.00%
P08 120 200 1× 5; 65× 3 33.00%
P09 200 400 1× 400 0.25%
P10 200 400 1× 200; 1× 5; 65× 3 16.75%
P11 200 400 80× 5 20.00%
P12 200 400 1× 4; 132× 3 33.25%
P13 300 600 1× 600 0.16%
P14 300 600 1× 400; 1× 5; 65× 3 11.16%
P15 300 600 120× 5 20.00%
P16 300 600 200× 3 33.33%

As is known to all, the interior point methods have been proved to be one of the most
efficient class of methods for SOCP. Here the Matlab program codes for the interior point
method is designed from the software package by SeDuMi [16]. In the SeDuMi software, we
set the desired accuracy parameter pars.eps = 10−6.
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In the alternating directions method of multiplier, we define

pinf =
∥Ax− b∥
1 + ∥b∥

, dinf =
∥Qx+ c− z −AT y∥

1 + ∥c∥
, gap =

|xTQx+ bT y − cTx|
1 + |bT y|+ |cTx|

.

We stop our algorithm when

Accuracy = max{pinf, dinf, gap} ≤ ϵ

for ϵ > 0. Here we set λ = 0.6, ρ = 0.4, ϵ = 10−6. We choose the initial point x0 = 0m, y0 =
0n, where 0n and 0m are n dimension and m dimension vectors whose elements are zeros,
respectively.

For the first set of test problems, the iteration number and average CPU time are used
to evaluate the performances of the dual alternating direction method and the interior point
method by SeDuMi. The test results are shown in Table 2. In the Table 2,4, “Time”
represents the average CPU time (in seconds), and “Iter.” denotes the average number of
iteration. In addition, “ADMM” represents the alternating directions method of multipliers.
In Table 4, “/ ” denotes that the method doesn’t work in our personal computer because
the method is ”out of memory”.

Table 2: The results for the test problems with small scale

Problems
ADMM SeDuMi

Iter. Time Iter. Time
P01 40 0.0625 10 0.2812
P02 78 0.1093 12 0.3437
P03 82 0.1406 14 0.3593
P04 91 0.2031 14 0.4375
P05 58 0.1875 10 0.7656
P06 92 0.4375 15 1.2968
P07 104 0.5000 16 1.3593
P08 119 0.7343 17 1.4062
P09 59 0.7968 13 4.8906
P10 104 1.3593 16 6.3906
P11 119 1.5468 17 6.6093
P12 142 2.2500 18 7.0000
P13 56 1.7812 13 13.0312
P14 103 3.0468 18 18.4531
P15 129 3.1406 18 20.9062
P16 162 4.9062 19 21.6250

Table 2 shows the alternating directions method of multiplier costs less CPU time than
the interior point method by SeDuMi. But, the iteration number of the interior point method
is less than that of the alternating direction method of multipliers.

In addition, Table 1 gives different kinds test problem, including the problems with
only one large second-order cone, such as P01,P05,P09,P13, the problems with many small
second-order cones, such as P04,P08,P12,P16, and the problems with one large second-
order cone and some small second-order cones, such as P02,P06,P10,P14. The test results
in Table 2 show that the dual alternating direction method can solve different kinds of
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convex quadratic second-order cone programming with appropriate iteration number and
CPU time.

The second set of test problems includes 15 medium scale problems, which is shown in
Table 3. For the second set of test problems, the test results are shown in Table 4. In

Table 3: The test problems with medium scale

Problems m n SOC ratio
P21 400 1000 1× 1000 0.10%
P22 400 1000 1× 200; 160× 5 16.10%
P23 400 1000 1× 4; 332× 3 33.30%
P24 600 2000 1× 2000 0.05%
P25 600 2000 1× 1000; 1× 4; 332× 3 16.70%
P26 600 2000 1× 5; 665× 3 33.33%
P27 800 3000 1× 3000 0.03%
P28 800 3000 600× 5 20.00%
P29 800 3000 1000× 3 33.33%
P30 1000 4000 1× 4000 0.025%
P31 1000 4000 1× 1000; 1000× 3 25.02%
P32 1000 4000 1× 4; 1332× 3 33.32%
P33 2000 5000 1× 5000 0.02%
P34 2000 5000 1× 2000; 1000× 3 20.02%
P35 2000 5000 1× 5; 1665× 3 33.32%

addition, for the second set of test problems, we set λ = 0.8, and two different parameters
ρ = 0.05 and ρ = 1.25. Then, we test the performances of two different parameters.

Table 4: The results for the test problems with medium scale

Problems
ADMM(ρ = 0.05) ADMM(ρ = 1.25) SeDuMi
Iter. Time Iter. Time Iter. Time

P21 280 14.0156 17 1.4531 15 68.6865
P22 310 16.9531 57 3.7500 19 88.4983
P23 407 23.1875 94 6.3906 20 118.2052
P24 273 56.8125 17 6.7656 20 566.2341
P25 331 70.3125 47 12.6562 20 672.5000
P26 404 91.8906 86 21.4218 21 729.1400
P27 274 122.4843 23 18.0781 19 1791.6900
P28 347 162.5781 74 35.2500 22 2174.4545
P29 389 183.8593 78 39.8906 23 2517.3500
P30 272 208.9062 17 24.3125 / /
P31 323 254.4218 61 53.0156 / /
P32 395 306.0937 81 66.4531 / /
P33 279 379.7968 21 49.9218 / /
P34 340 437.7343 55 83.7343 / /
P35 364 490.2812 110 144.6718 / /
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The results in Table 4 show the interior point method by SeDuMi doesn’t work because
of “ out of memory ” in our personal computer when n + m > 5000, but the alternating
directions method of multipliers is still efficient because the alternating directions method
of multipliers needs less memory space than the interior point method. In addition, the
results in Table 4 show that the parameter ρ is much important for alternating directions
method of multipliers, and the different parameters result in different simulation results.
The alternating directions method of multipliers with ρ = 1.25 costs less CPU time than the
method with ρ = 0.05. We also conclude the iteration number of the method with ρ = 1.25
is less than that of the method with ρ = 0.05.

6 Conclusion

The paper proposes the alternating directions method of multipliers for convex quadratic
second-order cone programming problems. The alternating directions method of multipliers
is a first-order method. The random simulation results show that our method is efficient for
some convex quadratic second-order cone programming problems.
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