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3 establishes various characterizations of the Aubin property of the argmin mapping S (see
Theorem 3.5). At this moment we advance that this property holds under full perturbations
if and only if it holds under canonical perturbations, which at a first glance seems to be
a weaker property. Finally, Section 4 provides in Theorem 4.1 the aimed formula for the
Lipschitz modulus of S, which is expressed exclusively in terms of the nominal data. Both
results, Theorems 3.5 and 4.1, gather the main original contributions of this paper. In
comparison with its counterpart in the case of canonical perturbations (gathered in [5]), we
point out the notable differences arising in the proofs when we allow perturbations of all data.
In particular, a crucial ingredient in the new development is the recent upper bound on the
calmness modulus of S given in Theorem 2.9. We finish Section 4 with an illustrative example
intended to show some of the geometrical ideas underlying the perturbations strategies
followed in the proof of Theorem 4.1.

It is well-known that linear optimization, besides its own interest, constitutes a key tool
for approaching broader global optimization models as, for instance, the standard quadratic
optimization problem (see, e.g., [2, 15]), as well as mathematical programs with complemen-
tarity constraints (MPCCs). As an application of the referred upper bound on the calmness
modulus, [7, Subsection 5.2] deals with a concrete regularization scheme for MPCCs in-
troduced in [23], applied in the context of linear MPCCs. Complementarity constraints
naturally appear in numerous applications in economics and engineering; see [31] (and ref-
erences therein) for details on theory and applications of MPCCs. The application of the
results provided in the present paper about Lispchitz modulus to linear MPCCs requires a
specific study of constraint systems containing equations (to be perturbed as equations, not
split into two inequalities), and constitutes an open problem at the moment.

Lipschitz and calmness properties play an important role in optimization and variational
analysis, and one can find in the literature deep contributions to the study of these properties;
besides the monographs [17, 24, 32, 35], see for instance [16], [22] and [25] in relation to
metric regularity of generic multifunctions (the last one analyzes its relationship with the
behavior of methods for solving a generalized equation), and [30] and [10] with respect to
metric regularity for convex systems and problems, respectively. In the context of linear
systems, the Aubin property and the associated modulus are analyzed in [3] and [4] (see
also [12] for extensions to an infinite dimensional setting). With respect to calmness, when
confined to linear programming, we cite the pioneer works of Robinson [33] and [34]. In a
more general framework we refer to [8, 18, 20, 25, 26, 27], which are developed in the setting
of nonlinear constraint systems under canonical perturbations (where calmness translates
into the existence of a local error bound for a certain related supremum function).

2 The Model and Preliminaries

This section is divided into three subsections. The first one introduces our parametric model.
The second recalls some continuity and Lipschitz type properties for generic multifunctions
between metric spaces and gathers some results dealing with the relationships among them.
The third subsection presents some backgrounds about the Aubin and calmness properties
in our linear programming setting.

2.1 The model

We consider a parameterized family of linear optimization problems in Rn given by:

P (c, a, b) : minimize c′x
subject to a′tx ≤ bt, t ∈ T := {1, 2, ...,m}, (2.1)
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where x ∈ Rn is the vector of variables, and c ∈ Rn, a ≡ (at)t∈T ∈ (Rn)
T
, and b ≡

(bt)t∈T ∈ RT are the problem’s data, which are considered as parameters to be perturbed.
All elements in Rn are regarded as column-vectors and u′v denotes the usual inner product
of u and v in Rn.

Associated with (2.1), we consider the optimal set mapping (also called argmin mapping),

S : Rn × (Rn)
T × RT ⇒ Rn, given by

S (c, a, b) := {x ∈ Rn | x is an optimal solution of P (c, a, b)} .

The parameter space Rn × (Rn)
T × RT is endowed with the norm

∥(c, a, b)∥ := max {∥c∥∗ , ∥(a, b)∥∞} , (2.2)

where Rn is equipped with an arbitrary norm ∥·∥, with dual norm given by ∥u∥∗ =

max∥x∥≤1 |u′x| , and ∥(a, b)∥∞ := maxt∈T

∥∥∥(at

bt

)∥∥∥ , where∥∥∥∥(atbt
)∥∥∥∥ = max {∥at∥∗ , |bt|} . (2.3)

We also deal with the optimal set mapping in the context of canonical perturbations
(i.e., where the left-hand-side of the constraints is fixed), Sa : Rn×RT ⇒ Rn, which is given
by

Sa (c, b) = S (c, a, b) , for all (c, b) ∈ Rn × RT .

In relation to the constraint system of problem (2.1), we consider the feasible set mappings
Fa and F corresponding, respectively, to the settings of canonically and fully perturbed
systems. Formally, F : (Rn)

T × RT ⇒ Rn is given by

F (a, b) := {x ∈ Rn | a′tx ≤ bt, t ∈ T} , (a, b) ∈ (Rn)
T × RT ,

and Fa (b) := F (a, b) , b ∈ RT . We also appeal to the set of active indices at x ∈ F (a, b) ,
denoted by Ta,b (x) , which is defined as

Ta,b (x) := {t ∈ T | a′tx = bt} .

2.2 Aubin property, calmness, and some continuity properties for generic mul-
tifunctions

At this moment we recall some variational concepts for a generic multifunction between
metric spaces Y and X (with distances denoted indistinctly by d), M : Y ⇒ X. The
reader is addressed to the monographs [17, 24, 32, 35] for a comprehensive analysis of these
notions. MultifunctionM is said to satisfy –or have– the Aubin property (also called pseudo-
Lipschitz, cf. [24], or Lipschitz-like, cf. [32]) at (y, x) ∈ gphM (the graph of M) if there
exist a constant κ ≥ 0 and neighborhoods U of x and V of y such that

d (x′,M (y)) ≤ κd (y′, y) (2.4)

whenever x′ ∈ M (y′) ∩ U and y′, y ∈ V ; here d(x′,M (y)) denotes the usual distance from
point x′ to set M (y), defined as +∞ when M (y) = ∅. It is well-known that the Aubin
property of M at (y, x) is equivalent to the metric regularity of M−1 at (x, y) , i.e., to the
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existence of a constant κ ≥ 0 and (possibly smaller) neighborhoods U of x and V of y such
that

d (x,M (y)) ≤ κd
(
y,M−1 (x)

)
, for all x ∈ U and all y ∈ V. (2.5)

Recall that M−1 : X ⇒ Y is defined by y ∈ M−1 (x) ⇔ x ∈ M (y) . The Lipschitz modulus
of M at (y, x) , lipM (y, x) , is the infimum of those κ ≥ 0 for which (2.4) –or (2.5)– holds
(for some associated neighborhoods). The case when M does not satisfy the Aubin property
at (y, x) corresponds to lipM (y, x) = +∞.

M is said to be calm at (y, x) when (2.4) is valid when replacing y with the nomi-
nal element y. It is also known that calmness of M at (y, x) is equivalent to the metric
subregularity of M−1 at (x, y) , which is defined by fixing y = y in inequality (2.5). The
corresponding infimum of all κ’s is then called calmness modulus of M at (y, x) and denoted
by clmM (y, x) . Obviously,

clmM (y, x) ≤ lipM (y, x) . (2.6)

Taking the previous notation into account, the main goal of the present work is to
compute lipS(p, x) at a nominal pair (p, x) ∈ gphS, with p =

(
c, a, b

)
and, as mentioned

above, the recent results about clmS(p, x) gathered in [7] constitute crucial tools.
In order to apply (in Sections 3 and 4) some results traced out from [29], we need to

introduce additional stability properties. We start by recalling two continuity properties for
a multifunction between metric spaces M : Y ⇒ X at y ∈ Y. For avoiding trivial situations,
we assume M (y) ̸= ∅ throughout this subsection. We say that:

• M is Berge lower semicontinuous (B-lsc) at y if for each open set U ⊂ X such that
M (y) ∩ U ̸= ∅ there exists a neighborhood V of y such that M (y) ∩ U ̸= ∅ for all
y ∈ V.

• M is Hausdorff lower semicontinuous (H-lsc) at y if

lim
y→y

e (M (y) ,M (y)) = 0,

where
e (M (y) ,M (y)) := sup

x∈M(y)

d (x,M (y))

stands for the Hausdorff excess of M (y) over M (y) .

The statements in the following lemma can be found, e.g., in [1, Section 2.2].

Lemma 2.1. The following implications hold:
(i) If M is H-lsc at y, then M is B-lsc at y;
(ii) If M is B-lsc at y and M(y) is a compact set, then M is H-lsc at y.

The next definitions (see [29]) and the subsequent lemma deal with an open and convex
subset V0 ⊂ Y (with Y assumed to be a normed space). First, recall that M is H-lsc (resp.
B-lsc) on V0 if it is H-lsc (resp. B-lsc) at any y ∈ V0.

• M (assumed to be closed-valued) is said to be λ-Lipschitz continuous on V0 if

H (M (y) ,M (y′)) ≤ λd (y, y′) for all y, y′ ∈ V0,

where H (M (y) ,M (y′)) is the (extended) Hausdorff distance between M (y) and
M (y′) , given by

H (M (y) ,M (y′)) = max {e (M (y) ,M (y′)) , e (M (y′) ,M (y))} .
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• M is said to be locally upper Lipschitz continuous with modulo λ on V0 if for each
y ∈ V0 there exists a neighborhood Vy of y such that

e (M (y′) ,M (y)) ≤ λd(y′, y), for all y′ ∈ Vy.

Remark 2.2. As a consequence of the definitions, one has:
(i) If M is λ-Lipschitz continuous on V0, then M has the Aubin property at any (y, x) ∈

gphM such that y ∈ V0.
(ii) If M is locally upper Lipschitz continuous with modulo λ on V0, then M is calm at

any (y, x) ∈ gphM such that y ∈ V0.

One can easily see that the converse implications in the previous remark are not true in
general. Besides the fact that the Aubin and calmness properties at (y, x) ∈ gphM are local
properties (only involve elements around (y, x) ), the λ-Lipschitz continuity and local upper
Lipschitz continuity are stated in terms of a uniform constant λ (the same constant for the
whole neighborhood V0 of y).

Here we recall the above mentioned result by Li [29] which constitutes the key starting
point in our analysis of the Aubin property of S. Let us comment that Theorem 2.1 in [29]
is stated for V0 = Rm in the statement of the following lemma, but the proof also works in
the current setting.

Lemma 2.3. [29, Thm. 2.1] Let M : Rm ⇒ Rn and let V0 ̸= ∅ be an open convex subset of
Rm. If M is H-lsc on V0 and locally upper Lipschitz continuous with modulo λ on V0, then
M is λ-Lipschitz continuous on V0.

2.3 Background on the Aubin and calmness properties in linear optimization

First, we introduce some basic notation. Given X ⊂ Rk, k ∈ N, we denote by convX and
coneX the convex hull and the conical convex hull of X, respectively. It is assumed that
coneX always contains the zero-vector 0k, in particular cone(∅) = {0k}. If X is a subset of
any topological space, intX, clX and bdX stand, respectively, for the interior, the closure,
and the boundary of X.

The following proposition provides the calmness modulus of the feasible set mapping F
in our case of interest (see the subsequent remark).

Proposition 2.4. [14, Thm. 5] and [6, Prop. 4.1] Let ((a, b), x) ∈ gphF . Then

clmF((a, b), x) = (∥x∥+ 1) clmFa(b, x).

In the particular case when F(a, b) = {x}, we have

clmF((a, b), x) =
∥x∥+ 1

d∗(0n,bd conv{at, t ∈ Ta,b (x)})
,

where d∗ stands for the distance associated with the dual norm ∥·∥∗ .

Remark 2.5. A more geneal expression for clmFa(b, x) can be found in [14, Thm. 4]
without requiring F(a, b) = {x}. We do not include it here in order to avoid introducing
additional notation. Besides being used in the proof of Theorem 4.1, Proposition 2.4, applied
to suitably enlarged systems, underlies Theorem 2.9 below.
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For the sake of brevity, from now on we use the notation

p = (c, a, b) ∈ Rn × (Rn)
T × RT .

We consider the following family of index subsets closely related to the Karush-Kuhn-Tucker
(KKT) optimality conditions at (p, x) ∈ gphS:

Tp (x) = {D ⊂ Ta,b (x) | |D| = n, − c ∈ cone {at, t ∈ D}} .

The following theorem comes from particularizing conditions (i),(ii),(iv) and (v) in [10,
Thm. 16] (developed in a semi-infinite framework) to our finite linear setting. In it we
appeal to the well-known Slater constraint qualification (SCQ) which is satisfied at (a, b) if
there exists x̂ ∈ Rn (called a Slater point) such that a′tx̂ < bt for all t ∈ T.

Theorem 2.6. [10, Thm. 16] Let ((c, b), x) ∈ gphSa. The following conditions are equiva-
lent:

(i) Sa has the Aubin property at ((c, b), x);
(ii) Sa is strongly Lipschitz stable at ((c, b), x) (single valued and Lipschitz continuous

in a neighborhood of (c, b));
(iii) Sa is single valued in some neighborhood of (c, b);
(iv) The Nürnberger condition (NC) holds at (p, x); i.e., SCQ is satisfied at

(
a, b

)
and

there is no D ⊂ Ta,b (x) with |D| < n such that −c ∈ cone {at, t ∈ D}.

Remark 2.7. According to the previous theorem, under the Aubin property of Sa at ((c, b), x),
we may simplify the notation by writing lipSa(c, b) instead of lipSa((c, b), x), due to the fact
that Sa(c, b) is a singleton. The same convention will be applied to S in Section 4. Moreover:

(i) Tp (x) ̸= ∅, as far as −c ∈ int cone{at, t ∈ Ta,b (x)} (as a consequence of Sa(c, b) =
{x}).

(ii) As a consequence of NC, for any D ∈ Tp (x) , {at, t ∈ D} is linearly independent
and, so, the matrix AD whose rows are the transposes of at, t ∈ D (given in some prefixed
order), is non-singular and∥∥A−1

D

∥∥ = (d∗ (0n,bd conv {±a
t
, t ∈ D}))−1.

(See, e.g., [7, Rem. 3.3]). Observe that, according to our choice of norms, AD acts from
(Rn, ∥·∥) to

(
RD, ∥·∥∞

)
.

Theorem 2.8. [5, Cor. 2] and [7, Rem. 3.3] If Sa has the Aubin property at ((c, b), x) ∈
gphSa, then

lipSa(c, b) = max
D∈Tp(x)

∥∥A−1
D

∥∥ = max
D∈Tp(x)

1

d∗ (0n,bd conv {±at , t ∈ D})
.

The following theorem provides a formula for the calmness modulus of Sa (which is always
calm as a consequence of a classical result by Robinson [34] about calmness of polyhedral
mappings), as well as an upper bound on the calmness modulus of S under SCQ. From now
on, we use the notation

Kp (x) = {D ⊂ Ta,b (x)| |D| ≤ n and − c ∈ cone {at, t ∈ D}} ,

(note that condition |D| ≤ n comes from Caratheodory’s Theorem). Observe that the only
difference with the definition of Tp (x) is that condition ‘|D| = n’ is replaced with ‘|D| ≤ n’.
So, in general Tp (x) ⊂ Kp (x) ; and NC at (p, x) turns out to be equivalent to condition
‘Kp (x) = Tp (x)’.
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Theorem 2.9. Assume S (p) = {x} . Then, we have:

(i) [7, Thm. 3.1]

clmSa

((
c, b

)
, x

)
= max

D∈Kp(x)

1

d∗

(
0n,bd conv

{
at, t ∈ Ta,b (x) ;−at, t ∈ D

}) ;

(ii) [7, Thm. 4.2(i)] If SCQ holds at
(
a, b

)
, then

clmS (p, x) ≤ (∥x∥+ 1) clmSa

((
c, b

)
, x

)
.

3 Characterization of the Aubin Property for Fully Perturbed Prob-
lems

This section is devoted to characterizing the Aubin property of S. At this moment we
advance that this property turns out to be equivalent to the Aubin property of Sa, which at
a first glance seems to be less restrictive as far as it involves less parameters to be perturbed.
In this way, we are able to apply Theorem 2.6 for deriving additional equivalent conditions
to the Aubin property of S. From the practical point of view, we pay special attention to
NC (Theorem 2.6 (iv)).

Now, we introduce two technical lemmas. The first one constitutes the counterpart of
[13, Lem. 6] for convex hulls, instead of certain convex sets called there hypographical sets.

Lemma 3.1. Let B be the closed unit ball associated with an arbitrary norm in Rk. Let us
consider {ui, i = 1, ..., p} ⊂ Rk such that δB ⊂ conv{ui, i = 1, ..., p}, for some δ > 0. Then,
for any 0 < ε < δ we have that

(δ − ε)B ⊂ conv{ũi, i = 1, ..., p}, whenever ∥ui − ũi∥ < ε, i = 1, ..., p.

Proof. Reasoning by contradiction, assume the existence of 0 < ε0 < δ and {u0
i , i = 1, ..., p},

such that
∥∥ui − u0

i

∥∥ < ε0, for all i = 1, ..., p, and

(δ − ε0)B ̸⊂ conv{u0
i , i = 1, ..., p},

which entails the existence of û ∈ (δ − ε0)B \ conv{u0
i , i = 1, ..., p}. Then, by strong

separation, there exists (v, w) ∈ Rk × R such that v′û < w, while v′u0
i ≥ w, for all i =

1, ..., p. Take any z ∈ Rk such that ∥z∥ = ε0 and v′z = ∥v∥∗ ∥z∥ (see [21, V.3.2]). Then
û− z ∈ conv{ui, i = 1, ..., p}, since ∥û− z∥ ≤ δ; so, we can write

û− z :=

p∑
i=1

λiui =

p∑
i=1

λiu
0
i +

p∑
i=1

λi

(
ui − u0

i

)
,

for certain λi ≥ 0, i = 1, ..., p and
∑p

i=1 λi = 1. This implies

v′ (û− z) =

p∑
i=1

λiv
′u0

i +

p∑
i=1

λiv
′ (ui − u0

i

)
≥ w −

p∑
i=1

λi ∥v∥∗
∥∥ui − u0

i

∥∥ ≥ w − ∥v∥∗ ε0.
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On the other hand, the choice of z yields the contradiction

v′ (û− z) < w − ∥v∥∗ ∥z∥ = w − ∥v∥∗ ε0.

Condition (i) in the following lemma has its counterpart for canonical perturbations in
[10, Prop. 9 (i)]. We emphasize the fact that condition (iii) constitutes a key result in the
framework of the current paper. From now on we use the notation:

δ := min
D∈Tp(x)

d∗(0n,bd conv{±at, t ∈ D}). (3.1)

Remark 3.2. If NC holds at (p, x) ∈ gphS, then, δ > 0 (see, Remark 2.7 (ii)).

Lemma 3.3. Assume that NC holds at (p, x) ∈ gphS. Then, there exists 0 < ε < δ such
that whenever ∥p− p∥ < ε one has:

(i) If x ∈ S (p) , then NC holds at (p, x) . In particular, S (p) is a singleton and we can
write

S (p) = {x (p)}.

(ii) Tp (x (p)) ⊂ Tp (x) .
(iii)

(
δ − ε

)
B∗ ⊂ conv {±at, t ∈ D} , for all D ∈ Tp (x) .

Here B∗ represents the closed unit ball in Rn associated with the dual norm ∥·∥∗ .

Proof. Assume that NC is satisfied at (p, x) ∈ gphS. Observe that the NC assumption at
(p, x) easily entails S (p) = {x}. Then, taking SCQ into account and applying [19, Thms.
6.1 and 10.4] we have that S is both lower and upper semicontinuous in the sense of Berge
at p. This entails that, given any pr → p, we have S (pr) ̸= ∅ for r large enough (without
loss of generality, w.l.o.g. in brief, for all r), and for any sequence {zr} with zr ∈ S (pr) we
have that {zr} converges to x.

Reasoning by contradiction, assume the existence of a sequence {pr} converging to p,
with ∥pr − p∥ < δ for all r, and such that (i) fails at all pr. More specifically, assume the
existence of {xr} such that xr ∈ S (pr) and NC fails at (pr, xr) , for all r = 1, 2, ... According
to the previous comment {xr} converges to x. Moreover, it is well-known that SCQ is a
stable property (see, e.g., [19, Thm. 6.1]) and, so, SCQ holds at (ar, br) for r large enough
(w.l.o.g. for all r). Then, the unfulfillment of NC at (pr, xr) yields

−cr ∈ cone {art , t ∈ Dr} , for some Dr ⊂ Tar,br (x
r) , with |Dr| < n.

The finiteness of T allows us to assume (taking an appropriate subsequence if necessary)
that {Dr} is constant; i.e., Dr = D for all r. One immediately has that D ⊂ Ta,b (x) . Now,
let us write

−cr =
∑
t∈D

λr
ta

r
t , (3.2)

for some scalars λr
t ≥ 0, for all t ∈ D and r = 1, 2, ... Observe that the sequence

{∑
t∈D λr

t

}
r

must be bounded since otherwise, dividing both sides of (3.2) by γr :=
∑

t∈D λr
t and letting

r → +∞, we would attain the contradiction with SCQ (see, e.g. [19, Thm. 6.1])

0n ∈ conv {at, t ∈ D} .
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Finally, since {cr} converges to c, {art}r converges to at, for each t ∈ D, and we may assume
(again by taking a subsequence if necessary) that {λr

t}r converges to some λt ≥ 0 for each
t ∈ D, we conclude

−c =
∑
t∈D

λtat,

which contradicts NC at (p, x) .
Thus we have proved the existence of 0 < ε1 < δ verifying that condition (i) holds at

all p such that ∥p− p∥ < ε1. Now, let us establish the existence of 0 < ε2 < ε1 such that
condition (ii) is satisfied at all p such that ∥p− p∥ < ε2. Again, reasoning by contradiction,
we assume the existence of a sequence {pr} converging to p such that ∥pr − p∥ < ε1 and
Tpr (x (pr)) ̸⊂ Tp (x) , r = 1, 2, ... So, for each r, let Dr ∈ Tpr (x (pr)) \ Tp (x) . Again we
may assume that {Dr} is constant, say Dr = D, for all r (obviously |D| = n). Since {pr}
converges to p and {x (pr)} converges to x (see the proof of condition(i)), we have that
D ⊂ Ta,b (x) . So, D /∈ Tp (x) implies that −c /∈ cone {at, t ∈ D} . Write again −cr as in

(3.2) for some scalars λr
t ≥ 0, for all t ∈ D and r = 1, 2, ... Again the sequence

{∑
t∈D λr

t

}
r

must be bounded since otherwise we come to a contradiction with SCQ at p; then letting
r → +∞, we attain the contradiction

−c =
∑
t∈D

λtat

for certain λt ≥ 0, t ∈ D.
Fix now ε2 such that 0 < ε2 < ε1 and condition (ii) is satisfied whenever ∥p− p∥ < ε2.
Finally, let us prove the existence of 0 < ε < ε2 such that(

δ − ε
)
B∗ ⊂ conv {±at, t ∈ D} for all D ∈ Tp (x (p)) , if ∥p− p∥ < ε. (3.3)

NC at (p, x) implies that, for each D ∈ Tp (x) , δD := d∗(0n,bd conv{±at, t ∈ D}) > 0
(see the Remark 3.2). Then, since 0n ∈ conv {±at, t ∈ D} , it is clear that 0n ∈ int conv
{±at, t ∈ D}. Consequently, it is immediate that

δDB∗ ⊂ conv {±at, t ∈ D} , for D ∈ Tp (x) .

Then, since δ = min {δD, D ∈ Tp (x)} , we have

δB∗ ⊂ conv {±at, t ∈ D} , for all D ∈ Tp (x) .

Take any 0 < ε < ε2 (< δ) and let p = (c, a, b) be such that ∥p− p∥ < ε and let D ∈
Tp (x (p)) . By condition (ii) , D ∈ Tp (x) . In our choice of norms, ∥p− p∥ < ε, implies
∥at − at∥∗ < ε, for all t ∈ D. Then, applying Lemma 3.1 we have(

δ − ε
)
B∗ ⊂ conv {±at, t ∈ D} , (3.4)

as we aimed to prove.

Condition (ii) in the following theorem constitutes a key result in the computation of
upper bounds for the Lipschitz modulus of S (by appealing to Lemma 2.3) under NC.
Roughly speaking, it provides ‘uniform’ calmness constants for S, around p.

Theorem 3.4. Assume that NC holds at (p, x) ∈ gphS. Then,
(i) S is single valued and continuous on some neighborhood of p.
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(ii) For any 0 < α < δ, there exists ε > 0 such that

clmS (p, x (p))<
∥x∥+ 1 + α

δ − α
, (3.5)

whenever ∥p− p∥ < ε, with x (p) and δ being defined in Lemma 3.3(i) and (3.1), respectively.

Proof. (i) Let us take 0 < ε < δ verifying all conditions of Lemma 3.3. In particular, we
have that

S (p) = {x (p)} and NC holds at (p, x (p)) , whenever ∥p− p∥ < ε,

and in particular SCQ is satisfied at (a, b) . Then, ∥p− p∥ < ε implies that S is B-lsc at p
(see [19, Thm. 10.4 (ii)]), which entails, together with the fact that S (p) is a singleton, the
continuity of S at p.

(ii) Let 0 < ε0 < δ verifying Lemma 3.3 and, according to condition (i) , such that

∥x (p)∥ < ∥x∥+ α, whenever ∥p− p∥ < ε0. (3.6)

Consider any p verifying ∥p− p∥ < ε0. Applying Theorem 2.9 (ii), we have:

clmS (p, x (p)) ≤ max
D∈Tp(x(p))

∥x (p)∥+ 1

d∗ (0n,bd conv {at, t ∈ Ta,b (x (p)) ;−at, t ∈ D})
;

(recall that Tp (x) = Kp (x) under NC). Since (again by NC) we have

0n ∈ int conv {±at, t ∈ D} ⊂ int conv {at, t ∈ Ta,b (x) ;−at, t ∈ D} ,

then

clmS (p, x (p))≤ max
D∈Tp(x(p))

∥x (p)∥+ 1

d∗ (0n,bd conv {±at, t ∈ D})
. (3.7)

Moreover, applying condition (iii) in Lemma 3.3, we have that

min
D∈Tp(x(p))

d∗ (0n,bd conv {±at, t ∈ D}) ≥ δ − α > 0, if ∥p− p∥ < α. (3.8)

Consequently, from (3.6), (3.7) and (3.8) we have that

clmS (p, x (p)) <
∥x∥+ 1 + α

δ − α
,

whenever ∥p− p∥ < ε := min{ε0, α}.

Now, by gathering all previous results, we establish the aimed characterization result.
In it, B (p, ε) represents the open ball centered at p and with radius ε (associated with the
metric given by (2.2) and (2.3)).

Theorem 3.5. Let (p, x) ∈ gphS. The following conditions are equivalent:
(i) S has the Aubin property at (p, x) ;
(ii) S is strongly Lipschitz stable at (p, x);
(iii) Sa has the Aubin property at

(
(c, b), x

)
;

(iv) NC holds at (p, x) ;
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(v) For any 0 < α < δ, there exists ε > 0 such that S is H-lsc on B (p, ε) and locally
upper Lipschitz continuous with modulo

λα :=
∥x∥+ 1 + α

δ − α

on B (p, ε) ;
(vi) For any α > 0, there exists ε > 0 such that S is λα-Lipschitz continuous on B (p, ε),

where λα is defined as in the previous condition.

Proof. (i) ⇒ (ii) comes from [24, Cor. 4.7]; (ii) ⇒ (iii) is a trivial consequence of the
definitions; (iii) ⇔ (iv) was already established in Theorem 2.6.

(iv) ⇒ (v) . Let 0 < α < δ. By applying the previous theorem, we find ε > 0 such that
S is single valued and continuous on B (p, ε) , which entails that S is H-lsc on B (p, ε) , and

clmS (p, x (p)) < λα, if ∥p− p∥ < ε.

The definition of calmness modulus yields, for each p ∈ B (p, ε) , the existence of a neigh-
borhood Vp ×Wx(p) of (p, x (p)) (we assume that Vp ⊂ B (p, ε)) such that

d (x(p′), x (p)) ≤ λαd(p
′, p), whenever p′ ∈ Vp, x(p′) ∈ Wx(p). (3.9)

In other words, S is calm at any (p, x (p)) , p ∈ B (p, ε) , with the same calmness constant
λα. In order to establish that S is locally upper Lipschitz continuous with modulo λα on
B (p, ε) , we should be able to remove condition ‘x(p′) ∈ Wx(p)’ in (3.9). In fact, due to the

continuity of S on B (p, ε), for each p ∈ B (p, ε) , we can take Ṽp ⊂ Vp such that x(p′) ∈ Wx(p)

for all p′ ∈ Ṽp. Consequently, we have

d (x(p′), x (p)) ≤ λαd(p
′, p), whenever p′ ∈ Ṽp.

Finally, (v) ⇒ (vi) comes from Lemma 2.3 and (vi) ⇒ (i) is valid in general (see Remark
2.2).

4 Lipschitz Modulus

The following theorem constitutes, together with Theorem 3.5, the main contribution of
the paper. The proof is quite technical, and the subsequent Example 4.2 is intended to
illustrate the underlying geometrical ideas. Recalling Remark 2.7, we write lipS (p) instead
of lipS (p, x) .

Theorem 4.1. If S has the Aubin property at (p, x) ∈ gphS, then,

lipS (p) = (∥x∥+ 1) lipSa

(
c, b

)
= max

D∈Tp(x)

∥x∥+ 1

d∗ (0n,bd conv {±a
t
, t ∈ D})

.

Proof. Observe that the last equality comes from Theorem 2.8. For the sake of simplicity,
we keep the notation (3.1); i.e., we are going to establish

lipS (p) =
∥x∥+ 1

δ
.
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The ‘≤’ inequality comes from Theorem 3.5 (vi). Specifically, for any 0 < α < δ we
can find ε > 0, assumed to be sufficiently small to guarantee that S (p) = {x (p)} whenever
∥p− p∥ < ε, such that

d (x (p) , x (p′)) ≤ λαd (p, p
′) , for all p, p′ ∈ B (p, ε) .

Then, by definition we obtain our aimed inequality

lipS (p) ≤ lim inf λα
α→0

=
∥x∥+ 1

δ
.

In order to establish the ‘≥’ inequality, we are going to prove the existence of two
sequences of parameters {pr} and {p̃r} converging to p, such that

lim
r

∥x (pr)− x (p̃r)∥
∥pr − p̃r∥

≥ ∥x∥+ 1

δ
, (4.1)

where {x (pr)} = S (pr) and {x (p̃r)} = S (p̃r) , which immediately entails

lipS (p) ≥ ∥x∥+ 1

δ
.

Take a D ∈ Tp (x) with

δ = d∗(0n,bd conv{±at, t ∈ D}),

i.e., where the minimum in (3.1) is attained. Consider the index set TD := ({1} ×D) ∪
({2} ×D) and the associated multifunction LD : (Rn)

TD × (R)TD ⇒ Rn, given by

LD (u, v) :=
{
x ∈ Rn | (u1,t)

′
x ≤ v1,t, t ∈ D; (u2,t)

′
x ≤ v2,t, t ∈ D

}
.

Let (u, v) ∈ (Rn)
TD × (R)TD be defined by{

(u1,t, v1,t) :=
(
at, bt

)
, t ∈ D,

(u2,t, v2,t) := −
(
at, bt

)
, t ∈ D.

Note that, by the definition of Tp (x) , we have

{x} = S (p) ⊂ LD (u, v) =
{
x ∈ Rn | a′tx ≤ bt, t ∈ D; − a′tx ≤ −bt, t ∈ D

}
.

Since, under NC (see Theorem 3.5), {at, t ∈ D} is a basis of Rn, LD (u, v) is a singleton. So,
indeed we have LD (u, v) = {x}. In this way, LD is nothing else but a feasible set mapping
with uniqueness of feasible solution at (u, v) . Then, applying Proposition 2.4, we have that

clmLD ((u, v) , x) =
∥x∥+ 1

δ
. (4.2)

Here (Rn)
TD × (R)TD is assumed to be endowed with the supremum norm

∥(u, v)∥ := max
d∈TD

∥∥∥∥(ud

vd

)∥∥∥∥ ,
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where

∥∥∥∥(ud

vd

)∥∥∥∥ is considered as in (2.3). Recalling the equivalence between the calmness

of a multifunction and metric subregularity of its inverse, (4.2) entails the existence of a
sequence {xr} ⊂ Rn converging to x such that

lim
r

∥xr − x∥
d
(
(u, v) ,L−1

D (xr)
) =

∥x∥+ 1

δ
. (4.3)

Applying [13, Lem. 10] we can write

d
(
(u, v) ,L−1

D (xr)
)

=
max{[a′txr − bt]+; [−(a′tx

r − bt)]+, t ∈ D}
∥xr∥+ 1

=
maxt∈D

∣∣a′txr − bt
∣∣

∥xr∥+ 1
, (4.4)

where [α]+ := max{α, 0} denotes the positive part of α ∈ R.
Now, we define two sequences {(ar, br)} , {(ãr, b̃r)} ⊂ (Rn)

T ×(R)T in the following form:

(
art
brt

)
:=


(
at
bt

)
− a′tx

r − bt
∥xr∥+ 1

(
ur

−1

)
, t ∈ D,(

at
bt

)
+ [a′tx

r − bt]+

(
0n
1

)
, t ∈ T⧹D,

where ur ∈ Rn is such that ∥ur∥∗ = 1 and (ur)′xr = ∥xr∥ ;

(
ãrt

b̃rt

)
:=


(
at
bt

)
, t ∈ D,(

art
brt

)
, t ∈ T⧹D.

For each r ∈ N, define
pr := (c, ar, br) and p̃r :=

(
c, ãr, b̃r

)
.

Let us show that {pr} and {p̃r} verify our aimed statement (4.1). First, from the definition
one easily checks that {pr} and {p̃r} converge to p (since xr → x). Then, the Aubin
property assumption for S at (p, x) together with Lemma 3.3(i) yield the uniqueness of
optimal solution at pr and p̃r for r large enough (w.l.o.g., for all r). Let us check that

S(pr) = {xr} and S(p̃r) = {x}, for all r. (4.5)

The uniqueness condition yields that it is sufficient to prove that S(pr) ∋ xr and S(p̃r) ∋ x
for all r. For each t ∈ D we have(

art
brt

)′(
xr

−1

)
=

(
at
bt

)′(
xr

−1

)
− a′tx

r − bt
∥xr∥+ 1

(
ur

−1

)′(
xr

−1

)
(4.6)

= a′tx
r − bt −

a′tx
r − bt

∥xr∥+ 1
(∥xr∥+ 1) = 0,

and (
ãrt

b̃rt

)′(
x

−1

)
=

(
at
bt

)′(
x

−1

)
= 0. (4.7)
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If t ∈ T⧹D we have(
art
brt

)′(
xr

−1

)
=

(
at
bt

)′(
xr

−1

)
+ [a′tx

r − bt]+

(
0n
1

)′(
xr

−1

)
= a′tx

r − bt − [a′tx
r − bt]+ ≤ 0,

and (
ãrt

b̃rt

)′(
x

−1

)
=

(
art
brt

)′(
x

−1

)
=

(
at
bt

)′(
x

−1

)
+ [a′tx

r − bt]+

(
0n
1

)′(
x

−1

)
= −[a′tx

r − bt]+ ≤ 0.

So,
xr ∈ F(ar, br), x ∈ F(ãr, b̃r), for all r.

Now, let us see that xr and x satisfy the KKT conditions for pr and p̃r, respectively. From
(4.6) and (4.7) we have that

D ⊂ Tar,br (x
r) ∩ Tãr ,̃br (x) , for all r.

Moreover, since both {(ar, br)} and {(ãr, b̃r)} converge to (a, b) and −c ∈ int cone{at, t ∈ D}
(because of NC; see Theorem 3.5), appealing e.g. to [19, Exercise 6.12] we obtain

−c ∈ int cone{(art , t ∈ D)} ∩ int cone{(ãrt , t ∈ D)}, for r large enough

(we may assume for all r). In this way, we have proved (4.5).
Finally, observe that, from the corresponding definitions, we have

∥pr − p̃r∥ = max
t∈T

∥∥∥∥(artbrt
)
−
(
ãrt

b̃rt

)∥∥∥∥ (4.8)

= max
t∈D

∣∣a′txr − bt
∣∣

∥xr∥+ 1

∥∥∥∥(ur

−1

)∥∥∥∥ = max
t∈D

∣∣a′txr − bt
∣∣

∥xr∥+ 1
.

Consequently,

lim
r

∥x (pr)− x (p̃r)∥
∥pr − p̃r∥

= lim
r

∥xr − x∥
∥pr − p̃r∥

=
∥x∥+ 1

δ
,

where for the last equality we have applied (4.3), (4.4), and (4.8).

We finish the paper with an example illustrating the ingredients pr, p̃r, and x̃r in the
proof of Theorem 4.1. This example goes back to [11, Exa. 2], which was revisited in [7,
Exa. 3.1]. As the only difference with those examples, our current one considers a nonzero
optimal solution, what entails a nonzero nominal right hand side b.

Example 4.2. Consider the linear optimization problem P
(
c, a, b

)
in R2

minimize x1 +
1
3x2

subject to −x1 ≤ −2, (t = 1)
−x1 − 1

2x2 ≤ − 5
2 , (t = 2)

−x1 − x2 ≤ −3, (t = 3)
−x1 + x2 ≤ −1, (t = 4)
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whose unique optimal solution is x̄ =
(
2
1

)
, and where

Kp (x̄) = Tp (x̄) = {{1, 2} , {1, 3} , {2, 4} , {3, 4}} .

First we comment some geometrical ideas for canonical perturbations and later we will
consider full perturbations, because the choice of indices where perturbations are per-
formed is the same. For simplicity, computations are referred to the Euclidean norm in
R2. The reader can easily check that the corresponding maximum over D ∈ Kp (x̄) pro-
viding clmSa

((
c, b

)
, x

)
in Theorem 2.9(i) is attained at both D = {1, 2} and D = {1, 3} ,

and therefore clmSa

((
c, b

)
, x

)
=

√
5 (see [7, Exa. 3.1]). Indeed, [11, Exa. 2] provides an

ad hoc argument which could be reproduced here for the current b in order to show that,
for any given ε > 0, the furthest (with respect to x) possible optimal solution x ∈ Sa (c, b)
corresponding to some b ∈ RT with

∥∥b− b
∥∥
∞ ≤ ε is x̂ε :=

(
2+ε
1−2ε

)
. Nevertheless, in this

example

lipSa

((
c, b

)
, x

)
=

√
17 =

∥∥∥A−1
{1,2}

∥∥∥ .
More in detail (see Theorem 2.8), d∗ (02,bd conv {±a

t
, t ∈ {1, 2}}) is attained, for instance,

at
(

1/17
−4/17

)
∈ conv {−a

1
,+a

2
} , which suggests the idea of, on the one hand, reducing

the feasible set by replacing b1 with b1 − ε and, on the other hand, enlarging the fea-
sible set by replacing b2 with b2 + ε, leading to xε :=

(
2+ε
1−4ε

)
as the only solution of{

a′1x = b1 − ε, a′2x = b2 + ε
}
. The problem (if we are thinking in terms of calmness) is

that xε is not optimal (even not feasible) for any (c, a, b) corresponding to some b ∈ RT

with
∥∥b− b

∥∥
∞ ≤ ε; in fact, for making xε feasible we have to replace b3 with b3 + 3ε.

This is not a problem in terms of the Aubin property, since we can consider a ratio

∥xε − x∥ /
∥∥∥bε − b̃ε

∥∥∥
∞

=
√
17 with bε := b+(−ε, ε, 3ε, 0)

′
and b̃ε := b+(0, 0, 3ε, 0)

′
, keeping

fixed c and a. Of course, we can replace ε with a sequence εr ↓ 0 as r → ∞.
Now, let us consider full perturbations in the current example. Perturbations of c are

negligible in our analysis because of NC. Given the inequality a′tx ≤ bt, the way of perturbing(
at, bt

)
with perturbation size, using our norm (2.3), less than or equal to ε in order to get

the maximum slack increase and the maximum decrease is, respectively (at ∓ εu)
′
x ≤ bt±ε,

where u ∈ Rn is any vector satisfying ∥u∥∗ = 1 and u′x = ∥x∥ . In the particular case when
∥·∥ is the Euclidean norm in Rn, we have u = x/ ∥x∥ . With this idea in mind, taking into
account the notation of the previous paragraph, we have two options. The first one is to
define zε as the solution of system{

(a
1
+ εx/ ∥x∥)′ x = b1 − ε, (a2 − εx/ ∥x∥)′ x = b2 + ε

}
,

i.e., zε :=
(√

5 + 2ε
)−1 (

2
√
5 +

(
9 +

√
5
)
ε,
√
5− 2

(
9 + 2

√
5
)
ε
)′
. Write as aε1 and aε2 the

left-hand-side coefficients above, while a3 and a4 remain unchanged. In this way zε ∈
S (c, aε, bε) , x ∈ S

(
c, a, b̃ε

)
, and

lim
ε→0+

∥zε − x∥∥∥∥(aε, bε)− (
a, b̃ε

)∥∥∥
∞

= lim
ε→0+

∥zε − x∥
ε

=
√
17

(
1 +

√
5
)
.

The second option is the one followed in the proof of Theorem 4.1, consisting in keeping the
same xε defined above (motivated by canonical perturbations) and perturbing all coefficients
in order to make xε and x optimal for the respective perturbed parameter in such a way
that the distance between the perturbed parameters is minimum.
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