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g(x) are convex continuous functions, Z(x) is an accelerated Yamagishi-Yamada operator of
f(x), and Gg(x) is a subgradient projector of g(x), respectively. If g(x) is twice differentiable
and Z(x) = Gg(x), then the Hessian matrix Hf (x) and ∇f(x) · (∇f(x))T must commute
with each other. Consequently, we consider the accelerated operator of a quadratic function,
and try to derive the expression of another convex continuous function.

The rest of the paper is organized as follows. In Section 2, we recall the definitions of
subgradient projector and Yamagishi-Yamada’s accelerated operator as well as their prop-
erties. In Section 3, we first find the necessary condition for finding a convex continuous
function from the accelerated operator. Then we study the relationship between a linear
transformation and the subgradient projector. Consequently, we get the expressions of the
convex continuous functions from the accelerated operator of a quadratic function. Finally,
in Section 4 we conclude the paper.

2 Subgradient Projector and Its Accelerated Operator

Throughout this paper, we consider a subgradient projector in a finite dimensional Euclidean
Space. Let f : Rm → R be a continuous and differentiable function. Suppose that the 0-level
set of f satisfies lev0f ̸= ∅. Then the subgradient projector Gf : Rm → Rm defined for f
can be written as [1, 10]

(∀x ∈ Rm) Gf (x) =

{
x, if f(x) ≤ 0,

x− f(x)
∥∇f(x)∥2∇f(x), if f(x) > 0,

(2.1)

where ∇f(x) is the gradient of f at x and ∥ · ∥ is the canonical norm on Rm.
In [9], Yamagishi and Yamada make further assumptions on f : (1) f is Fréchet differen-

tiable on Rm and ∇f is Lipschitz continuous with constant L, (2) f is bounded below with
inf f(x) ≥ −ρ. And then they define a function θ(x) as (See Lemma 1 in [9])

(∀x ∈ Rm) θ(x) =
∥∇f(x)∥2

2L
− ρ ≤ f(x). (2.2)

Using θ(x), the authors suggest an accelerated version of subgradient projector as Z : Rm →
Rm

(∀x ∈ Rm)

Z(x) =


x, if f(x) ≤ 0,

x− ∇f(x)
∥∇f(x)∥2 f(x), if f(x) > 0 and θ(x) ≤ 0,

x− ∇f(x)
∥∇f(x)∥2

(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)
, if f(x) > 0 and θ(x) > 0.

(2.3)

3 From Accelerated Operator to Convex Continuous Function

In the following, we study the case that the accelerated operator Z(x) of f(x) equals to the
subgradient projector Gg(x) of another convex continuous function g(x), and try to reveal
g(x) from the Z(x).

3.1 Necessary Condition

We first provide the necessary condition for finding the convex continuous function. For
simplicity, let D = {x ∈ Rm

∣∣ θ(x) ≤ 0}.
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Theorem 3.1. Suppose f : Rm → R is twice differentiable and satisfies Yamagishi and
Yamada’s assumptions. Let g(x) be a continuous, convex, twice differentiable function. If
the subgradient projector Gg = Z. Then for x ∈ Rm \D, the Hessian matrix of g is

Hg(x) =
g(x)

f(x) + (
√
θ(x) + ρ−√

ρ)2
M(x)Hf (x). (3.1)

where Hf (x) is the Hessian matrix of f(x) and

M(x) = Id−
√

θ(x) + ρ−√
ρ

L
√

θ(x) + ρ

∇f(x) · (∇f(x))
T

f(x) + (
√
θ(x) + ρ−√

ρ)2
. (3.2)

Furthermore, ∇f(x) · (∇f(x))T and Hf (x) commute with each other, and M(x) is positive
semi-definite.

Proof. (1) We first calculate ∇(
√
θ(x) + ρ −√

ρ)2. According to the definition of θ(x), we
get

∇(
√
θ(x) + ρ−√

ρ)2 =
2(
√
θ(x) + ρ−√

ρ)

2
√
θ(x) + ρ

∇θ(x) =

√
θ(x) + ρ−√

ρ

L
√
θ(x) + ρ

HT
f (x) · ∇f(x). (3.3)

(2) We then find the expression of Hg(x) for x ∈ Rm \D. Since Gg(x) = Z(x), we have

x−Gg(x)

∥x−Gg(x)∥2
=

x− Z(x)

∥x− Z(x)∥2
, (3.4)

and then

∇g(x)

g(x)
=

∇f(x)

f(x) + (
√

θ(x) + ρ−√
ρ)2

. (3.5)

It is obvious that

∇g(x) · (∇g(x))T

(g(x))2
=

∇f(x) · (∇f(x))T(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)2 . (3.6)

Calculate partial derivative with respect to x both sides of Eq. (3.5), we arrive at

Hg(x) · g(x)−∇g(x) · (∇g(x))T

(g(x))2

=
Hf (x)

(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)
−∇f(x) ·

(
∇f(x) +∇(

√
θ(x) + ρ−√

ρ)2
)T

(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)2 .

(3.7)

According to Eqs. (3.3) (3.5) and (3.6), we have

Hg(x)

g(x)
=

Hf (x)
(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)
−∇f(x) ·

(
∇(

√
θ(x) + ρ−√

ρ)2
)T

(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)2
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=

(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)
Id−

√
θ(x) + ρ−√

ρ

L
√
θ(x) + ρ

∇f(x) · (∇f(x))
T

(
f(x) + (

√
θ(x) + ρ−√

ρ)2
)2 Hf (x).

(3.8)

According to the definition of M(x) in Eq. (3.2), we obtain the result in Eq. (3.1).
(3) Next, we show that ∇f(x)(∇f(x))T and Hf (x) commute with each other. According

to the definition of M(x), we know that M(x) is symmetric. Since Hg(x) is symmetric, we
have M(x)Hf (x) = Hf (x)M(x). Consequently, we find that ∇f(x)(∇f(x))T and Hf (x)
must commute with each other.

(4) Finally, we prove that M(x) is positive semi-definite. The eigenvalues of ∇f(x) ·
(∇f(x))T are µ1 = ∥∇f(x)∥2, µ2 = µ3 = · · · = µm = 0, respectively. Then the eigenvalues
of M(x) are

ηi = 1−
√
θ(x) + ρ−√

ρ

L
√
θ(x) + ρ

µi

f(x) + (
√
θ(x) + ρ−√

ρ)2
, (3.9)

for i = 1, 2, · · · ,m. Thus

η1 = 1−
√
θ(x) + ρ−√

ρ

L
√
θ(x) + ρ

∥∇f(x)∥2

f(x) + (
√
θ(x) + ρ−√

ρ)2

=
f(x)− θ(x)

f(x) + (
√
θ(x) + ρ−√

ρ)2
≥ 0. (3.10)

And η2 = η3 = · · · = ηm = 1 ≥ 0. Since all the eigenvalues of M(x) are nonnegative, the
symmetric matrix M(x) is positive semi-definite.

3.2 Linear Transformation A : Rn → Rm

In this subsection, we do some calculation on x and Gf .

Theorem 3.2. Consider a convex continuous differentiable function f : Rm → R. Define
another function h : Rn → R as h(x) = f(Ax− b), where b ∈ Rm. Then

(∀x ∈ Rn) Gh(x) =
(
Id− λ(x)ATA

)
x+ λ(x)AT [Gf (Ax− b) + b] , (3.11)

where

λ(x) =
∥∇f(Ax− b)∥2

∥AT∇f(Ax− b)∥2
. (3.12)

Proof. For x ∈ {x ∈ Rn
∣∣ h(x) > 0}, we have

Gf (Ax− b) = (Ax− b)− f(Ax− b)

∥∇f(Ax− b)∥2
∇f(Ax− b), (3.13)

The gradient of h(x) is ∇h(x) = AT∇f(Ax− b) and

Gh(x) = x− h(x)

∥∇h(x)∥2
∇h(x)
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= x− ∥∇f(Ax− b)∥2

∥AT∇f(Ax− x)∥2
AT[(Ax− b)−Gf (Ax− b)] (3.14)

=

(
Id− ∥∇f(Ax− b)∥2

∥AT∇f(Ax− b)∥2
ATA

)
x

+
∥∇f(Ax− b)∥2

∥AT∇f(Ax− b)∥2
AT [Gf (Ax− b) + b] . (3.15)

Besides, for x ∈ {x ∈ Rn
∣∣ h(x) ≤ 0}, we know that Gf (Ax − b) = Ax − b. Then the right

hand side of above equation becomes x. Consequently, we can get the conclusion.

Assume that A is unitary, then ATA = Id and λ(x) = 1. Thus we have the following
Corollary.

Corollary 3.3 (See Proposition 3.7 in [4]). Assume that A : Rm → Rm is unitary. Then

Gh(x) = AT [Gf (Ax− b) + b] . (3.16)

3.3 Quadratic Function

Consider a quadratic function f : Rm → R

f(x) = ∥x∥2 − α (α > 0). (3.17)

Let the constants L and ρ satisfy L ≥ 2 and ρ ≥ α. Then θ(x) = 2
L∥x∥

2 − ρ.

• If θ(x) = f(x) exactly, define g : Rm → R

g(x) =

{
0, ∥x∥2 ≤ α,
∥x∥ −

√
α, ∥x∥2 > α.

(3.18)

It is convex but not differentiable for those x satisfies ∥x∥2 = α. However, Z(x) = Gg(x)
is still valid.

• If θ(x) < f(x), define g : Rm → R

g(x) =

 ∥x∥2 − α, ∥x∥2 ≤ Lρ
2 ,

(Lρ
2 − α) exp

{
q(x)− q(

√
Lρ
2

x
∥x∥ )

}
, ∥x∥2 > Lρ

2 ,
(3.19)

where

∇q(x) =
∇f(x)

f(x) + (
√

θ(x) + ρ−√
ρ)2

. (3.20)

The so-constructed function is convex and twice-differentiable, and satisfies Z(x) =
Gg(x).

Next, we provide the details.
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3.3.1 Different Expressions of q(x)

Assume f(x) > θ(x). Let

a ≜ L+ 2

L
, b ≜

√
2Lρ

L+ 2
, ∆ ≜ L2ρ− L(L+ 2)α

(L+ 2)2
. (3.21)

Then

f(x) + (
√
θ(x) + ρ−√

ρ)2 = ∥x∥2 − α+
4∥x∥2

2L
− 2

√
2ρ

L
∥x∥+ ρ = a[(∥x∥ − b)2 +∆],(3.22)

and

∇q(x) =
∇f(x)

f(x) + (
√

θ(x) + ρ−√
ρ)2

=
1

a
· 2x

(∥x∥ − b)2 +∆
. (3.23)

For different ∆, we get different expressions of q(x).

1. If ∆ > 0, then

q(x) =
1

a

[
ln
(
(∥x∥ − b)2 +∆

)
+

2b√
∆

arctan
∥x∥ − b√

∆

]
+ C. (3.24)

2. If ∆ = 0, then

q(x) =
1

a

[
ln(∥x∥ − b)2 − 2b

∥x∥ − b

]
+ C. (3.25)

3. If ∆ < 0, then

q(x) =
1

a

[
ln |(∥x∥ − b)2 +∆|+ b√

−∆
ln

∣∣∣∣∥x∥ − b−
√
−∆

∥x∥ − b+
√
−∆

∣∣∣∣]+ C. (3.26)

3.3.2 Subgradient Projector and its Accelerated Operator

Next, we prove that g(x) is convex and twice differentiable. Besides, it satisfies Z(x) =
Gg(x).

Let x0 ∈ {x ∈ Rm
∣∣ ∥x∥2 = Lρ

2 }. According to the expression of q(x), we know that g(x)

is continuous and q(
√

Lρ
2

x
∥x∥ ) = q(x0) is a constant. Consider those x ∈ {x ∈ Rm

∣∣ ∥x∥2 >
Lρ
2 }, as x approaches x0, θ(x) → 0. According to Eq. (3.20), ∇q(x) → ∇f(x0)

f(x0)
. Consequently,

∇g(x) =
f(x0)

eq(x0)
eq(x)∇q(x) → f(x0)

eq(x0)
eq(x0)∇q(x0) = f(x0)∇q(x0) = ∇f(x0). (3.27)

Thus ∇g(x) is continuous. According to Eqs. (3.1) and (3.2), Hg(x) = M(x)Hf (x) = 2M(x)
is positive semi-definite, and again, as x approaches x0, Hg(x) → Hf (x0). It follows that
g(x) is convex.

By simple calculation, we get the accelerate version of Gf

Gf (x) =


x, ∥x∥2 ≤ α,

x
2∥x∥2 (∥x∥2 + α), α < ∥x∥2 ≤ Lρ

2 ,

x
2∥x∥2

(
L−2
L ∥x∥2 + 2

√
2ρ
L ∥x∥+ α− ρ

)
, ∥x∥2 > Lρ

2 ,

(3.28)

and Z(x) = Gg(x).
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Figure 1: f(x) (colored wireframe patch)
and g(x) (surface patch) in Eq. (3.30).

Figure 2: f(x) (colored wireframe patch)
and g(x) (surface patch) in Eq. (3.32).

3.3.3 Further Examples

Next, we assume that f(x) = ∥x∥2 − 1 is defined on R2 and the Lipschitz constant L = 4.
With different ρ, we provide three different examples here.

Example 3.4. Let ρ = 2, then ∆ = 2
9 > 0. Afterwards we have

q(x) =
2

3
ln

[
(∥x∥ − 2

3
)2 +

2

9

]
+

4
√
2

3
arctan

3∥x∥ − 2√
2

+ C, (3.29)

and the function g is given by

g(x)

=

 ∥x∥2 − 1, if ∥x∥2 ≤ 4,

3
[
1
2

(
∥x∥ − 2

3

)2
+ 1

9

] 2
3

exp
{

4
√
2

3 (arctan 3∥x∥−2√
2

− arctan 2
√
2)
}
, if ∥x∥2 > 4.

(3.30)

Example 3.5. Let ρ = 3
2 , then ∆ = 0. Afterwards we have

q(x) =
2

3

[
ln(∥x∥ −

√
3

3
)2 − 2

√
3

3∥x∥ −
√
3

]
+ C, (3.31)

and the function g is given by

g(x) =

 ∥x∥2 − 1, if ∥x∥2 ≤ 3,

2
(√

3
2

) 4
3
(
∥x∥ −

√
3
3

) 4
3

exp
{

2
3 ·

√
3∥x∥−3√
3∥x∥−1

}
, if ∥x∥2 > 3.

(3.32)

Example 3.6. Let ρ = 5
4 , then ∆ = − 1

9 < 0. Afterwards we have

q(x) =
2

3
ln

∣∣∣∣∣(∥x∥ −
√
10

6
)2 − 1

9

∣∣∣∣∣+
√
10

3
ln

∣∣∣∣∣6∥x∥ −
√
10− 2

6∥x∥ −
√
10 + 2

∣∣∣∣∣+ C, (3.33)
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Figure 3: f(x) (colored wireframe patch)
and g(x) (surface patch) in Eq. (3.34).

Figure 4: g(x) with different ρ. Up-
per blue layer: Eq. (3.30), middle magenta
layer: Eq. (3.32), and bottom yellow layer:
Eq. (3.34).

and the function g is given by

g(x)=


∥x∥2 − 1, if ∥x∥2 ≤ 5

2 ,

3
2

[(
∥x∥ −

√
10
6

)2

− 1
9

] 2
3 [√

10+1√
10−1

· 6∥x∥−
√
10−2

6∥x∥−
√
10+2

]√
10
3

, if ∥x∥2 > 5
2 .

(3.34)

The image of the function g(x) and f(x) in Examples 3.4, 3.5 and 3.6 are provided
in Figures 1, 2 and 3, respectively. The colored wireframe patch is for f(x) = ∥x∥2 − 1,
and the surface patch is for g(x) defined in Eqs. (3.30) (3.32) and (3.34), respectively. For
comparison, we also display the images of g(x) with different ρ in Figure 4. The upper blue
layer is for Example 3.4, the middle magenta layer is for Example 3.5, and the bottom yellow
layer is for Example 3.6. As −ρ approaches the lower bound of f(x), the gap between f(x)
and g(x) becomes significant.

4 Conclusion

In this paper, we consider the relationship between the Yamagishi-Yamada’s accelerated
operator and subgradient projector in Euclidean Space. We find the necessary condition of
finding a convex continuous function from the accelerated operator if we assume that the
accelerated operator of a function is the subgradient projector of another function. We make
a connection of the subgradient projectors Gf and Gh when the two function f(Ax− b) =
h(x). Using a quadratic function as an example, we generate different expressions of the new
function with different parameters of L and ρ. Finally, we display the images of different
functions so as to catch sight of the difference between those parameters.
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