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FINDING CONVEX CONTINUOUS FUNCTION FROM AN
ACCELERATED SUBGRADIENT PROJECTOR IN
EUCLIDEAN SPACE

CAIFANG WANG™*

Abstract: Yamagishi and Yamada proposed a deep monotone approximation operator based on subgradient
projector. Since the subgradient projector is considered to be very important in the field of solving convex
feasibility problems, we study the relationship between the two operators. We assume that Yamagishi
and Yamada’s accelerated operator for a function is a subgradient projector of another convex continuous
function in Euclidean Space under some conditions. We derive the necessary condition for finding out the
convex continuous function. Then we try to reveal the function from the accelerated operator of a quadratic
function and provide some examples of the function.
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Introduction

The subgradient projector is an algorithmic operator onto a lower level set of a convex
function [1]. Tt is think of as very important from the practical point of view because the
subgradient projection iteration is a classical method for solving convex feasibility problem|[1,
2, 3]. A series of work have been done to improve the performance of subgradient projection
iteration in the field of optimization. In [4], the authors carried out the basic theory of
subgradient projector for possibly nonconvex function on a finite dimensional space. In [5],
the authors studied the modified cyclic subgradient projection (MCSP) and provided the
finite convergence conditions for the iteration. In [6], the author studied the relaxed iteration
and got the conclusion that if there exists an interior point in the set of fixed point, the
sequence generated by the relaxed iteration converges finitely to a fixed point of the operator.
In [7], the authors compared a relaxed cutter method with MCSP [5], Crombez’s method
[6] and Polyak’s method [8], and got some conditions for finite convergence of the cutter
method.

Yamagishi and Yamada also provided a deep monotone approximation operator based
on subgradient projector in [9]. This accelerated operator was shown that it realized better
approximation than subgradient projector. In [10], we have proved that the accelerated op-
erator is actually a subgradient projector of a variant of original continuous convex function
on the real line. The aim of this paper is to make a further connection between Yamagishi-
Yamada operator and subgradient projector in Euclidean space. We assume that f(z) and
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g(x) are convex continuous functions, Z(x) is an accelerated Yamagishi-Yamada operator of
f(z), and G4(x) is a subgradient projector of g(z), respectively. If g(x) is twice differentiable
and Z(x) = G4(z), then the Hessian matrix H¢(z) and Vf(z) - (Vf(z))T must commute
with each other. Consequently, we consider the accelerated operator of a quadratic function,
and try to derive the expression of another convex continuous function.

The rest of the paper is organized as follows. In Section 2, we recall the definitions of
subgradient projector and Yamagishi-Yamada’s accelerated operator as well as their prop-
erties. In Section 3, we first find the necessary condition for finding a convex continuous
function from the accelerated operator. Then we study the relationship between a linear
transformation and the subgradient projector. Consequently, we get the expressions of the
convex continuous functions from the accelerated operator of a quadratic function. Finally,
in Section 4 we conclude the paper.

Subgradient Projector and Its Accelerated Operator

Throughout this paper, we consider a subgradient projector in a finite dimensional Euclidean
Space. Let f : R™ — R be a continuous and differentiable function. Suppose that the 0-level
set of f satisfies levgf # &. Then the subgradient projector Gy : R™ — R™ defined for f
can be written as [1, 10]

x, if f(z)<O0,

(Vz € R™)  Gy(z) {x_lvﬁ}(gngf(@ it f(z) >0, (2.1)

where V f(x) is the gradient of f at # and || - || is the canonical norm on R™.

In [9], Yamagishi and Yamada make further assumptions on f: (1) f is Fréchet differen-
tiable on R™ and V f is Lipschitz continuous with constant L, (2) f is bounded below with
inf f(z) > —p. And then they define a function §(z) as (See Lemma 1 in [9])

IVf(@)]*

(Vz e R™) 6O(x) = 5T

—p < fla). (2.2)
Using 6(z), the authors suggest an accelerated version of subgradient projector as Z : R™ —
Rm
(Vz e R™)
x, if f(z) <0
T —

Z(;[;) = va(l)w f( ) if f(.r) > 0 and 9(1‘) <0, (23)
T — %( +(VO(z) +p— f),iff(m)>0and9(m)>0

From Accelerated Operator to Convex Continuous Function
In the following, we study the case that the accelerated operator Z(z) of f(x) equals to the

subgradient projector G,(z) of another convex continuous function g(z), and try to reveal
g(x) from the Z(x).

Necessary Condition

We first provide the necessary condition for finding the convex continuous function. For
simplicity, let D = {z € R™ | 6(z) < 0}.



FINDING CONVEX CONTINUOUS FUNCTION 423

Theorem 3.1. Suppose f : R™ — R is twice differentiable and satisfies Yamagishi and
Yamada’s assumptions. Let g(x) be a continuous, convez, twice differentiable function. If
the subgradient projector G4 = Z. Then for x € R™ \ D, the Hessian matriz of g is

Hy(z) = 9() M(x)Hy(x). .
O s e .

where Hy(x) is the Hessian matriz of f(x) and

M) —1a Y@ to— VP Vi@ (V@)
LVo@)+p  f@)+(/0@) +p— /p)

Furthermore, V f(z) - (Vf(z))" and H¢(x) commute with each other, and M (x) is positive
semi-definite.

Proof. (1) We first calculate V(1/0(z) + p — \/p)?. According to the definition of 6(z), we
get

(3.2)

V(B ¥ )t = 2NV gy - VIO VR ) g ). (33)

2,/0(x)+p L\/0(x)+p
(2) We then find the expression of Hy(x) for x € R™ \ D. Since G,4(x) = Z(x), we have
r—Gg(x)  x—Z(x)
=Gl ~ o= 2@l o4
and then
Vo(r) _ V() | 55
9(@)  flz)+ (/O(x) + p— /p)?
It is obvious that
Vol) (Vo)™ Vf(a) (V)T 56

WEDT () + (VI F - pR)

Calculate partial derivative with respect to x both sides of Eq. (3.5), we arrive at

Hy(z) - g(x) — Vg(z) - (Vg(x))"
(9(2))?

Hy(2) (£() + (VO@) F - VB)2) — Vf(@) - (V) + V(@ T o VD))
(F@)+ (VI T 5 v52)

(3.7)

According to Egs. (3.3) (3.5) and (3.6), we have

Hy(x) Hr(@) (f(x) +(/0(z) +p - \//3)2) — V() (V(\/W— ﬁ)z)T

o(x) (1) + (VI 5 Vo))
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(F@) + (VI - ) 1 = LN g ) (90T
_ L\/6(z)+p Hy(2).

(F@) + (VA@ T o vD?)

(3.8)

According to the definition of M () in Eq. (3.2), we obtain the result in Eq. (3.1).

(3) Next, we show that V f(x)(Vf(z))T and H;(x) commute with each other. According
to the definition of M (x), we know that M (x) is symmetric. Since Hy(x) is symmetric, we
have M(x)H(z) = Hy(z)M(z). Consequently, we find that Vf(z)(Vf(x))T and Hy(x)
must commute with each other.

(4) Finally, we prove that M (x) is positive semi-definite. The eigenvalues of V f(x) -

(V)T are py = [|[Vf(2)||?, p2 = pz = -+ = py, = 0, respectively. Then the eigenvalues
of M(x) are

17-:1_\/9(36)+p_\/ﬁ Hi (3.9)

LJo@) +p  f(2)+ (Vo@) +p— o)

fori=1,2,--- ,m. Thus

mo= 1 V@) +p—p IVf(2)]?

L\0(x)+p  flz)+ (V@) +p—/p)?
f(z) —0(x)
= > 0. (3.10)
f(x) + (VO0(x) + p—/p)?

And ny =n3 =-+- =mn, =1 > 0. Since all the eigenvalues of M (x) are nonnegative, the
symmetric matrix M (z) is positive semi-definite. O

Linear Transformation A : R® — R™

In this subsection, we do some calculation on x and G.

Theorem 3.2. Consider a convex continuous differentiable function f : R™ — R. Define
another function h : R™ — R as h(z) = f(Az — 1), where b € R™. Then

(Vz € R") Gp(z) = (Id — Mz)ATA) z + Nz)A" [Gy(Az — b) + 1], (3.11)

where

V(b
M) = U Az — b (342

Proof. For z € {z € R | h(z) > 0}, we have

f(Az —b)

GrlAz—b) = (A2 =b) — 1o — P

Vf(Az —b), (3.13)

The gradient of h(z) is Vh(z) = ATV f(Az — b) and

G = 2 e
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IV b2
L ATV f(Az — 2P
B IV F(Az — b)]?
- (Id " ATV fAz - b>||2ATA> z
IV F(Az - b)]?
|ATV f(Az —b)|?

AT[(Az — b) — Gy(Az — b)] (3.14)

+ AT [Gy(Az —b) +b]. (3.15)

Besides, for z € {z € R" | h(z) < 0}, we know that Gy(Az — b) = Az — b. Then the right
hand side of above equation becomes x. Consequently, we can get the conclusion. O

Assume that A is unitary, then ATA = Id and A(z) = 1. Thus we have the following
Corollary.

Corollary 3.3 (See Proposition 3.7 in [4]). Assume that A : R™ — R™ is unitary. Then

Gn(z) = AV [Gy(Az —b) +1]. (3.16)

Quadratic Function

Consider a quadratic function f: R"™ — R
fl@)=z]* —a (a>0). (3.17)
Let the constants L and p satisfy L > 2 and p > a. Then 0(z) = 2|z||? — p.

o If O(x) = f(x) exactly, define g : R™ — R

[, |2 <
9(@) —{ el = va, 2> o (3.18)

It is convex but not differentiable for those x satisfies ||z||* = a. However, Z(z) = G,4(z)
is still valid.

o If 6(x) < f(x), define g : R™ — R

lzll? = o, 2 < &2,
_ 3.19
9() (% — a)expale) —a(y/ ) o lal® > 22, 1)
where
Valo) = V() (3.20)

f(@) + (0@@) +p— yp)*

The so-constructed function is convex and twice-differentiable, and satisfies Z(z) =

Gy(x).

Next, we provide the details.
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Different Expressions of ¢(z)

Assume f(x) > 6(z). Let

s L+2 L?p— L(L + 2)«

£ Y7 AL 21
o= YTy L+2)7? (321)
Then
2 _ 2 4|21 2p _ 2
£)+ (VI F =) = el ot 9 2P0 1y — af(af ~ 02 + A)(3.22)
and
Viz) 1 2x
Vq(z) = =— . 3.23
) F @+ (@ o vor a Uel- 0P+ A (623
For different A, we get different expressions of ().
1. If A > 0, then
1 2 —
q(z) = - {ln (=] = b)* +A) + \/—% arctan Hwk b] +C. (3.24)
2. If A =0, then
1 2b
q(x) = — |In(||z bQ—}—FC. 3.25
(@) = ¢ [mlell = 7 - 2 (3.25)
3. If A <0, then
1 b |zl — b —+v—-A ]
z) =~ |In|(]|z] = b)* + Al + In + C. 3.26
o) = 3 [l =07+ A+ o [TV (3.20

Subgradient Projector and its Accelerated Operator

Next, we prove that g(z) is convex and twice differentiable. Besides, it satisfies Z(z) =
Gy(z).
Let 29 € {z € R™ | ||z|* = L2}, According to the expression of (), we know that g(z)

is continuous and ¢( %H”’T”) = q(w0) is a constant. Consider those z € {z € R™ | [|z[|* >

%}, as z approaches xg, 8(x) — 0. According to Eq. (3.20), Vg(x) — V(o) Consequently,

flzo) *
_ f(l'o) q(x) f(LU())
Vy(z) = ca(zo) e?""Vq(z) — ca(@o)
Thus Vg(x) is continuous. According to Egs. (3.1) and (3.2), Hy(z) = M (z)H¢(x) = 2M (x)
is positive semi-definite, and again, as x approaches xg, Hy(z) — Hy(xo). It follows that
g(x) is convex.
By simple calculation, we get the accelerate version of Gy

e!™0IVg(x0) = f(w0)Va(wo) = VF(wo).  (3.27)

8

: 2] < a

x 2 2 Lp
:r|\2(Hx|| +a)’ a < ||CCH S 2 (3.28)

Gylz) =4 ?
e (221l +2 el +a = p) el > %,
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Figure 1: f(x) (colored wireframe patch) Figure 2: f(z) (colored wireframe patch)
and g(x) (surface patch) in Eq. (3.30). and g(x) (surface patch) in Eq. (3.32).

Further Examples

Next, we assume that f(z) = [|z||> — 1 is defined on R? and the Lipschitz constant L = 4.
With different p, we provide three different examples here.

Example 3.4. Let p = 2, then A = 2 > 0. Afterwards we have

q(z) = gln {(Hx - ;)2 + Z} + 4\3/5 arctan 3Hx\”ﬁ_ 2 +C, (3.29)
and the function g is given by
g(x)
2 = 1, if lz]* <4,
= 3 B (]| - %)2 + é} 5 exp {%(arctan% — arctaHZﬂ)} ,if |z)? > 4.
(3.30)
Example 3.5. Let p = %, then A = 0. Afterwards we have
o) =2 [ln(llwll -y 3”;'@31 e 331)
and the function g is given by
lx[l* = 1, i Jlz]* <3,
T 2 () (ol —2) oxp {3 B0 i a2 > 5. 52

Example 3.6. Let p = % then A = —% < 0. Afterwards we have

2 10 1 10 6 — /10 -2
a@) = 21| (e - Y202 _ L) V10, (Gllell = v e (3.33)
3 6 91" 73 6|z — VI0+2
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Figure 3: f(z) (colored wireframe patch) Figure 4: g(z) with different p. Up-

and g(z) (surface patch) in Eq. (3.34). per blue layer: Eq. (3.30), middle magenta
layer: Eq. (3.32), and bottom yellow layer:
Eq. (3.34).

and the function g is given by
2] - 1, if |22 < 3,

o ) V10 3.34
) (ol - - 5] [ =] it ol > 4 o

V10-1  6[lz]|-v10+2 2°

The image of the function g(z) and f(z) in Examples 3.4, 3.5 and 3.6 are provided
in Figures 1, 2 and 3, respectively. The colored wireframe patch is for f(z) = ||z]|*> — 1,
and the surface patch is for g(x) defined in Egs. (3.30) (3.32) and (3.34), respectively. For
comparison, we also display the images of g(z) with different p in Figure 4. The upper blue
layer is for Example 3.4, the middle magenta layer is for Example 3.5, and the bottom yellow
layer is for Example 3.6. As —p approaches the lower bound of f(z), the gap between f(x)
and g(x) becomes significant.

@l

Conclusion

In this paper, we consider the relationship between the Yamagishi-Yamada’s accelerated
operator and subgradient projector in Euclidean Space. We find the necessary condition of
finding a convex continuous function from the accelerated operator if we assume that the
accelerated operator of a function is the subgradient projector of another function. We make
a connection of the subgradient projectors Gy and Gj, when the two function f(Az —b) =
h(z). Using a quadratic function as an example, we generate different expressions of the new
function with different parameters of L and p. Finally, we display the images of different
functions so as to catch sight of the difference between those parameters.
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