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OPTIMALITY CONDITIONS IN INFINITE HORIZON
OPTIMIZATION BY CONTINGENT DERIVATIVE
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Abstract: In this paper, the notion of the contingent cone to the set of trajectories in infinite horizon
optimization problems is introduced. Some important properties of the contingent cone are investigated.
Also the notion of the upper contingent derivative is introduced that is based on the same idea used in the
literature when defining with directional derivatives. Then, optimality conditions are derived in terms of
the contingent cone and the upper contingent derivative.

Key words: nfinite horizon optimization, optimal trajectory, contigent cone, upper contingent derivative,
optimality condition

Mathematics Subject Classification: 90C26

Introduction

Infinite horizon optimizations are an important class of optimization problems where the
objective function is often defined as a total cost over infinite horizon [1, 2, 9, 13, 16, 18,
17, 19, 20]. This class has many applications in inventory control, production planning,
equipment replacement and capacity expansion.

The total cost over an unbounded horizon may be infinite or diverge. Taking this factor
into account, different optimality criteria apart from minimal total have been considered
[6, 14, 22, 23]. For example, a discounting factor is used to guarantee the convergence of
a sum of infinitely many costs over an infinite horizon [1, 2]. Some other examples of such
optimality criteria are efficiency or finite optimality [12, 21], the average cost [3, 11, 26],
overtaking optimality [6, 10, 15, 27, 28] and 1-optimality [4, 25].

The notion of the tangent cone (contingent cone) plays an important role in driving
optimality conditions. The tangent cone gives an approximation of a set around a given
point. Different definitions are introduced in the literature for a tangent cone, such as
Bouligand tangent cone [5] and Clarke tangent cone [7]. The use of the tangent cones in
optimization was initiated by Dubovitskii and Miljutin [8].

In this paper, we consider systems described by the decision network as in [2]. These
systems generate trajectories of decisions and there is a cost associated to each decision that
could be used to define the functional - total cost for a trajectory. The aim of this paper
is to introduce a contingent cone and directional derivative for metric space of trajectories
and investigate optimality conditions.

The paper is organized as follows. Notations, problem statement and the new notion
“the upper contingent derivative” are presented in the next section. “the Contingent cone”
and its some important properties are established in Section 3. Optimality conditions are
given in section 4.

© 2018 Yokohama Publishers
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Notations and Problem Statement

Consider the decision network, (X, A, C), where ¥ is the set of states (nodes), A is the set
of decisions (arcs) and C'is a real-valued cost function C' : A — R™. The notation N is used
to denote the set of natural numbers {1,2,---}. Throughout the paper we will assume that
the following conditions hold:

1. there is a node called single root with the following properties

there is no incoming arcs to this node,

every other node can be reached from the single root,

2. the set of decisions available at any node is nonempty and finite,
3. the set of incoming decisions to any node is also finite.

It has been proved that [24, Theorem 1] under these assumptions, the set of nodes can
be numbered, say as in the form ¥ = {01, 03,03,...}, such that the following holds: if
(0i,0;) € A for some nodes 0;,0; € X, then i < j.

Definition 2.1. A trajectory s is an infinite sequence of states (s1, $2, S3, ....) where $1 = 01
is a given fixed root, s; € ¥ and (s, 8,41) € Aforalli=1,2,....

The set of all trajectories s will be denoted by II. This set can be endowed by a metric.
We will use the metric used in [2]; namely, given any two trajectories s = (s, $2, 3, ...) and

s’ = (8], sh, s%, ...), the metric p is defined as follows:

p(S,S/) = Z¢i(s7sl)2_i7 (2.1)
i=1

where

3 .
0 if S; =8

/
$is,s) = { 1 otherwise
In Lemma 1 in [2], it is proved that the set IT is complete and hence compact in the sense
of this metric.
Under this metric, the closeness of trajectories depends on the number of initial nodes
over which they agree. For example, given any i € N, it can easily be verified that the
following holds:

1 .
p(s,s') < s = si=s;, Vi=1,2-- k. (2.2)

Optimization problem. Given trajectory s = (s, $2, S3,...), the value C(s;, s;4+1) is the
cost associated with the decision (s;, $;4+1). Then, the objective function in this problem can
be determined as the total cost over the trajectory s [2]; that is

f(s) = ZC(5i75i+1)7 Vs € 1L

i=1
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We assume that f is uniformly convergent over II; that is, for any € > 0 there exists n. such
that for all trajectories s the relation Zf;LC(si,siJrl) < ¢ holds for all n > n.. In this
case f is continuous on II. Note that this is not a restrictive assumption; it holds if the cost
function C(s;, s;11) is uniformly bounded and also is discounted, for example, by (1/2)* (see
Assumption 1 and Lemma 2 in [2]). Taking this into account, one can define the total cost

in the form
o0

fls) = r'Clsi, si41); (2.3)

=1

where r € (0,1) is a discount factor.

We consider the following optimization problem
Minimize f(s), subjectto s € Q; (2.4)

where 0 C II is a given closed set. We note that ) is also a compact set. Since f is
continuous and € is compact, an optimal solution s* to problem (2.4) exists.

Given € > 0, the e-neighborhood of s in II is defined by

Ve(s)={s' €ll: p(s,8') <e}.

Trajectory s € € is called an isolated point of € if there is € > 0 such that (Vz(s)\ {s})N
Q = (. Clearly, if s € Q, Q\ {s} # 0 and s is not an isolated point of Q then there is a
sequence s™ € Q) such that s™ # s, Vn, and p(s™,s) — 0 as n — oo.

We note that the set II is not a linear space. Below we will define the notions of
“direction” and then “directional derivative” by using the main idea behind these notions
defined in linear spaces. They will be used to derive optimality conditions.

Definition 2.2. We say the trajectories s,h € ) have the same direction if there are
ns,np € Nsuch that s, 1; = hp, 1, foralli = 1,2,--- . We will use the notation (s)e = (h)o
in this case.

According to this definition, having the same direction means that these trajectories
coincide/join after some finite steps; i.e. ns and n;. Moreover, the “larger” numbers n; and
n¢, assuming the sets {sa, -+, 8, } and {ta, - ,t,,} are disjoint, can be interpreted as s
and h being “far” from each-other.

Definition 2.3. Assume that § is not an isolated point of §2; that is, V.(s) N Q # 0 for
all € > 0. The upper contingent derivative of f at § with respect to the direction d € II is
defined as

o f(s)—[(5)
Uf(s,d) = hr:ljgp TP
s

(8)oo=(d)oo
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The idea behind this definition is that the limit of the fraction on the right hand side
is taken over all sequences s*, d* such that s* — 5, d* — d and for each k, the trajectory
s® has the same direction as d*. Thus, this idea is similar to the definition of the Clarke’s
directional derivative of ¢ at Z in a direction x in linear spaces given below:

1°(@,2) = lmsup 180 = 1)

Y—T §
£L0

Since IT is not a linear space and the operation Ad, (X is a given number) is not defined, the
super-linearity of U (8, d) with respect to d can not be considered.

We also note that, according to (2.2), for example if p(s*,s) < ¢, then the first [1+logs1]
elements of trajectories s* and s coincide. Therefore, the statements s* — s, d* — d means
that trajectories s* and d* coincide with § and d, respectively, at the some “initial stage”,
and this “initial stage” grows infinitely when & — oco. Then, the condition (s*)s = (d¥)ue
states that trajectories s*, d¥ join after that “initial stage”; that is, have the same direction
in terms of Definition 2.2. Therefore, we can interpret this siltation as trajectories s*
approaching to s in direction d.

Clearly, the upper contingent derivative U f(s,d) is not defined for directions (trajecto-
ries) d that are not connected with § in the sense of the above interpretation.

Contingent Cone

Let Q C II and § € Q2 be a non-isolated point of €. For the rest of the paper we assume that
Q\ {s} # 0. We introduce the notion of the contingent cone Tq(8).

Definition 3.1. We say t € II is an element of the contingent cone T(S) to the set Q at
s if there exist sequences of trajectories s™ € Q, (s™ # §,Vn) and t™ € II such that s” — s,
t" = tasn — 00, and (8")eo = (t™)oo for all n :

To(s)={tell: Is" € Qt" €II; s" £5,Vn, s" = 5,t" = t and
(8")oo = (t")o0, Vi }.

Roughly speaking, the contingent cone T (S) combines all trajectories in IT having the
same direction with some trajectory in {2 being “sufficiently” close to s.

Some properties of the contingent cone are presented below.

Lemma 3.2. Let s be a non-isolated point of Q. Then Tq(8) is not empty and, in particular,
seTq (§)

Proof. If § is a non-isolated point of €2, then there exists a sequence s” € () such that
s" # 8,Vn, and s™ — § as n — 00. Then, to prove the relation § € T(S) it is enough to let
t" := s" in Definition 3.1. O

In the next lemma, we show that the contingent cone in Definition 3.1 is a closed set.
Lemma 3.3. T(8) is a closed set.

Proof. Assume that the sequence u™ € T (S) converges to u. To show T (8) is closed, it
suffices to show that u € Tq(8); or equivalently, it suffices to show that there exist sequences
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s™ € Q (s" #8,¥n) and t" € II such that the conditions of Definition 3.1 are satisfied; that
is
s" =8, t" 2uasn—o0o and (s")e = (t")oc, V. (3.1)

Take an arbitrary € > 0. Let m(e) be such that

1
p(u™) ) < €

Given m(g), by the definition of u”(®) € T (s), there are sequences s™()" € Q, t™(=)n ¢
II such that s"()" £ § ¥n, and

smEn 5 tmE" 0w asn o0 and (s™E) = (t™EM) L, Vn.

In other words, there is n(e) such that

p(sm(a),n(a)vg) <¢e and p(tM(s),n(E)mm(E)) < -—e.

DO | =

Then
p(E™ (1) ) < p(em @) @) 4 o) ) < 2

This means that
gm(e)n(e) _ 5, tmE)nE) sy as e — 0.

On the other hand (s™()"(€) = (t™(=)n(e)) - that is, the required relation (3.1) is
true. O

We note that the sets Q and Tq(S) are generally different. Below we provide an example
for which the relation To(S) € Q holds. A similar example to demonstrate Q ¢ Tq(S) can
be constructed easily.

Example 3.4. Cousider the set of nodes (91, d2,J3, ....), §; € 3, Vi, and assume that the set
A ={(0iy,0ip,0ig, )+ {1,3,5,--+} C {i1,i2,43, -} and 43 <ig < ---}
belongs to the set of all trajectories II. Let
§ = (01,93,05,....), t=(d1,09,03,04,....) and

Q={s€A: (8) = (5o}

Clearly t € A C II and t ¢  (since each trajectory in {2 contains only odd indices after
some finite index). Moreover, § € Q) is a non-isolated point of Q; for example, for the set of
trajectories s™ € {2 defined by

8" = (01,03,05, -+ ,02p41, 02042, 021435 - * » Odnt15 O4n+3, Odng5, ---)

we have s #§,Vn > 1 and s” — § as n — oo.
We show that t € T(S). Consider the sequence of trajectories t” € A C II defined as
follows
t" = (01, 02,95, ...y 02, 02141, 021135 200455 -+ )
Clearly t" — t as n — oo; and moreover, (t"). = (s") for all n.
Therefore, t € To(s) and t ¢ Q; that is, To(s) € Q.



456 S. HASSANI AND M.A. MAMMADOV

In the following, we investigate the contingent cone of intersection and union of sets.

Lemma 3.5. Let Q1 and Qo be subsets of I1 and s € 21 N Qy. Then,

(1) TQNTQz (é) C TQl (é) N TQz (§)
(ii) To,u0, (§) =To, (§) UTq, (é)

Proof. The proofs of To,na,(8) C Ta, (8) NTa,(S) and Ty, (8) UTq,(8) C Ta,ua,(S) directly
follow from the definition of the contingent cone. Thus, it is enough to show that T, uq, (S) C
Tq, (5) UTq, (5)

Let t € Tg,uq,(8). Then, there are sequences s™ € Q1 U s and {t"},cn such that

p(s™,8) = 0,p(t",t) = 0, and (s")oo = (") 0o, Vn. (3.2)
As s € Q1 UQy, for some j € {1,2} the realtion s™ € Q; holds. Then, from (3.2) we
conclude that t € T, (5) and hence t € T, (5) UTq,(8). O

In the next example, we show that the inverse of the inclusion (i) in this lemma; that is,
the relation

TQl nQa (§) o TQl (5) N TQQ (5)

may not be true.

Example 3.6. Consider two trajectories t = (51, to, t3,....) and s = (51, 82, §3, ....) assuming
that ¢; # 5; for all ¢, > 2. Define the sets §2; and €25 as follows

Ql = {é} U QLQ U Qtl), QQ = {g} U QLQ U Qg,
where
Q(l) = {Sn = (51,527 ~~7§2n7§2n+27§2n+47§2n+67 ), n = 1,2, e },
Q9 = {u" = (51,52, .., S2n, Son+1, S2nt 3, S2ngs, o), n=1,2,---},
Ql,2 = {un = (517527 "'7§2n7£2n+1>£2n+2;€2n+3a )a n = 1727 e }a

and & # 55, for & #t, all i,5 > 2.
Now, let the set of all trajectories II is given by
M={t}uUQ UQUTLUT,
where
Ty = {t" = (t1,t2, ..., tan, Son+2, S2an+4, S2n46s--), N =1,2,---};

TQ = {Vn = (tlat27 -~-7t2n7 §2n+17 §2n+33 §2n+53 )7 n = 1) 27 e }

First we show that t € T, (8) N Tq,(S).
Consider the sequences s™ € 7 and t" € Tj. Clearly

p(s™,8) = 0, p(t™,t) = 0, and (8")eo = (t") 0, V.

This means that t € T, (8).
In a similar way, for sequences u™ € ), and v" € T, we have

p(u™,8) =0, p(v",t) = 0, and (U)o = (V") o, V1
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that leads to t € Tq,(§). Therefore, t € Tq, (S) N Ty, (8).

Now we show that t ¢ T, nq,(8). By contradiction let t € To,nq,(S); that is, there are
sequences u” € 1 NNy, u” #8,Vn, and d” € II such that

p(u”,8) = 0, p(d",t) = 0, and (U)o = (d") 0, Vn. (3.3)
As Q1 NQy = {8} U Q4 5, it is not difficult to observe that the relation u™ € €, N Qy,
u” # 8, implies for every n the following holds

(un)OO # (S)ooa Vs € {t} U Q(l) U Qg UT; UTs.

On the other hand, according to the definition of sets ; and T;, i = 1,2, the convergence
d™ — t implies that given any n, one of the following holds: d" = t, or d” € Ty, or d™ € T5.
In all of these three cases we have

(d")e # (U") -
This contradicts (3.3). Thus, t ¢ Ta,na, (8).

Optimality Conditions

Consider the optimization problem (2.4) stated in Section 2. In this section our aim is to
investigate optimality conditions for this problem in terms of the contingent cone and the
upper contingent derivative.

Assumption (L): The total cost f is locally Lipschitz; that is, for each § € II, there exist
a d—neighborhood V5(8) with ¢ > 0 and a number Lss < oo such that

£(8) = F(8)] < Las pls.t), Vs, t € V(). (4.1)

The following two propositions provide some sufficient conditions under which Assump-
tion (L) holds.

Proposition 4.1. Assume that the cost function C is bounded and the total cost f is defined
as in (2.8). If r < % then f is locally Lipschitz at each s € 1L.

Proof. Given § € II, we take any 6 > 0 and trajectories s, t € Vj(8). Clearly
p(s, t) < 20.

According to (2.2) at least the first [loga55 — 1] elements of trajectories s = (s1,s2,+-+) and
t = (t1,t2,--+) coincide. Let N5 > [logazs — 1] be the first index for which sy, # tn, and
si=t; foralli=1,---,Ns— 1. Then from (2.1) we have

o0

p(s,t) =D ¢ils,t)27" > 27N, (4.2)
i=1
On the other hand

o0

1£(8) = FO) <D 7 |C(siysi41) = Cltitiga)| = Y 1'C(si,8i11) — Cltistisa)].
1=1

i=Ns—2
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Since cost function C' is bounded, there is M < oo such that |C(s;, s;+1)| < M for all ¢
and s. Then

_ < i < Ns—2 '
|f(s) f(t)|7i NE 227’M72M’r‘ T,
—Nj—

Taking into account r < % we have ﬁ < 2 and rVs—2 < 2=Ns+2 gnd therefore
|f(s) = F(£)] < 20 27N,
Thus, denoting Lss = 4M from (4.2) we obtain (4.1). O

Proposition 4.2. Let s € II be given and the total cost [ be defined as in (2.3). Assume
that, there exist a §—neighborhood Vs(8) and a number M < oo such that the cost function
C satisfies the following condition

|C (84, 8i41) — Ctis tis1)| < M p(s,t), Vs, t € V5(S) and Vi =1,2,3,... .
Then f is locally Lipschitz at s.
Proof. Take any s, t € V5(s). We have

[f(s) = f(t)] < ZrilC(Sm si+1) — C(ti tig1)]

= M
<D r M pls.t) = 7 pls.t), Vs € Vib).
=1

Thus, (4.1) holds for Lsg = M~ O

1—r

The following results is about the existence of the upper contingent derivative.

Lemma 4.3. Assume that § is a non-isolated point of Q and Assumption (L) holds. Then
the upper contingent derivative U f(8,d) exists for each direction d € Tq(S) \ {8}.

Proof. Take an arbitrary d € T(s) \ {8}. By Assumption (L) for § € €, there exists a
d—neighborhood Vs(8) with 6 > 0 such that (4.1) holds. Then

|f(s) = f(8)] s
= < Lss, Vs € V5(8 s}, 4.3
s )\ {5} (4.3)
Since d € T(s), then, it follows from (4.3) that
—Lss < sup M < Lss, Ve<§. (4.4)
p(s,§)<s p(57 S)
p(d,d)<e
S#S
(8)oo=(d) oo
Hence -
Uf(é,c_l) = limsup 7“3) —_f(s)
s—S p(S, S)
d—d
S#S
(8)oc=(d) oo

exists, which means, the upper contingent derivative exists for any non-isolated point s €
and any direction d € Tq(S) \ {s}. O
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Remark. According to Lemma 4.3, as U f(8,d) exists if d is in the contingent cone, we
call it the upper contingent derivative.

We will call d a descent direction of f at s if the upper contingent derivative is negative:
Uf(s,d) < 0. The main result of this section is a necessary condition of optimality for a
local minimizer of f that are presented in the next theorem and corollary.

Theorem 4.4. Assume that s* is a non-isolated point of Q and Assumption (L) holds at s*.
IfUf(s*,d) < 0 for some d € To(s*) \ {8} then, s* is not a local minimizer of the problem
(2.4); that is, for every € > 0, there exist s* € Q and d° € II such that

p(s,8") <e, p(d®,d) <e, s #8", (5% = (d%)e and f(s%) < f(s¥). (4.5)

Proof. By the assumption, there exists d € Tq(s*) \ {s*} such that Uf(s*,d) < 0. Since

d € Tq(8), by the definition of the contingent cone, there exist sequences of trajectories
s™ € Q and t"™ € II such that

s" —s*t" > dasn — oo0; and 8" # 5%, (8")oo = (d")so, V1 > 1. (4.6)

By the definition of the upper contingent derivative we have
timsup 25 =FE) e )y <o
n—00 p(sm,s*)

Then, given € > 0, there exists a sufficiently large number n. such that the inequalities
p(s™,s%) <€, p(t",d) < eand f(s") — f(s*) < 0 hold. Therefore, (4.6) yields (4.5). O

From Theorem 4.4 we obtain the following necessary condition of local optimality.

Corollary 4.5 (Necessary condition of optimality). Assume that s* is a non-isolated point
of Q and Assumption (L) holds at s*. If s* is a local minimizer of the problem (2.4) then,

Uf(s*,d) >0, Vd e Tq(s*)\ {s"}. (4.7)
In the following, we present an example that illustrates Theorem 4.4 and Corollary 4.5.

Example 4.6. Let

st = (51,82753,84....), d= (81,52,53,54, )7 and

n . —_— .
S = (81,327 ~-~75na5n+176n+2a5n+37 ) Ln= 1,2, ey

where s; # 9; for all i > 2.
The set 2 and the set of all trajectories II are given by Q = {s*} U{s" : n=1,2,---}
and IT = {d} U Q.

By the definition of Q for any given s™ € 2 we have

1 1 1

s ) =t e T T (48)

Since p(s™,s*) — 0, the trajectory s* is not an isolated point of Q.
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The cost function C' is defined as follows: for all 1 € N,

1—&(@ 1
C(6i,5i41) = Tf(l), and C(si,si41) = C(04,0i41) = 5
where £(7) satisfies
()| < M < 00,¥i > 1, and lim £(i) = &*. (4.9)
1—> 00
Therefore, we have
f(s*);; =1 and f(s”):l—%ﬁnz 1. (4.10)

Now, we show that Assumption (L) holds at s*. Let s and t in  be arbitrary. Then,
s =s" and t = t™ for some n,m € N. Assume that n < m. We have

56— s = |- S S g (L ).

By the fact that
p(s,t) > 1/2" 4 1/2" T 4 1/2m > 1/2" +1/2™,

we obtain
|f(s) = f(£)] < M p(s, t).

This implies that Assumption (L) holds at s*.

Consider arbitrary sequences of trajectories s™ € € and d™ — d. First we note that
d™ — d implies d™ = d,Vnj. On the other hand, by the definition of it is not not
difficult to observe that s™ — § as ny — oo. Moreover, (8™ )s = (d™ )0, Vng. Thus,
d e To(s*)\ {8}

By Lemma (4.3) the upper contingent derivative U f(s*,d) exists for the direction d €
Ta(s*) \ {s*}. We have

_ * Nk _ *
Uf(s',d) = timsup L& =Ty g JE) S
s—s” p(S, S ) N —>00 p(snk S )
d—d
s#s”
(8)oo=(d) oo

and therefore from (4.8), (4.9) and (4.10) it follows that

_ 1 &) 4
* . "k *
Uf(S ,d) = hmsup% = —6 .
Mk —>00 b

If s* is a local minimizer in the problem (2.4) then, for all sufficiently large nj the
inequality f(s™) > f(s*) holds and according to (4.10) we have (ng) < 0. Thus in this
case £* < 0 or Uf(s*,d) > 0.

Inversely, if U f(s*,d) < 0 for some d, then £* > 0 and the inequality £(n) > 0 holds for
sufficiently large numbers ny. Therefore in this case, there is ng such that f(s™) < f(s*);

that is, s* is not not a local minimizer of f.
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