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2 Notations and Problem Statement

Consider the decision network, (Σ, A, C), where Σ is the set of states (nodes), A is the set
of decisions (arcs) and C is a real-valued cost function C : A → R+. The notation N is used
to denote the set of natural numbers {1, 2, · · · }. Throughout the paper we will assume that
the following conditions hold:

1. there is a node called single root with the following properties

there is no incoming arcs to this node,

every other node can be reached from the single root,

2. the set of decisions available at any node is nonempty and finite,

3. the set of incoming decisions to any node is also finite.

It has been proved that [24, Theorem 1] under these assumptions, the set of nodes can
be numbered, say as in the form Σ = {σ1, σ2, σ3, ...}, such that the following holds: if
(σi, σj) ∈ A for some nodes σi, σj ∈ Σ, then i < j.

Definition 2.1. A trajectory s is an infinite sequence of states (s1, s2, s3, ....) where s1 = σ1

is a given fixed root, si ∈ Σ and (si, si+1) ∈ A for all i = 1, 2, ... .

The set of all trajectories s will be denoted by Π. This set can be endowed by a metric.
We will use the metric used in [2]; namely, given any two trajectories s = (s1, s2, s3, ...) and
s′ = (s′1, s

′
2, s

′
3, ...), the metric ρ is defined as follows:

ρ(s, s′) =

∞∑
i=1

ϕi(s, s
′)2−i, (2.1)

where

ϕi(s, s
′) =

{
0 if si = s′i
1 otherwise

.

In Lemma 1 in [2], it is proved that the set Π is complete and hence compact in the sense
of this metric.

Under this metric, the closeness of trajectories depends on the number of initial nodes
over which they agree. For example, given any i ∈ N, it can easily be verified that the
following holds:

ρ(s, s′) ≤ 1

2k+1
⇒ s′i = si, ∀i = 1, 2, · · · , k. (2.2)

Optimization problem. Given trajectory s = (s1, s2, s3, ...), the value C(si, si+1) is the
cost associated with the decision (si, si+1). Then, the objective function in this problem can
be determined as the total cost over the trajectory s [2]; that is

f(s) =

∞∑
i=1

C(si, si+1), ∀s ∈ Π.
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We assume that f is uniformly convergent over Π; that is, for any ε > 0 there exists nε such
that for all trajectories s the relation

∑∞
i=n C(si, si+1) < ε holds for all n ≥ nε. In this

case f is continuous on Π. Note that this is not a restrictive assumption; it holds if the cost
function C(si, si+1) is uniformly bounded and also is discounted, for example, by (1/2)i (see
Assumption 1 and Lemma 2 in [2]). Taking this into account, one can define the total cost
in the form

f(s) =

∞∑
i=1

riC(si, si+1); (2.3)

where r ∈ (0, 1) is a discount factor.

We consider the following optimization problem

Minimize f(s), subject to s ∈ Ω; (2.4)

where Ω ⊂ Π is a given closed set. We note that Ω is also a compact set. Since f is
continuous and Ω is compact, an optimal solution s∗ to problem (2.4) exists.

Given ε > 0, the ε-neighborhood of s in Π is defined by

Vε(s)
.
= {s′ ∈ Π : ρ(s, s′) < ε}.

Trajectory s ∈ Ω is called an isolated point of Ω if there is ε > 0 such that (Vε(s)\{s})∩
Ω = ∅. Clearly, if s ∈ Ω, Ω \ {s} ̸= ∅ and s is not an isolated point of Ω then there is a
sequence sn ∈ Ω such that sn ̸= s, ∀n, and ρ(sn, s) → 0 as n → ∞.

We note that the set Π is not a linear space. Below we will define the notions of
“direction” and then “directional derivative” by using the main idea behind these notions
defined in linear spaces. They will be used to derive optimality conditions.

Definition 2.2. We say the trajectories s,h ∈ Ω have the same direction if there are
ns, nh ∈ N such that sns+i = hnh+i for all i = 1, 2, · · · .We will use the notation (s)∞ = (h)∞
in this case.

According to this definition, having the same direction means that these trajectories
coincide/join after some finite steps; i.e. ns and nt. Moreover, the “larger” numbers ns and
nt, assuming the sets {s2, · · · , sns} and {t2, · · · , tnt} are disjoint, can be interpreted as s
and h being “far” from each-other.

Definition 2.3. Assume that s̄ is not an isolated point of Ω; that is, Vε(s̄) ∩ Ω ̸= ∅ for
all ε > 0. The upper contingent derivative of f at s̄ with respect to the direction d̄ ∈ Π is
defined as

Uf(s̄, d̄) = lim sup
s→s̄
d→d̄
s̸=s̄

(s)∞=(d)∞

f(s)− f(s̄)

ρ(s, s̄)
.
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The idea behind this definition is that the limit of the fraction on the right hand side
is taken over all sequences sk,dk such that sk → s̄, dk → d̄ and for each k, the trajectory
sk has the same direction as dk. Thus, this idea is similar to the definition of the Clarke’s
directional derivative of g at x̄ in a direction x in linear spaces given below:

f◦(x̄, x) = lim sup
y→x̄
ξ↓0

f(y + ξx)− f(y)

ξ
.

Since Π is not a linear space and the operation λd̄, (λ is a given number) is not defined, the
super-linearity of Uf(s̄, d̄) with respect to d̄ can not be considered.

We also note that, according to (2.2), for example if ρ(sk, s̄) ≤ ε, then the first [1+ log2
1
ε ]

elements of trajectories sk and s̄ coincide. Therefore, the statements sk → s̄, dk → d̄ means
that trajectories sk and dk coincide with s̄ and d̄, respectively, at the some “initial stage”,
and this “initial stage” grows infinitely when k → ∞. Then, the condition (sk)∞ = (dk)∞
states that trajectories sk, dk join after that “initial stage”; that is, have the same direction
in terms of Definition 2.2. Therefore, we can interpret this siltation as trajectories sk

approaching to s̄ in direction d̄.
Clearly, the upper contingent derivative Uf(s̄, d̄) is not defined for directions (trajecto-

ries) d̄ that are not connected with s̄ in the sense of the above interpretation.

3 Contingent Cone

Let Ω ⊂ Π and s̄ ∈ Ω be a non-isolated point of Ω. For the rest of the paper we assume that
Ω \ {s} ̸= ∅. We introduce the notion of the contingent cone TΩ(s̄).

Definition 3.1. We say t ∈ Π is an element of the contingent cone TΩ(s̄) to the set Ω at
s̄ if there exist sequences of trajectories sn ∈ Ω, (sn ̸= s̄,∀n) and tn ∈ Π such that sn → s̄,
tn → t as n → ∞, and (sn)∞ = (tn)∞ for all n :

TΩ(s̄)
.
= {t ∈ Π : ∃sn ∈ Ω, tn ∈ Π; sn ̸= s̄,∀n, sn → s̄, tn → t and

(sn)∞ = (tn)∞,∀n}.

Roughly speaking, the contingent cone TΩ(s̄) combines all trajectories in Π having the
same direction with some trajectory in Ω being “sufficiently” close to s̄.

Some properties of the contingent cone are presented below.

Lemma 3.2. Let s̄ be a non-isolated point of Ω. Then TΩ(s̄) is not empty and, in particular,
s̄ ∈ TΩ(s̄).

Proof. If s̄ is a non-isolated point of Ω, then there exists a sequence sn ∈ Ω such that
sn ̸= s̄,∀n, and sn → s̄ as n → ∞. Then, to prove the relation s̄ ∈ TΩ(s̄) it is enough to let
tn := sn in Definition 3.1.

In the next lemma, we show that the contingent cone in Definition 3.1 is a closed set.

Lemma 3.3. TΩ(s̄) is a closed set.

Proof. Assume that the sequence um ∈ TΩ(s̄) converges to u. To show TΩ(s̄) is closed, it
suffices to show that u ∈ TΩ(s̄); or equivalently, it suffices to show that there exist sequences
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sn ∈ Ω (sn ̸= s̄,∀n) and tn ∈ Π such that the conditions of Definition 3.1 are satisfied; that
is

sn → s̄, tn → u as n → ∞ and (sn)∞ = (tn)∞,∀n. (3.1)

Take an arbitrary ε > 0. Let m(ε) be such that

ρ(um(ε),u) <
1

2
ε.

Given m(ε), by the definition of um(ε) ∈ TΩ(s̄), there are sequences s
m(ε),n ∈ Ω, tm(ε),n ∈

Π such that sm(ε),n ̸= s̄,∀n, and

sm(ε),n → s̄, tm(ε),n → um(ε) as n → ∞ and (sm(ε),n)∞ = (tm(ε),n)∞,∀n.

In other words, there is n(ε) such that

ρ(sm(ε),n(ε), s̄) ≤ ε and ρ(tm(ε),n(ε),um(ε)) ≤ 1

2
ε.

Then
ρ(tm(ε),n(ε),u) ≤ ρ(tm(ε),n(ε),um(ε)) + ρ(um(ε),u) ≤ ε.

This means that

sm(ε),n(ε) → s̄, tm(ε),n(ε) → u as ε → 0.

On the other hand (sm(ε),n(ε))∞ = (tm(ε),n(ε))∞; that is, the required relation (3.1) is
true.

We note that the sets Ω and TΩ(s̄) are generally different. Below we provide an example
for which the relation TΩ(s̄) ⊈ Ω holds. A similar example to demonstrate Ω ⊈ TΩ(s̄) can
be constructed easily.

Example 3.4. Consider the set of nodes (δ1, δ2, δ3, ....), δi ∈ Σ,∀i, and assume that the set

∆ = {(δi1 , δi2 , δi3 , ....) : {1, 3, 5, · · · } ⊂ {i1, i2, i3, · · · } and i1 < i2 < · · · }

belongs to the set of all trajectories Π. Let

s̄ = (δ1, δ3, δ5, ....), t = (δ1, δ2, δ3, δ4, ....) and

Ω = {s ∈ ∆ : (s)∞ = (s̄)∞}.

Clearly t ∈ ∆ ⊂ Π and t /∈ Ω (since each trajectory in Ω contains only odd indices after
some finite index). Moreover, s̄ ∈ Ω is a non-isolated point of Ω; for example, for the set of
trajectories sn ∈ Ω defined by

sn = (δ1, δ3, δ5, · · · , δ2n+1, δ2n+2, δ2n+3, · · · , δ4n+1, δ4n+3, δ4n+5, ....)

we have sn ̸= s̄,∀n ≥ 1 and sn → s̄ as n → ∞.
We show that t ∈ TΩ(s̄). Consider the sequence of trajectories tn ∈ ∆ ⊂ Π defined as

follows
tn = (δ1, δ2, δ3, ..., δ2n, δ2n+1, δ2n+3, δ2n+5, ...).

Clearly tn → t as n → ∞; and moreover, (tn)∞ = (sn)∞ for all n.
Therefore, t ∈ TΩ(s̄) and t /∈ Ω; that is, TΩ(s̄) ⊈ Ω.



456 S. HASSANI AND M.A. MAMMADOV

In the following, we investigate the contingent cone of intersection and union of sets.

Lemma 3.5. Let Ω1 and Ω2 be subsets of Π and s̄ ∈ Ω1 ∩ Ω2. Then,

(i) TΩ1∩Ω2
(s̄) ⊂ TΩ1

(s̄) ∩ TΩ2
(s̄).

(ii) TΩ1∪Ω2(s̄) = TΩ1(s̄) ∪ TΩ2(s̄).

Proof. The proofs of TΩ1∩Ω2
(s̄) ⊂ TΩ1

(s̄)∩ TΩ2
(s̄) and TΩ1

(s̄)∪ TΩ2
(s̄) ⊂ TΩ1∪Ω2

(s̄) directly
follow from the definition of the contingent cone. Thus, it is enough to show that TΩ1∪Ω2

(s̄) ⊂
TΩ1

(s̄) ∪ TΩ2
(s̄).

Let t ∈ TΩ1∪Ω2
(s̄). Then, there are sequences sn ∈ Ω1 ∪ Ω2 and {tn}n∈N such that

ρ(sn, s̄) → 0, ρ(tn, t) → 0, and (sn)∞ = (tn)∞,∀n. (3.2)

As sn ∈ Ω1 ∪ Ω2, for some j ∈ {1, 2} the realtion sn ∈ Ωj holds. Then, from (3.2) we
conclude that t ∈ TΩj

(s̄) and hence t ∈ TΩ1
(s̄) ∪ TΩ2

(s̄).

In the next example, we show that the inverse of the inclusion (i) in this lemma; that is,
the relation

TΩ1∩Ω2(s̄) ⊃ TΩ1(s̄) ∩ TΩ2(s̄)

may not be true.

Example 3.6. Consider two trajectories t = (s̄1, t2, t3, ....) and s̄ = (s̄1, s̄2, s̄3, ....) assuming
that ti ̸= s̄j for all i, j ≥ 2. Define the sets Ω1 and Ω2 as follows

Ω1 = {s̄} ∪ Ω1,2 ∪ Ω0
1, Ω2 = {s̄} ∪ Ω1,2 ∪ Ω0

2;

where
Ω0

1 = {sn = (s̄1, s̄2, ..., s̄2n, s̄2n+2, s̄2n+4, s̄2n+6, ...), n = 1, 2, · · · },

Ω0
2 = {un = (s̄1, s̄2, ..., s̄2n, s̄2n+1, s̄2n+3, s̄2n+5, ...), n = 1, 2, · · · },

Ω1,2 = {un = (s̄1, s̄2, ..., s̄2n, ξ2n+1, ξ2n+2, ξ2n+3, ...), n = 1, 2, · · · };

and ξi ̸= s̄j , for ξi ̸= tj , all i, j ≥ 2.

Now, let the set of all trajectories Π is given by

Π = {t} ∪ Ω1 ∪ Ω2 ∪ T1 ∪ T2

where
T1 = {tn = (t1, t2, ..., t2n, s̄2n+2, s̄2n+4, s̄2n+6, ...), n = 1, 2, · · · };

T2 = {vn = (t1, t2, ..., t2n, s̄2n+1, s̄2n+3, s̄2n+5, ...), n = 1, 2, · · · }.

First we show that t ∈ TΩ1(s̄) ∩ TΩ2(s̄).
Consider the sequences sn ∈ Ω1 and tn ∈ T1. Clearly

ρ(sn, s̄) → 0, ρ(tn, t) → 0, and (sn)∞ = (tn)∞, ∀n.

This means that t ∈ TΩ1
(s̄).

In a similar way, for sequences un ∈ Ω2 and vn ∈ T2 we have

ρ(un, s̄) → 0, ρ(vn, t) → 0, and (un)∞ = (vn)∞, ∀n;
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that leads to t ∈ TΩ2
(s̄). Therefore, t ∈ TΩ1

(s̄) ∩ TΩ2
(s̄).

Now we show that t /∈ TΩ1∩Ω2
(s̄). By contradiction let t ∈ TΩ1∩Ω2

(s̄); that is, there are
sequences un ∈ Ω1 ∩ Ω2, u

n ̸= s̄,∀n, and dn ∈ Π such that

ρ(un, s̄) → 0, ρ(dn, t) → 0, and (un)∞ = (dn)∞, ∀n. (3.3)

As Ω1 ∩ Ω2 = {s̄} ∪ Ω1,2, it is not difficult to observe that the relation un ∈ Ω1 ∩ Ω2,
un ̸= s̄, implies for every n the following holds

(un)∞ ̸= (s)∞, ∀s ∈ {t} ∪ Ω0
1 ∪ Ω0

2 ∪ T1 ∪ T2.

On the other hand, according to the definition of sets Ωi and Ti, i = 1, 2, the convergence
dn → t implies that given any n, one of the following holds: dn = t, or dn ∈ T1, or d

n ∈ T2.
In all of these three cases we have

(dn)∞ ̸= (un)∞.

This contradicts (3.3). Thus, t /∈ TΩ1∩Ω2
(s̄).

4 Optimality Conditions

Consider the optimization problem (2.4) stated in Section 2. In this section our aim is to
investigate optimality conditions for this problem in terms of the contingent cone and the
upper contingent derivative.

Assumption (L): The total cost f is locally Lipschitz; that is, for each s̄ ∈ Π, there exist
a δ−neighborhood Vδ(s̄) with δ > 0 and a number Lδ,s̄ < ∞ such that

|f(s)− f(t)| ≤ Lδ,s̄ ρ(s, t), ∀s, t ∈ Vδ(s̄). (4.1)

The following two propositions provide some sufficient conditions under which Assump-
tion (L) holds.

Proposition 4.1. Assume that the cost function C is bounded and the total cost f is defined
as in (2.3). If r ≤ 1

2 then f is locally Lipschitz at each s̄ ∈ Π.

Proof. Given s̄ ∈ Π, we take any δ > 0 and trajectories s, t ∈ Vδ(s̄). Clearly

ρ(s, t) ≤ 2δ.

According to (2.2) at least the first [log2
1
2δ − 1] elements of trajectories s = (s1, s2, · · · ) and

t = (t1, t2, · · · ) coincide. Let Nδ ≥ [log2
1
2δ − 1] be the first index for which sNδ

̸= tNδ
and

si = ti for all i = 1, · · · , Nδ − 1. Then from (2.1) we have

ρ(s, t) =

∞∑
i=1

ϕi(s, t)2
−i ≥ 2−Nδ . (4.2)

On the other hand

|f(s)− f(t)| ≤
∞∑
i=1

ri|C(si, si+1)− C(ti, ti+1)| =
∞∑

i=Nδ−2

ri|C(si, si+1)− C(ti, ti+1)|.
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Since cost function C is bounded, there is M < ∞ such that |C(si, si+1)| ≤ M for all i
and s. Then

|f(s)− f(t)| ≤
∞∑

i=Nδ−2

2 riM ≤ 2MrNδ−2 1

1− r
.

Taking into account r ≤ 1
2 we have 1

1−r ≤ 2 and rNδ−2 ≤ 2−Nδ+2 and therefore

|f(s)− f(t)| ≤ 2M 2−Nδ+1.

Thus, denoting Lδ,s̄ = 4M from (4.2) we obtain (4.1).

Proposition 4.2. Let s̄ ∈ Π be given and the total cost f be defined as in (2.3). Assume
that, there exist a δ−neighborhood Vδ(s̄) and a number M < ∞ such that the cost function
C satisfies the following condition

|C(si, si+1)− C(ti, ti+1)| ≤ M ρ(s, t), ∀s, t ∈ Vδ(s̄) and ∀i = 1, 2, 3, ... .

Then f is locally Lipschitz at s̄.

Proof. Take any s, t ∈ Vδ(s̄). We have

|f(s)− f(t)| ≤
∞∑
i=1

ri|C(si, si+1)− C(ti, ti+1)|

≤
∞∑
i=1

ri M ρ(s, t) =
Mr

1− r
ρ(s, t), ∀s ∈ Vδ(t).

Thus, (4.1) holds for Lδ,s̄ =
Mr
1−r .

The following results is about the existence of the upper contingent derivative.

Lemma 4.3. Assume that s̄ is a non-isolated point of Ω and Assumption (L) holds. Then
the upper contingent derivative Uf(s̄,d) exists for each direction d ∈ TΩ(s̄) \ {s̄}.

Proof. Take an arbitrary d̄ ∈ TΩ(s̄) \ {s̄}. By Assumption (L) for s̄ ∈ Ω, there exists a
δ−neighborhood Vδ(s̄) with δ > 0 such that (4.1) holds. Then

|f(s)− f(s̄)|
ρ(s, s̄)

≤ Lδ,s̄, ∀s ∈ Vδ(s̄) \ {s̄}. (4.3)

Since d̄ ∈ TΩ(s̄), then, it follows from (4.3) that

−Lδ,s̄ ≤ sup
ρ(s,s̄)<ε
ρ(d,d̄)<ε

s ̸=s̄
(s)∞=(d)∞

f(s)− f(s̄)

ρ(s, s̄)
≤ Lδ,s̄, ∀ϵ < δ. (4.4)

Hence

Uf(s̄, d̄) = lim sup
s→s̄
d→d̄
s ̸=s̄

(s)∞=(d)∞

f(s)− f(s̄)

ρ(s, s̄)

exists, which means, the upper contingent derivative exists for any non-isolated point s̄ ∈ Ω
and any direction d̄ ∈ TΩ(s̄) \ {s̄}.
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Remark. According to Lemma 4.3, as Uf(s̄,d) exists if d̄ is in the contingent cone, we
call it the upper contingent derivative.

We will call d a descent direction of f at s̄ if the upper contingent derivative is negative:
Uf(s̄,d) < 0. The main result of this section is a necessary condition of optimality for a
local minimizer of f that are presented in the next theorem and corollary.

Theorem 4.4. Assume that s∗ is a non-isolated point of Ω and Assumption (L) holds at s∗.
If Uf(s∗,d) < 0 for some d ∈ TΩ(s

∗) \ {s̄} then, s∗ is not a local minimizer of the problem
(2.4); that is, for every ε > 0, there exist sε ∈ Ω and dε ∈ Π such that

ρ(sε, s∗) < ε, ρ(dε,d) < ε, sε ̸= s∗, (sε)∞ = (dε)∞ and f(sε) < f(s∗). (4.5)

Proof. By the assumption, there exists d̄ ∈ TΩ(s
∗) \ {s∗} such that Uf(s∗, d̄) < 0. Since

d̄ ∈ TΩ(s̄), by the definition of the contingent cone, there exist sequences of trajectories
sn ∈ Ω and tn ∈ Π such that

sn → s∗, tn → d̄ as n → ∞; and sn ̸= s∗, (sn)∞ = (dn)∞,∀n ≥ 1. (4.6)

By the definition of the upper contingent derivative we have

lim sup
n→∞

f(sn)− f(s∗)

ρ(sn, s∗)
≤ Uf(s∗, d̄) < 0.

Then, given ϵ > 0, there exists a sufficiently large number nϵ such that the inequalities
ρ(snϵ , s∗) < ϵ, ρ(tnϵ , d̄) < ϵ and f(snϵ)− f(s∗) < 0 hold. Therefore, (4.6) yields (4.5).

From Theorem 4.4 we obtain the following necessary condition of local optimality.

Corollary 4.5 (Necessary condition of optimality). Assume that s∗ is a non-isolated point
of Ω and Assumption (L) holds at s∗. If s∗ is a local minimizer of the problem (2.4) then,

Uf(s∗,d) ≥ 0, ∀d ∈ TΩ(s
∗) \ {s∗}. (4.7)

In the following, we present an example that illustrates Theorem 4.4 and Corollary 4.5.

Example 4.6. Let

s∗ = (s1, s2, s3, s4....), d̄ = (s1, δ2, δ3, δ4, ....), and

sn = (s1, s2, ..., sn, δn+1, δn+2, δn+3, ....) : n = 1, 2, · · · ;

where si ̸= δi for all i ≥ 2.
The set Ω and the set of all trajectories Π are given by Ω = {s∗} ∪ {sn : n = 1, 2, · · · }

and Π = {d̄} ∪ Ω.

By the definition of Ω for any given sn ∈ Ω we have

ρ(sn, s∗) =
1

2n+1
+

1

2n+2
+ · · · = 1

2n
. (4.8)

Since ρ(sn, s∗) → 0, the trajectory s∗ is not an isolated point of Ω.
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The cost function C is defined as follows: for all i ∈ N,

C(δi, si+1) =
1− ξ(i)

2i
, and C(si, si+1) = C(δi, δi+1) =

1

2i
;

where ξ(i) satisfies

|ξ(i)| ≤ M < ∞,∀i ≥ 1, and lim
i→∞

ξ(i) = ξ∗. (4.9)

Therefore, we have

f(s∗) =

∞∑
i=1

1

2i
= 1 and f(sn) = 1− ξ(n)

2n
,∀n ≥ 1. (4.10)

Now, we show that Assumption (L) holds at s∗. Let s and t in Ω be arbitrary. Then,
s = sn and t = tm for some n,m ∈ N. Assume that n < m. We have

|f(s)− f(t)| =
∣∣∣∣−ξ(n)

2n
+

ξ(m)

2m

∣∣∣∣ ≤ M

(
1

2n
+

1

2m

)
.

By the fact that

ρ(s, t) ≥ 1/2n + 1/2n+1 + ....+ 1/2m ≥ 1/2n + 1/2m,

we obtain

|f(s)− f(t)| ≤ M ρ(s, t).

This implies that Assumption (L) holds at s∗.

Consider arbitrary sequences of trajectories snk ∈ Ω and dnk → d̄. First we note that
dnk → d̄ implies dnk = d̄,∀nk. On the other hand, by the definition of Ω it is not not
difficult to observe that snk → s̄ as nk → ∞. Moreover, (snk)∞ = (dnk)∞,∀nk. Thus,
d̄ ∈ TΩ(s

∗) \ {s̄}.
By Lemma (4.3) the upper contingent derivative Uf(s∗, d̄) exists for the direction d̄ ∈

TΩ(s
∗) \ {s∗}. We have

Uf(s∗, d̄) = lim sup
s→s∗

d→d̄
s̸=s∗

(s)∞=(d)∞

f(s)− f(s∗)

ρ(s, s∗)
= lim sup

nk→∞

f(snk)− f(s∗)

ρ(snk , s∗)

and therefore from (4.8), (4.9) and (4.10) it follows that

Uf(s∗, d̄) = lim sup
nk→∞

1− ξ(nk)
2nk

− 1
1

2nk

= −ξ∗.

If s∗ is a local minimizer in the problem (2.4) then, for all sufficiently large nk the
inequality f(snk) ≥ f(s∗) holds and according to (4.10) we have ξ(nk) ≤ 0. Thus in this
case ξ∗ ≤ 0 or Uf(s∗, d̄) ≥ 0.

Inversely, if Uf(s∗, d̄) < 0 for some d̄, then ξ∗ > 0 and the inequality ξ(nk) > 0 holds for
sufficiently large numbers nk. Therefore in this case, there is nk such that f(snk) < f(s∗);
that is, s∗ is not not a local minimizer of f.
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