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(resp.higher-order) contingent set lack some inherent properties the contingent derivatives
own. Then, it is more difficult to study the set-valued optimization by using the second-
order (resp.higher-order) contingent derivatives. Note that second-order composed contin-
gent cone is always closed and convex when the set we disscuss is convex. Therefore, by
using the second-order composed contingent derivatives presented in Khan [11], Zhu [31]
proposed Karush-Kuhn-Tucker sufficient and necessary optimality conditions for set-valued
optimization in second-order case extended the results of Götz in [6].

In vector optimization problem, minimal or weakly minimal points of a subset of a
partially ordered linear space are mainly considered. But as we konw, the range of the
set of (weakly) minimal points is often too large, then, investigating some variants of these
concepts makes more meaningful. For example, various notions of proper minimality have
been introduced in [3, 4, 9, 12, 17], and Benson proper efficiency given in [3, 9, 17] plays a
major role in set-valued optimization.

Inspired by the preceding work [23, 26, 27, 28, 29, 30, 31], we investigate the qualitative
analysis for second-order composed contingent derivative under Benson proper perturbation
maps in set-valued optimization. The remaining of this article is organized as follows. Sec-
tion 2 provides some basic definitions we need in the paper. The main results in establishing
relationships between the second-order composed contingent derivative of the perturbation
map and the set of Benson proper minimal points of the second-order composed contingent
derivative of the set-valued map are given in Section 3.

2 Preliminaries

Throughout the paper, let X,Y be two Banach spaces, F : X → 2Y be a nonempty set-
valued map, C ⊆ Y be a closed convex pointed cone with nonempty interior intC ̸= ∅.
where C is pointed if C ∩ (−C) = {0}. Assume that 0X and 0Y denote the origins of X
and Y , respectively, X∗ and Y ∗ are the topological dual spaces of X and Y . Let C∗ be the
negative dual cone of cone C, defined by

C∗ := {φ ∈ Y ∗ : φ(c) ≤ 0, ∀c ∈ C}.

Let Q be a nonempty subset of Y , denote the closure of Q by clQ and the interior of Q by
intQ. The cone hull of Q is defined by

coneQ := {tq : t ≥ 0, q ∈ Q}.

The domain, graph and epigraph of a given set-valued map F : X → 2Y are defined by

domF := {x ∈ X | F (x) ̸= ∅},

gphF := {(x, y) ∈ X × Y | y ∈ F (x), x ∈ X},

epiF := {(x, y) ∈ X × Y | y ∈ F (x) + C, x ∈ X},

respectively. Obviously, the epiF is the graph of F + C, i.e., epiF = gph(F + C).
The profile map F+ of F is denoted by F+(x) := F (x) + C, for every x ∈ domF.
The Painleve-Kuratowski (sequential) outer (or upper) limit is defined by

lim sup
x→x̂

F (x) := {ŷ ∈ Y | ∃xn → x̂, yn → ŷ s.t. yn ∈ F (xn), ∀n ∈ N}.

In this paper, we let R is the set of real numbers and R+ = {r : r ≥ 0}.
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Definition 2.1 ([9]). A nonempty convex subset B of a convex cone C ̸= {0X} is called a
base for C, if 0X /∈ B and every x ∈ C \ {0X} has a unique representation of the form

x = λb for some λ > 0 and some b ∈ B.

Definition 2.2 ([9]). Let S be a nonempty convex subset of X. A set-valued map F : S →
2Y is said to be C-convex if and only if for all x1, x2 ∈ S and λ ∈ [0, 1], we have

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) + C.

It is well known that if F is C-convex on S, then gph(F + C) is a convex subset in X × Y .

Definition 2.3 ([2]). Let S be a nonempty subset of X, x̂ ∈ clS. The contingent cone
T (S, x̂) of S at x̂, is given by T (S, x̂) := {v ∈ X | ∃tn ↓ 0,∃vn → v, s.t. x̂ + tnvn ∈
S, ∀n ∈ N}. Or equivalently, T (S, x̂) := {v ∈ X | ∃λn → +∞,∃xn ∈ S, s.t. xn →
x̂ and λn(xn − x̂) → v}.

Definition 2.4 ([2]). Let S be a nonempty subset of X, x̂ ∈ clS. The second-order
contingent set T 2(S, x̂, ω) of S at x̂ in the direction ω ∈ X, is given by T 2(S, x̂, ω) :=
lim sup

t↓0

S−x̂−tω
1
2 t

2 . Or equivalently, T 2(S, x̂, ω) := {v ∈ X | ∃tn ↓ 0,∃vn → v, such that x̂ +

tnω + 1
2 t

2
nvn ∈ S, ∀n ∈ N}.

Proposition 2.5 ([10, 12]). Let S be a convex subset of X, x̂ ∈ clS and ω ∈ T (S, x̂). Then

T (T (S, x̂), ω) = cl(cone(cone(S − x̂)− ω)),

and
T 2(S, x̂, ω) ⊂ T (T (S, x̂), ω).

Additionally, if 0X ∈ T 2(S, x̂, ω), then

T 2(S, x̂, ω) = T (T (S, x̂), ω).

Where T (T (S, x̂), ω) is called second-order composed contingent cone.

Definition 2.6 ([2]). Let F : X → 2Y be a set-valued map. The contingent derivative
DF (x̂, ŷ) of F at (x̂, ŷ) ∈ gphF is the set-valued map from X to Y defined by

gphDF (x̂, ŷ) = T (gphF, (x̂, ŷ)).

Definition 2.7 ([2]). Let F : X → 2Y be a set-valued map. The second-order contingent
derivative D2F (x̂, ŷ, û, v̂) of F at (x̂, ŷ) ∈ gphF in the direction (û, v̂) ∈ X × Y is the
set-valued map X to Y defined by

gphD2F (x̂, ŷ, û, v̂) = T 2(gphF, (x̂, ŷ), (û, v̂)).

Definition 2.4 and Proposition 2.5 show that the second order contingent set T 2(S, x̂, ω)
is not necessarily a cone and even is not convex although S is convex . However, contingent
cone T (S, x̂) and second-order composed contingent cone T (T (S, x̂), ω) are always closed
cones, and especially, are convex when S is convex. So Khan [11] and Zhu [31] proposed a
new notion of second-order composed contingent derivative for set-valued maps by terms of
the second-order composed contingent cone.



466 H. LIANG, Z. WAN AND Q. HE

Definition 2.8 ([11, 31]). Let F : X → 2Y be a set-valued map. The second-order composed
contingent derivative D

′′
F (x̂, ŷ, û, v̂) of F at (x̂, ŷ) ∈ gphF in the direction (û, v̂) ∈ X × Y

is the set-valued map X to Y defined by

gphD
′′
F (x̂, ŷ, û, v̂) = T (T (gphF, (x̂, ŷ)), (û, v̂)).

Lemma 2.9. If (x̂, ŷ) ∈ gphF and (û, v̂) ∈ X × Y , then D
′′
F (x̂, ŷ, û, v̂)(x) is closed for

every x ∈ domD
′′
F (x̂, ŷ, û, v̂).

Proof. It follows dircctly from Proposition 2.5 and Definition 2.8.

Definition 2.10 ([1]). A set-valued map F : X → 2Y is called lower semicontinuous (l.s.c)
at x̂ ∈ X if for any sequence xn ∈ X satisfying xn → x̂ and any ŷ ∈ F (x̂), there exists a
sequence yn ∈ F (xn) such that yn → ŷ. We say F is said to be lower semicontinuous on
S ⊆ X if F is l.s.c. at every point x ∈ S.

Lemma 2.11 ([25]). If F : X → 2Y is a C-convex set-valued map and x ∈ intX, then
F + C is lower semicontinuous at x.

Definition 2.12 ([2]). Let A be a nonempty subset of Y . A point x̄ ∈ A is called a minimal
point of A if A ∩ (x̄− C) = {x̄}. The set of all minimal points of A is denoted by MinCA.

Definition 2.13 ([2]). Let A be a nonempty subset of Y . A point x̄ ∈ A is called a weakly
minimal point of A if A ∩ (x̄ − intC) = ∅. The set of all weakly minimal points of A is
denoted by WMinCA.

Definition 2.14 ([3, 12]). Let A be a nonempty subset of Y . ȳ ∈ A is called a Benson
proper minimal point of A, written as ȳ ∈ PrMin(A,C), if

clcone(A+ C − ȳ) ∩ (−C) = {0}.

Remark 2.15. PrMin(A,C) ⊆ MinCA ⊆ WMinCA. However, neither of the inverse inclu-
sions is true, as is shown in the following example.

Example 2.16. Consider the set A := {(y1, y2) ∈ [0, 2] × [0, 2] | y2 ≥ 1 −
√

1− (y1 − 1)2

for y1 ∈ [0, 1]} in Y := R2 with the natural ording cone C := R2
+. A direct calculation gives

MinCA := M = {(y1, 1−
√
1− (y1 − 1)2) | y1 ∈ [0, 1]},

WMinCA = M ∪ {(0, y2) ∈ R2 | y2 ∈ (1, 2]} ∪ {(y1, 0) ∈ R2 | y1 ∈ (1, 2]},
PrMin(A,C) = M \ {(0, 1), (1, 0)}.

Consequently, we have
WMinCA ⊈ MinCA ⊈ PrMin(A,C).

Definition 2.17 ([25]). Let A be a nonempty subset of X, x̂ ∈ X. The normal cone NA(x̂)
to A at x̂ is the negative polar cone of the tangent cone T (A, x̂), i.e.,

NA(x̂) = [T (A, x̂)]0 = {φ ∈ X∗ : φ(x) ≤ 0, ∀x ∈ T (A, x̂)}.

When A is convex and x̂ ∈ A, we have NA(x̂) = {φ ∈ X∗ : φ(x̂) ≥ φ(x), ∀x ∈ A}.
In the following, we introduce a concept that similar to Definition 13.2.4 in [12] (p616).

Definition 2.18. Let A ⊂ Y be a nonempty subset of Y and A + C be convex. A point
ŷ ∈ PrMin(A,C) is called a normally Benson proper minimal point of A, if

NA+C(ŷ) ⊂ int(C∗) ∪ {0Y ∗},

where C∗ is the negative dual cone of cone C.
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3 Second-order Composed Contingent Derivative
of the Perturbation Map

Let F is considered to be a feasible set map from X to Y , where X is the Banach space
of perturbation parameter vectors and Y is the objective space. Another set-valued map G
from X to Y is denoted by

G(x) = PrMin(F (x), C), for any x ∈ X, (3.1)

and call it the (proper) perturbation map. The aim of this section is to discuss the relation-
ship between the second-order composed contingent derivative of G and that of F .

Definition 3.1. F is said to be C-minicomplete by G near x̄, if

F (x) ⊂ G(x) + C, ∀x ∈ V (x̄),

where V (x̄) is a neighborhood of x̄.

Definition 3.2 ([18]). LetH be a nonempty subset of Y , H is said to hold the C-domination
property iff H ⊂ MinCH + C.

Lemma 3.3 ([8]). For a cone K ⊂ Y and its negative dual cone K∗ = {φ ∈ Y ∗ : φ(k) ≤
0,∀k ∈ K}, we have φ(k) < 0 for φ ∈ Y ∗ \ {0Y ∗}, k ∈ intK, or φ ∈ intK∗, k ∈ K \ {0Y }.

Lemma 3.4. Let (x̂, ŷ) ∈ gphF and (û, v̂) ∈ X ×Y . Suppose that C has a compact base B.
Then

MinCD
′′
F+(x̂, ŷ, û, v̂)(x) ⊂ D

′′
F (x̂, ŷ, û, v̂)(x),

for any x ∈ X.

Proof. Let

y ∈ MinCD
′′
F+(x̂, ŷ, û, v̂)(x), (3.2)

then y ∈ D
′′
F+(x̂, ŷ, û, v̂)(x). It follows from Definition 2.8 that (x, y) ∈ T (T (gph(F +

C), (x̂, ŷ)), (û, v̂)). By Definition 2.3, there exist sequences tn → 0+ and (xn, yn) → (x, y),
such that for ∀n ∈ N ,

(û, v̂) + tn(xn, yn) ∈ T (gph(F + C), (x̂, ŷ)).

Moreover, ∀n ∈ N , there exist sequences tkn → 0+ and (xk
n, y

k
n) → (û, v̂) + tn(xn, yn), such

that

(x̂, ŷ) + tkn(x
k
n, y

k
n) ∈ gph(F + C),∀k ∈ N,

that is

ŷ + tkny
k
n ∈ F (x̂+ tknx

k
n) + C, ∀n, k ∈ N.

Since C has a compact base B, there exist αk
n ≥ 0 and bkn ∈ B such that

ŷ + tkn(y
k
n − αk

n

tkn
bkn) ∈ F (x̂+ tknx

k
n), (3.3)

where bkn → bn and bn → b. Since B is compact, b ∈ B.
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We now show
αk

n

tkn
→ 0. Suppose to the contrary that for some ε > 0, we may assume

without loss of generality that
αk

n

tkn
≥ ε, by taking a subsequence if necessary. Then

ŷ + tkn(y
k
n − tnεb

k
n) =ŷ + tkn(y

k
n − αk

n

tkn
bkn) + αk

nb
k
n − εtkntnb

k
n

∈F (x̂+ tknx
k
n) + C.

Since ykn − tnεb
k
n → v̂ + tnyn − tnεbn, we get

(û, v̂) + tn(xn, (yn − εbn)) ∈ T (gph(F + C), (x̂, ŷ)).

Because xn → x, yn − εbn → y − εb, one obtains

(x, y − εb) ∈ T (T (gph(F + C), (x̂, ŷ), (û, v̂)),

which together with Definition 2.8 gives

y − εb ∈ D
′′
F+(x̂, ŷ, û, v̂)(x).

This is a contradiction to the assumption (3.2). Therefore,
αk

n

tkn
→ 0. Then, from (3.3), it

follows that
y ∈ D

′′
F (x̂, ŷ, û, v̂)(x).

Consequently,

MinCD
′′
F+(x̂, ŷ, û, v̂)(x) ⊂ D

′′
F (x̂, ŷ, û, v̂)(x).

The proof is complete.

Lemma 3.5 ([31]). Let F : X → 2Y be a set-valued map. (x̂, ŷ) ∈ gphF and (û, v̂) ∈ X×Y .
Then, for every x ∈ domD

′′
F (x̂, ŷ, û, v̂). we have

D
′′
F (x̂, ŷ, û, v̂)(x) + C ⊂ D

′′
F+(x̂, ŷ, û, v̂)(x).

Theorem 3.6. Let (x̂, ŷ) ∈ gphF and (û, v̂) ∈ X × Y . Suppose that C has a com-
pact base B and D

′′
F+(x̂, ŷ, û, v̂)(x) fulfills the C-domination property for all x ∈ Ξ :=

domD
′′
F (x̂, ŷ, û, v̂). Then, for any x ∈ Ξ,

D
′′
F+(x̂, ŷ, û, v̂)(x) = D

′′
F (x̂, ŷ, û, v̂)(x) + C. (3.4)

Proof. By Lemma 3.5, the conclusion

D
′′
F (x̂, ŷ, û, v̂)(x) + C ⊂ D

′′
F+(x̂, ŷ, û, v̂)(x).

is provided. We only prove that the inclusion D
′′
F+(x̂, ŷ, û, v̂)(x) ⊂ D

′′
F (x̂, ŷ, û, v̂)(x) +C.

It follows from the C-domination property D
′′
F+(x̂, ŷ, û, v̂)(x) and Lemma 3.4 that

D
′′
F+(x̂, ŷ, û, v̂)(x) ⊂ MinCD

′′
F+(x̂, ŷ, û, v̂)(x) + C ⊂ D

′′
F (x̂, ŷ, û, v̂)(x) + C.

Thus, this completes the proof.

Remark 3.7. If the C-domination property of D
′′
F+(x̂, ŷ, û, v̂)(x) in Theorem 3.6 is not

fulfilled, then Theorem 3.6 may not hold. The following example illustrates the case.
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Example 3.8. Let X = R, Y = R, C = R+. A set-valued map F : X → 2Y is defined by

F (x) =

{
{x,−2}, if x ≥ 0,

{−1}, if x < 0.

Let (x̂, ŷ) = (0, 0) ∈ gphF and (û, v̂) = (1, 1). Then, for any x ≥ 0,

D
′′
F (x̂, ŷ, û, v̂)(x) = {y | y = x}, D

′′
F+(x̂, ŷ, û, v̂)(x) = R.

Clearly, D
′′
F+(x̂, ŷ, û, v̂)(x) does not satisfy the C-domination property and

D
′′
F+(x̂, ŷ, û, v̂)(x) ̸= D

′′
F (x̂, ŷ, û, v̂)(x) + C.

Lemma 3.9. Let A be a nonempty subset of Y . Then

PrMin(A,C) = PrMin(A+ C,C)

Proof. Let ȳ ∈ PrMin(A,C), by the definition 2.14, then

clcone(A+ C − ȳ) ∩ (−C) = {0}.

Since C is a convex cone, then C + C = C, one obtains

clcone(A+ C + C − ȳ) ∩ (−C) = {0}.

Because of ȳ ∈ A ⊂ A+ C,

ȳ ∈ PrMin(A+ C,C).

On the other hand, let ȳ ∈ PrMin(A+ C,C), then ȳ ∈ A+ C and

clcone(A+ C + C − ȳ) ∩ (−C) = {0}. (3.5)

It follows from 0 ∈ C that

clcone(A+ C − ȳ) ∩ (−C) = {0}.

In the following, we prove ȳ ∈ A. If we assume that ȳ /∈ A, then there exists ŷ ∈ A with
ŷ ̸= ȳ such that ȳ ∈ {ŷ}+ C. Then,

0 ̸= ŷ − ȳ ∈ clcone(A+ C + C − ȳ) ∩ (−C),

which contradicts (3.5). Therefore,

ȳ ∈ PrMin(A,C).

Theorem 3.10. Let (x̂, ŷ) ∈ gphF and (û, v̂) ∈ X × Y . Suppose that F is C-minicomplete
by G near x̂, C has a compact base B and D

′′
F+(x̂, ŷ, û, v̂)(x) fulfills the C-domination

property for all x ∈ Ξ := domD
′′
F (x̂, ŷ, û, v̂). Then, for any x ∈ Ξ,

PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C) ⊂ D

′′
G(x̂, ŷ, û, v̂)(x).
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Proof. Firstly, we prove that

D
′′
F+(x̂, ŷ, û, v̂)(x) = D

′′
G+(x̂, ŷ, û, v̂)(x).

Since G(x) ⊂ F (x) and F is C-minicompleteness by G near x̂ , there exists a neighborhood
V (x̂) of x̂ such that

G(x) + C = F (x) + C, ∀x ∈ V (x̂).

Hence, for any ŷ ∈ G(x̂), x ∈ V (x̂),

D
′′
F+(x̂, ŷ, û, v̂)(x) = D

′′
G+(x̂, ŷ, û, v̂)(x), (3.6)

which implies that, for any ŷ ∈ G(x̂), x ∈ V (x̂),

MinCD
′′
F+(x̂, ŷ, û, v̂)(x) = MinCD

′′
G+(x̂, ŷ, û, v̂)(x). (3.7)

In what follows, we prove

D
′′
G+(x̂, ŷ, û, v̂)(x) = D

′′
G(x̂, ŷ, û, v̂)(x) + C. (3.8)

Lemma 3.5 applies to G, we conclude that

D
′′
G(x̂, ŷ, û, v̂)(x) + C ⊂ D

′′
G+(x̂, ŷ, û, v̂)(x). (3.9)

The proof of the inverse inclusion D
′′
G+(x̂, ŷ, û, v̂)(x) ⊂ D

′′
G(x̂, ŷ, û, v̂)(x) + C is given in

the following. By Lemma 3.4, one obtains

MinCD
′′
G+(x̂, ŷ, û, v̂)(x) ⊂ D

′′
G(x̂, ŷ, û, v̂)(x). (3.10)

Noticing that the C-domination property of D
′′
F+(x̂, ŷ, û, v̂)(x) and (3.6), (3.7), (3.10), we

obtians

D
′′
G+(x̂, ŷ, û, v̂)(x)

=D
′′
F+(x̂, ŷ, û, v̂)(x)

⊂MinCD
′′
F+(x̂, ŷ, û, v̂)(x) + C

=MinCD
′′
G+(x̂, ŷ, û, v̂)(x) + C

⊂D
′′
G(x̂, ŷ, û, v̂)(x) + C,

which together with (3.9), (3.8) holds.
From (3.6), (3.8), Theorem 3.6 and Lemma 3.9, it follows that

PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C)

=PrMin(D
′′
F (x̂, ŷ, û, v̂)(x) + C,C)

=PrMin(D
′′
F+(x̂, ŷ, û, v̂)(x), C)

=PrMin(D
′′
G+(x̂, ŷ, û, v̂)(x), C)

=PrMin(D
′′
G(x̂, ŷ, û, v̂)(x) + C,C)

=PrMin(D
′′
G(x̂, ŷ, û, v̂)(x), C)

⊂ D
′′
G(x̂, ŷ, û, v̂)(x).
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The following example explains C-minicompleteness of F in Theorem 3.10 cannot be
omitted.

Example 3.11. Let X = R, Y = R, C = R+. Consider the set-valued map F : X → 2Y

defined by
F (x) = {y | y > |x|} ∪ {0},∀x ∈ X.

Let (x̂, ŷ) = (0, 0) ∈ gphF and (û, v̂) = (−1, 1), a direct calculation gives

G(x) = {(0, 0)}, ∀x ∈ X.

Since
T (gphF, (x̂, ŷ)) = {(x, y) | y ≥ |x|},

and
T (T (gphF, (x̂, ŷ)), (û, v̂)) = {(x, y) | y ≥ −x},

D
′′
F (x̂, ŷ, û, v̂)(x) = {y | y ≥ −x}, ∀x ∈ X,

D
′′
G(x̂, ŷ, û, v̂)(x) = ∅, ∀x ∈ X,

PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C) = {y | y = −x}, ∀x ∈ X.

Obviously, F is not C-minicomplete by G near x̂ and for any x ∈ X,

PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C) ̸⊂ D

′′
G(x̂, ŷ, û, v̂(x).

Now, we provide an example to explain Theorem 3.10.

Example 3.12. Let X = R, Y = R, C = R+ and F : X → 2Y be a set-valued map with

F (x) = {y | y ≥ |x|},∀x ∈ X.

Then
G(x) = {y | y = |x|}, ∀x ∈ X.

Take (x̂, ŷ) = (1, 1) ∈ gphF and (û, v̂) = (0, 0). By directly calculating, one has

T (gphF, (x̂, ŷ)) = {(x, y) | y ≥ x},

T (T (gphF, (x̂, ŷ)), (û, v̂)) = {(x, y) | y ≥ x},

D
′′
F (x̂, ŷ, û, v̂)(x) = {y | y ≥ x}, ∀x ∈ X,

D
′′
G(x̂, ŷ, û, v̂)(x) = {y | y = x}, ∀x ∈ X,

PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C) = {y | y = x}, ∀x ∈ X.

Consequently,
PrMin(D

′′
F (x̂, ŷ, û, v̂)(x), C) ⊂ D

′′
G(x̂, ŷ, û, v̂)(x).

Theorem 3.13. Let F : X → 2Y be a set-valued map, (x̂, ŷ) ∈ gphF and (û, v̂) ∈ X × Y .
C has a compact base B, X∗ and Y ∗ are ∗ weak compact. Suppose that the following
assumptions hold:

(i) F is C-convex and x̂ ∈ int(domF ).

(ii) ŷ is a normally Benson proper efficient point of F (x̂).
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Then, for every x ∈ domD
′′
F (x̂, ŷ, û, v̂), we have

D
′′
G(x̂, ŷ, û, v̂)(x) ⊂ PrMin(D

′′
F (x̂, ŷ, û, v̂)(x), C).

Proof. Let y ∈ D
′′
G(x̂, ŷ, û, v̂)(x) which implies that y ∈ D

′′
F (x̂, ŷ, û, v̂)(x). Now suppose

that y /∈ PMin(D
′′
F (x̂, ŷ, û, v̂)(x), C). Then

clcone(D
′′
F (x̂, ŷ, û, v̂)(x) + C − y) ∩ (−C \ {0Y }) ̸= ∅. (3.11)

Since y ∈ D
′′
G(x̂, ŷ, û, v̂)(x), there exist sequences tn → 0+ and (xn, yn) → (x, y), such

that
(û, v̂) + tn(xn, yn) ∈ T (gphG, (x̂, ŷ)), ∀n ∈ N.

Moreover, ∀n ∈ N , there exist sequences tkn → 0+ and (xk
n, y

k
n) → (û, v̂) + tn(xn, yn), such

that
(x̂, ŷ) + tkn(x

k
n, y

k
n) ∈ gphG, ∀k ∈ N,

implying
ŷ + tkny

k
n ∈ G(x̂+ tknx

k
n) = PrMin(F (x̂+ tknx

k
n), C), ∀n, k ∈ N.

Therefore, (x̂ + tknx
k
n, ŷ + tkny

k
n) is a boundary point of the convex set gph(F + C). By a

separation theorem for convex sets, there exists (φk
n, ϕ

k
n) ∈ X∗ × Y ∗ \ {(0X∗ , 0Y ∗)}, such

that

φk
n(x̂+ tknx

k
n) + ϕk

n(ŷ + tkny
k
n) ≥ φk

n(x
′) + ϕk

n(y
′), ∀(x′, y′) ∈ gph(F + C). (3.12)

We normalize these vectors without loss of generality so that ∥(φk
n, ϕ

k
n)∥ = 1. By the

assumption that X∗ and Y ∗ are ∗ weak compact, we may assume without loss of generality
that (φk

n, ϕ
k
n) →∗w (φn, ϕn), (k → ∞). Passing to the limit as k → ∞ in (3.12), we obtain

φn(x̂) + ϕn(ŷ) ≥ φn(x
′) + ϕn(y

′), ∀(x′, y′) ∈ gph(F + C). (3.13)

BecauseX∗ and Y ∗ are ∗ weak compact, in the similar way, we may assume that (φn, ϕn) →∗w

(φ, ϕ) ̸= (0X∗ , 0Y ∗), (n → ∞). By taking the limit as n → ∞ in (3.13), one has

φ(x̂) + ϕ(ŷ) ≥ φ(x′) + ϕ(y′), ∀(x′, y′) ∈ gph(F + C).

Let ỹ ∈ F (x̂) + C. From the assumption (i) and Lemma 2.11, it follows that F + C is
lower semicontinuous at x̂. Therefore, there exists a sequence ỹkn ∈ F (x̂ + tknx

k
n) + C, such

that ỹkn → ỹ. By setting (x′, y′) = (x̂+ tknx
k
n, ỹ

k
n) in (3.12), we get that

φk
n(x̂+ tknx

k
n) + ϕk

n(ŷ + tkny
k
n) ≥ φk

n(x̂+ tknx
k
n) + ϕk

n(ỹ
k
n).

Let k → ∞, we give
ϕn(ŷ) ≥ ϕn(ỹ).

By taking the limit as n → ∞, one obtains

ϕ(ŷ) ≥ ϕ(ỹ).

In view of the Definition 2.17, we have

ϕ ∈ NF (x̂)+C(ŷ).
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Moreover, by the assumption (ii) and Definition 2.18, we deduce that

ϕ ∈ intC∗ ∪ {0Y ∗}.

However, because of the assumption that x̂ ∈ int(domF ), we conclude ϕ ̸= 0Y ∗ , assuring
that

ϕ ∈ intC∗. (3.14)

According to (3.11), let γ ∈ clcone(D
′′
F (x̂, ŷ, û, v̂)(x) + C − y), then there exists ȳn ∈

D
′′
F (x̂, ŷ, û, v̂)(x) and cn ∈ C, γn > 0, such that

γ = lim
n→∞

γn(ȳn + cn − y) ∈ −C \ {0Y }. (3.15)

It follows from (3.14), (3.15) and Lemma 3.5 that

ϕ(γ) = lim
n→∞

γn(ϕ(ȳn) + ϕ(cn)− ϕ(y)) > 0,

which together with Lemma 2.9, there exists ȳ ∈ D
′′
F (x̂, ŷ, û, v̂)(x), ȳn −→ ȳ, such that

n −→ ∞,

ϕ(ȳ)− ϕ(y) > 0 (3.16)

holds. Analogously, because of ȳ ∈ D
′′
F (x̂, ŷ, û, v̂)(x), this means that there are sequences

t̄n → 0+ and (x̄n, ȳn) → (x, ȳ), such that

(û, v̂) + t̄n(x̄n, ȳn) ∈ T (gphF, (x̂, ŷ)), ∀n ∈ N.

Moreover, ∀n ∈ N , there exist sequences t̄kn → 0+ and (x̄k
n, ȳ

k
n) → (û, v̂) + t̄n(x̄n, ȳn), such

that
(x̂, ŷ) + t̄kn(x̄

k
n, ȳ

k
n) ∈ gphF, ∀k ∈ N,

that is
ŷ + t̄knȳ

k
n ∈ F (x̂+ t̄knx̄

k
n), ∀n, k ∈ N.

Since tn → 0+, tkn → 0+, we may assume that tn ≤ t̄n, t
k
n ≤ t̄kn by taking a subsequence if

necessary.
Because ŷ+ tkny

k
n ∈ F (x̂+ tknx

k
n), ŷ+ t̄knȳ

k
n ∈ F (x̂+ t̄knx̄

k
n), and C-convexity of F at x̂, one

has

θkn(ŷ + tkny
k
n) + (1− θkn)(ŷ + t̄knȳ

k
n) ∈ F (θkn(x̂+ tknx

k
n) + (1− θkn)(x̂+ t̄knx̄

k
n)) + C,

where θkn =
tkn

tkn+t̄kn
∈ (0, 1), for sufficiently large k. From (3.12), we get

φk
n(x̂+ tknx

k
n) + ϕk

n(ŷ + tkny
k
n) ≥φk

n(θ
k
n(x̂+ tknx

k
n) + (1− θkn)(x̂+ t̄knx̄

k
n))

+ϕk
n(θ

k
n(ŷ + tkny

k
n) + (1− θkn)(ŷ + t̄knȳ

k
n)),

hence

tkn(φ
k
n(x

k
n) + ϕk

n(y
k
n)) ≥ t̄kn(φ

k
n(x̄

k
n) + ϕk

n(ȳ
k
n)). (3.17)

On the other hand, since (x̂, ŷ) ∈ gph(F + C), it follows from (3.12) that

φk
n(x

k
n) + ϕk

n(y
k
n) ≥ 0.
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Since t̄kn ≥ tkn, one has

t̄kn(φ
k
n(x

k
n) + ϕk

n(y
k
n)) ≥ tkn(φ

k
n(x

k
n) + ϕk

n(y
k
n)). (3.18)

From (3.17) and (3.18), it follows that

φk
n(x

k
n) + ϕk

n(y
k
n) ≥ φk

n(x̄
k
n) + ϕk

n(ȳ
k
n).

By taking the limit as k → ∞ and tn ≤ t̄n, one obtians

φn(xn) + ϕn(yn) ≥ φ(x̄n) + ϕn(ȳn).

And let n → ∞, we have
ϕ(y) ≥ ϕ(ȳ),

which contradicts (3.16). Consequently

y ∈ PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C).

The proof is complete.

To illustrate Theorem 3.13, we give the following example.

Example 3.14. Let X = R, Y = R, C = R+ and F : X → 2Y be defined by

F (x) = {y | y ≥ x2},∀x ∈ X.

Then
G(x) = {y | y = x2}, ∀x ∈ X.

Take (x̂, ŷ) = (0, 0) ∈ gphF and (û, v̂) = (0, 0). By calculating, we get

T (gphF, (x̂, ŷ)) = {(x, y) | y ≥ 0},
T (T (gphF, (x̂, ŷ)), (û, v̂)) = {(x, y) | y ≥ 0},
D

′′
F (x̂, ŷ, û, v̂)(x) = {y | y ≥ 0}, ∀x ∈ X,

D
′′
G(x̂, ŷ, û, v̂)(x) = {y | y = 0}, ∀x ∈ X,

PrMin(D
′′
F (x̂, ŷ, û, v̂)(x), C) = {y | y = 0}, ∀x ∈ X.

Obviously,
D

′′
G(x̂, ŷ, û, v̂(x)) ⊂ PrMin(D

′′
F (x̂, ŷ, û, v̂)(x), C).

Remark 3.15. Theorem 3.13 doesn’t contain the assumption of gphF -derivability. there-
fore, the proof of the Theorem is different from Theorem 3.3 in [30].

4 Conclusions and Perspectives

In this paper, we studied the sensitivity of second-order composed contingent derivative
for Benson proper perturbation maps. Relationships between the second-order composed
contingent derivative of proper perturbation maps G and the set of Benson proper minimal
points of D

′′
F (x̂, ŷ, û, v̂)(x) were discussed under some assumptions. It is well known that

the range of the set of Benson proper minimal points is smaller than (weakly) minimal
points, therefore, the study of Benson proper efficient points makes more sense. Second-order
composed contingent derivatives that introduced by the second-order composed contingent
cone has some special properties that second-order contingent derivative doesn’t own. Hence,
we can explore the weaker condition to study the sensitivity for second-order composed
contingent derivative for further works. Moreover, stability results of second-order composed
contingent derivative for Benson perturbation maps may be a great of interests.
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