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hand, it is a special type of the classical variational inequality problem (VIP) introduced by
Hartman and Stampacchia [9]. The VIP was widely and well studied around 2000, see [7]
and references therein.

It is well known that for a mathematical problem, the solution existence is an important
issue. For the VIP, there are many theoretical results on the solution existence obtained by an
analytic approach, e.g., the existence and uniqueness of a solution to the VIP is established
under the strong monotonicity of the underlying mapping, by virtue of the degree theory and
set-valued analysis. Further, under the pseudo-monotonicity of the underlying function, the
convexity of the solution set of VIP is established [7]. Since the TVIP is special type of the
VIP, it is natural to ask whether we can establish the solution existence of the problem based
on the tensor structure? and if it has a solution, what is its structure? This constitutes the
motivation of the paper.

The main contribution of this paper is as follows. First, we show that if the underlying
tensor is a positive definite Cauchy tensor, then the corresponding TVIP(A, q) has at most
one solution for any nonempty set Ω in Rn and any q ∈ Rn. Second, if the underlying
tensor is a positive semi-definite Cauchy tensor, then the solution set of the corresponding
TVIP(A, q) is convex. Finally, for the second case, we establish some equivalent conditions
for the TVIP(A, q) to have a solution.

The remainder of this paper is organized as follows. In Section 2, we give some basic
definitions and introduce a specially structured tensor. We also explore the monotonicity of
function F (x) = Axm−1 + q in virtue of the positive (semi-)definiteness. In Section 3, we
first investigate the existence of solution of the tensor variational inequality problems with
some milder conditions, then we discuss the solution set structure in virtue of the positive
(semi-)definiteness of a Cauchy tensor.

To end this section, we give some notations used in this paper. Throughout the paper, we
use Greek letters α, β, · · · for scalars, use lower case letters x, y, · · · for vectors, use capital
letters A,B, · · · for matrices, and use bold and calligraphic letters A,B, · · · for tensors.
Further, we use [n] to denote index set {1, 2, · · · , n}, and write x ≥ 0 (x > 0) to mean
that every entry of vector x is nonnegative (positive). The topological boundary and the
topological closure of a set Ω is denoted by bd(Ω) and cl(Ω), respectively.

2 Preliminaries

In this section, we first present some definitions developed in tensor analysis, introduce some
specially structured tensors, and then establish some monotonicity properties of function
F (x) = Axm−1 + q via the positive (semi-)definiteness of tensor A.

Definition 2.1. [5] For c = (c1, c2, · · · , cn) ∈ Rn, tensor C = (ci1 ··· im) with entries

ci1 ··· im =
1

ci1 + ci2 + · · ·+ cim
, j ∈ [m], ij ∈ [n],

is said to be a Cauchy tensor and vector c ∈ Rn is said to be the generating vector of the
tensor.

In the following, we use Cm,n to denote the Cauchy tensor set of order m dimensional
n. It is easy to see that any Cauchy tensor is symmetric in the sense that its any entries
cii2···im are invariant under any permutation of their indices [11].

To discuss the monotonicity of the underlying function in the TVIP, we recall the defini-
tion of positive (semi-)definiteness of a tensor [16] and the monotonicity of vector-mapping
[7].
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Definition 2.2. Let A = (ai1...im) ∈ Tm,n. A is said to be

(i) positive semi-definite if Axm ≥ 0 for any vector x ∈ Rn;

(ii) positive definite if Axm > 0 for any nonzero vector x ∈ Rn.

Definition 2.3. Let Ω be a nonempty set in Rn. Then mapping f : Ω → Rn is said to be

(i) pseudo monotone on Ω if

(x− y)T f(y) ≥ 0 =⇒ (x− y)T f(x) ≥ 0, ∀ x, y ∈ Ω;

(ii) monotone on Ω if

(x− y)T (f(x)− f(y)) ≥ 0, ∀x, y ∈ Ω;

(iii) strictly monotone on Ω if

(x− y)T (f(x)− f(y)) > 0, ∀x, y ∈ Ω with x ̸= y.

To establish the monotonicity of the underlying function in the TVIP via the (semi-)
positiveness of Cauchy tensor, we need the following conclusions.

Lemma 2.4. If an even order Cauchy tensor A is positive semi-definite, then function
F (x) = Axm−1 + q is monotone on Rn for any q ∈ Rn.

Proof. To show the conclusion, it suffices to show that for any x, y ∈ Rn, it holds that
Fi(x)− Fi(y) ≥ 0 if xi ≥ yi for any i ∈ [n].

In fact, for any i ∈ [n] such that xi ≥ yi, from the positive semi-definiteness of Cauchy
tensor A ∈ Cm,n, we conclude that for any t ∈ (0, 1),

tcj+
ci−1

m−1 xj ≥ tcj+
ci−1

m−1 yj ,

which implies that ( ∑
j∈[n]

tcj+
ci−1

m−1 xj

)m−1

≥
( ∑

j∈[n]

tcj+
ci−1

m−1 yj

)m−1

.

Hence, ∫ 1

0

( ∑
j∈[n]

tcj+
ci−1

m−1 xj

)m−1

dt ≥
∫ 1

0

( ∑
j∈[n]

tcj+
ci−1

m−1 yj

)m−1

dt.

Thus,

F (x)− F (y))i =(Axm−1 + q −Aym−1 − q)i

=(Axm−1 −Aym−1)i

=
∑

i2,··· ,im∈[n]

aii2···imxi2 · · ·xim −
∑

i2,··· ,im∈[n]

aii2···imyi2 · · · yim

=
∑

i2,··· ,im∈[n]

xi2 · · ·xim

ci + ci2 + · · ·+ cim
−

∑
i2,··· ,im∈[n]

yi2 · · · yim
ci + ci2 + · · ·+ cim

=
∑

i2,··· ,im∈[n]

∫ 1

0

tci+ci2+···+cim−1xi2 · · ·xim dt−
∑

i2,··· ,im∈[n]

∫ 1

0

tci+ci2+···+cim−1yi2 · · · yim dt
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=

∫ 1

0

∑
i2,··· ,im∈[n]

tci+ci2+···+cim−1xi2 · · ·xim dt

−
∫ 1

0

∑
i2,··· ,im∈[n]

tci+ci2+···+cim−1yi2 · · · yim dt

=

∫ 1

0

(
∑
j∈[n]

tcj+
ci−1

m−1 xj)
m−1 dt−

∫ 1

0

(
∑
j∈[n]

tcj+
ci−1

m−1 yj)
m−1 dt

≥0.

The desired result follows. 2

Similar with the proof of the Lemma 2.4, we can easily obtain the following conclusion.

Lemma 2.5. If an even order tensor A ∈ Cm,n is positive definite, then F (x) is strictly
monotone on Rn.

3 Solution Existence of the TVIP

In this section, we first establish the solution existence of the TVIP, and then explore the
solution set structure. To this end, we need the following definition [7].

Definition 3.1. Let an integer deg(Φ,Ω, p) be associated with each triple (Φ,Ω, p) in the
domain of Φ. The function deg is called a (topological) degree if the following three axioms
are satisfied

(A1) deg(Φ,Ω, p) = 1 if p ∈ Ω;

(A2) deg(Φ,Ω, p) = deg(Φ,Ω1, p) + deg(Φ,Ω2, p) if Ω1 and Ω2 are two disjoint open subsets
of Ω and p /∈ Φ((clΩ)\(Ω1 ∪ Ω2));

(A3) deg(H(·, t),Ω, p(t)) is independent of t ∈ [0, 1] for any two continuous functions H :
clΩ× [0, 1] → Rn and p : [0, 1] → Rn such that

p(t) /∈ H(bdΩ, t), ∀t ∈ [0, 1].

We call deg(Φ,Ω, p) the degree of Φ at p relative to Ω. If p = 0, we simply write deg(Φ,Ω)
for deg(Φ,Ω, p).

Based on the definition given above, the solution existence of the VIP is derived [7].

Lemma 3.2. Let Ω ⊂ Rn be closed convex, F : D ⊇ Ω → Rn be continuous on an open set
D, and let G(v) = v − PΩ(v − F (v)). Then, if there exists a bounded open set U such that
cl(U) ⊇ D and deg(G,U) is well defined and nonzero, then the VI(A, q) has a solution in
U , where PΩ(x) = argminy∈Ω ∥y − x∥ for any x ∈ Rn.

Using the monotonicity and the degree theory, we establish an equivalent condition under
which the TVIP has a solution.

Theorem 3.3. If an even order tensor A ∈ Cm,n is positive semi-definite, then the following
statements are equivalent.

(i) There exists a vector x∗ ∈ Ω such that

L< = {x ∈ Ω | (x− x∗)T (Axm−1 + q) < 0}

is bounded (possibly empty).
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(ii) There exist a bounded open set U ⊂ Rn and a vector x∗ ∈ Ω
∩

U , such that

(x− x∗)T (Axm−1 + q) ≥ 0,∀x ∈ Ω ∩ bdU.

(iii) The TVIP has a solution.

Proof. (i) ⇒ (ii) Let U ⊂ Rn be a bounded open set, such that x∗ ∈ U and L< ⊆ U . As
U is an open set, one has

L<

∩
bd(U) = Ø.

Thus,
(x− x∗)T (Axm−1 + q) ≥ 0, ∀x ∈ Ω ∩ bd(U),

and (ii) follows.
(ii) ⇒ (iii) We will prove this by reductio ad absurdum. For the sake of contradiction,

suppose that the solution set of TVIP(A, q) is empty. Let

G(x) = x− PΩ(x− (Axm−1 + q)).

Then G−1(0)
∩
bd(U) = Ø, and hence deg(G,U) is well defined. In the following, we will

show that deg(G,U) ̸= 0.
In fact, for the homotopy mapping

H(x, t) = x− PΩ(t(x− (Axm−1 + q)) + (1− t)x∗),

it is easy to see that H(x, 0) = x− x∗. Since x∗ ∈ U , it holds that deg(H(x, 0), U) = 1 and
H(x, 1) = x− PΩ(x− (Axm−1 + q)).

Now, we show that if H(x, t) = 0 for some (x, t) ∈ cl(U)× (0, 1), then x /∈ bd(U).
Assume that H(x, t) = 0 for some t ∈ (0, 1). Without loss of generality, we assume that

x ̸= x∗. Since H(x, t) = 0, we conclude that x ∈ Ω and

(y − x)T [x− t(x− (Axm−1 + q))− (1− t)x∗] ≥ 0.

In particular, for y = x∗, one has

(x∗ − x)T [x− t(x− (Axm−1 + q))− (1− t)x∗] ≥ 0.

Then
(x∗ − x)T [t(Axm−1 + q) + (1− t)(x− x∗)] ≥ 0,

which implies that

(x∗ − x)T (Axm−1 + q) ≥ 1− t

t
∥x− x∗∥2 > 0,

where the last inequality uses the facts that t ∈ (0, 1) and x ̸= x∗. Thus x /∈ bd(U).
Consequently, by the homotopy invariance property of the degree, one has

deg(G,U) = deg(H(x, 0), U) = deg(H(x, 1), U) = 1.

By Lemma 3.2, we know that S(A, q) is nonempty. A contradiction is obtained and (iii)
follows.

(iii) ⇒ (i) Let x∗ be the solution of TVIP. Then for all y ∈ Ω,

(y − x∗)T (A(x∗)m−1 + q) ≥ 0. (3.1)
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By Lemma 2.4, it holds that

(y − x∗)T (Aym−1 −A(x∗)m−1) ≥ 0.

Connecting this with (3.1) yields that

(y − x∗)T (Aym−1 + q) ≥ 0,

which implies that L< is empty and (i) follows. 2

Now, we explore the structure of the solution set of the TVIP by virtue of the positive
definiteness of the underlying tensor in the TVIP.

Theorem 3.4. If the even order tensor A ∈ Cm,n is positive definite, then the VIP(A, q)
has at most one solution on Ω for any q ∈ Rn.

Proof. Our proof is based on contraposition. Suppose x1, x2 ∈ Ω are two distinct solutions
of the TVIP. Then

(y − x1)
T (Axm−1

1 + q) ≥ 0, (y − x2)
T (Axm−1

2 + q) ≥ 0, ∀y ∈ Ω.

Taking y = x2 in the first inequality and y = x1 in the second inequality gives

(x2 − x1)
T (Axm−1

1 + q) ≥ 0, (x1 − x2)
T (Axm−1

2 + q) ≥ 0,

which implies that

(x1 − x2)
T (Axm−1

1 −Axm−1
2 ) ≤ 0. (3.2)

By Lemma 2.5, we have

(x1 − x2)
T (Axm−1

1 −Axm−1
2 ) > 0.

Obviously, this contradicts (3.4), and the desired conclusions follows. 2

The next result shows that the convexity of the solution set of the TVIP provided that
the underlying tensor A ∈ Cm,n is positive semi-definite.

Theorem 3.5. Let A be an even order positive semi-definite Cauchy tensor. Then the
solution set of TVIP is convex.

Proof. First, we claim that the solution set of the TVIP(A, q) satisfies that

S(A, q) =
∩
y∈Ω

{x ∈ Ω | (y − x)T (Aym−1 + q) ≥ 0}.

In fact, if x ∈ S(A, q), then

(y − x)T (Axm−1 + q) ≥ 0. (3.3)

Combining inequality 3.3, Definition 2.3 with with Lemma 2.4 yields that

(y − x)T (Aym−1 + q) ≥ 0, ∀ y ∈ Ω. (3.4)

Thus,

x ∈
∩
y∈Ω

{x ∈ Ω | (y − x)T (Aym−1 + q) ≥ 0}.
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This means that

S(A, q) ⊆
∩
y∈Ω

{x ∈ Ω | (y − x)T (Aym−1 + q) ≥ 0}. (3.5)

On the other hand, since Ω is convex, for any z ∈ Ω and τ ∈ (0, 1), it holds that

y = τx+ (1− τ)z ∈ Ω.

Then it follows from (3.4) that

(z − x)(A(τx+ (1− τ)z)m−1 + q) ≥ 0.

Letting τ → 1 yields that

(z − x)(Axm−1 + q) ≥ 0.

From the arbitrariness of z ∈ Ω, we conclude that x ∈ S(A, q) which implies that

S(A, q) ⊇
∩
y∈Ω

{x ∈ Ω | (y − x)T (Aym−1 + q) ≥ 0}.

Recalling (3.5), we can obtain the desired result, i.e.,

S(A, q) =
∩
y∈Ω

{x ∈ Ω | (y − x)T (Aym−1 + q) ≥ 0}.

Now, we show that the solution set S(A, q) of the TVIP(A, q) is convex based on the
above claim.

In fact, since for any fixed y ∈ Ω, the set

{x ∈ Ω | (y − x)T (Aym−1 + q) ≥ 0}

is convex. Using the fact that the intersection of any number of convex set is convex, we
conclude that the solution set S(A, q) of the TVIP(A, q) is convex. The desired result
follows. 2

4 Conclusions

In this paper, by exploring structure properties of the Cauchy tensor and by virtue of of the
homotopy mapping and degree theory, we established the solution existence of the TVIP
and explored the solution set structure of the TVIP which are useful in TVIP analysis. It
is well known that there are many efficient solution methods for the VIP, and they all apply
to the TVIP. However, due to the involvement of the tensor in the TVIP, establishing an
efficient solution method based on the tensor structure is a significant research work, and
this will be discussed in the future.
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