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where λ is the Lagrangian multiplier associated with the linear constraints. Based on alter-
nately optimizing the augmented Lagrangian function Lβ(·) for one variable but with the
others fixed, the alternating direction method of multipliers (ADMM), originally proposed
in [17], generates the iterative sequence with the following recursion:

xk+1 ∈ argminx{Lβ(x, yk, λk)},
yk+1 ∈ argminy{Lβ(xk+1, y, λk)},
λk+1 = λk − β(Axk+1 + yk+1 − b),

(1.3)

starting with (y0, λ0) ∈ dom f2 ×Rm. Here, dom f2 denotes the domain of f2.
When f1, f2 are proper lower semicontinuous convex functions and H ≡ 0, the conver-

gence of the two-block ADMM has long been established, we refer the readers to [10, 11, 12,
14, 15, 17, 20, 34] for a discussion about convergence and convergence rate in the convex
setting. As mentioned in [22], when the objective functions are not separable across the
variables, the convergence of ADMM for the general problem (1.1) is still an open question,
even the objective functions are convex. Recently, Gao and Zhang [16] considered the case
where H is a smooth convex function and f1, f2 are convex functions. Under the assump-
tions that ∇H is Lipschitz continuous and f2 is strongly convex, they proved the sequence
generated by the proximal ADMM for problem (1.1) converges to an optimal solution. Chen
et al. [8] analyzed the convergence of the two-block ADMM for problem (1.1) with coupled
quadratic objective function.

In this paper, we consider the problem (1.1) without assuming the convexity of f1, f2,
and the coupled term H. A very important technique to prove the convergence for nonconvex
optimization problems is assuming the objective function satisfying the Kurdyka- Lojasiewicz
(KL) inequality (See Definition 2.4). Using the important KL inequality, we prove that if
the augmented Lagrangian function is a KL function, then the sequence generated by the
ADMM (1.3) converges to a critical point of the augmented Lagrangian function. We refer
the reader to [2, 3, 5, 13, 18, 19, 23, 24, 30] for the recent literature concerning the convergence
of nonconvex optimization problem relying on the KL inequality.

The rest of this paper is organized as follows. In section 2, we summarize some prelim-
inary materials and useful results for further analysis. In section 3, we present the conver-
gence of the scheme (1.3), where the convergence rate is also provided under some further
assumptions. Some extensions are made in section 4. Finally, we give some concluding
remarks.

2 Preliminaries

In this section, we first introduce some notations that will be frequently used in the analysis
later.

Let x ∈ Rn, y ∈ Rm, we denote v := (x, y) ∈ Rn ×Rm. Throughout this paper, we use
the convention 0 · ∞ = 0. Let F : Rn ⇒ Rm be a point-to-set mapping. Then its graph is
defined by

Graph F := {(x, y) ∈ Rn ×Rm : y ∈ F (x)}.

We define the distance of a point x ∈ Rn to a subset S of Rn by

d(x, S) := inf
y∈S

∥y − x∥.

When S = ∅, we set d(x, S) := +∞, for all x.
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We now recall a few definitions concerning subdifferential calculus for nonsmooth func-
tions, see, e.g. [28, 32] for more details.

Given a function f : Rn → R∪ {+∞}, we define its epigraph by

epi f := {(x, α) ∈ Rn ×R : f(x) ≤ α}.

We say that the function f is proper (respectively, lower semicontinuous) if the above set is
nonempty (respectively, closed). The domain of the function f is defined by

dom f := {x ∈ Rn : f(x) < +∞}.

Definition 2.1. Let f : Rn → R∪ {+∞} be a proper lower semicontinuous function.

(i). The Fréchet subdifferential, or regular subdifferential, of f at x ∈ dom f , written ∂̂f(x),
is the set of vectors x∗ ∈ Rn that satisfy

lim
y ̸=x

inf
y→x

f(y) − f(x) − ⟨x∗, y − x⟩
∥y − x∥

≥ 0.

When x /∈ domf , we set ∂̂f(x) := ∅.
(ii). The limiting-subdifferential, or simply the subdifferential, of f at x ∈ dom f , written
∂f(x), is defined as follows:

∂f(x) := {x∗ ∈ Rn : ∃xn → x, f(xn) → f(x), x∗
n ∈ ∂̂f(xn),with x∗

n → x∗}.

Remark 2.2. From Definition 2.1 we can find that

(i) The above definition implies ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rn, where the first set is
closed convex while the second one is only closed.

(ii) Let (xk, x
∗
k) ∈ Graph ∂f be a sequence that converges to (x, x∗). By the definition of

∂f(x), if f(xk) converges to f(x) as k → +∞, then (x, x∗) ∈ Graph ∂f .

(iii) A necessary condition for x ∈ Rn to be a minimizer of f is

0 ∈ ∂f(x). (2.1)

(iv) If f : Rn → R∪ {+∞} is proper lower semicontinuous and g : Rn → R is continuous
differentiable, then ∂(f + g)(x) = ∂f(x) + ∇g(x) for any x ∈ dom f .

A point that satisfies (2.1) is called a critical point. The set of critical points of f is
denoted by crit f .

Let us recall an important property of subdifferential calculus.

Lemma 2.3 ([2]). Suppose that H(x, y, z) := f(x)+g(y)+h(z), where f : Rn → R∪{+∞},
g : Rm → R∪ {+∞} and h : Rp → R∪ {+∞} are proper lower semicontinuous functions.
Then for all (x, y, z) ∈ dom H = dom f × dom g × dom h, we have

∂H(x, y, z) = ∂xH(x, y, z) × ∂yH(x, y, z) × ∂zH(x, y, z).

The Kurdyka- Lojasiewicz property plays a central role in our analysis. Below, we recall
some essential elements.
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Definition 2.4 ([2] Kurdyka- Lojasiewicz inequality). Let f : Rn → R ∪ {+∞} be a
proper lower semicontinuous function. For −∞ < η1 < η2 ≤ +∞, set

[η1 < f < η2] := {x ∈ Rn : η1 < f(x) < η2}.

We say the function f has the KL property at x∗ ∈ dom ∂f if there exist η ∈ (0,+∞], a
neighborhood U of x∗, and a continuous concave function φ : [0, η) → R+, such that
(i). φ(0) = 0;
(ii). φ is C1 on (0, η) and continuous at 0;
(iii). φ′(s) > 0,∀s ∈ (0, η);
(iv). for all x in U ∩ [f(x∗) < f < f(x∗) + η], the KL inequality holds:

φ′(f(x) − f(x∗))d(0, ∂f(x)) ≥ 1.

Definition 2.5 ([3] KL function). Denote Φη be the set of functions which satisfy (i),
(ii) and (iii). If f satisfies the KL property at each point of dom ∂f , then f is called a KL
function.

Remark 2.6. One can easily check that the KL property is automatically satisfied at any
noncritical point x∗ ∈ dom f ; e.g., Lemma 2.1 and Remark 3.2 (b) of [2].

Lemma 2.7 ([5] Uniformized KL property ). Let Ω be a compact set and let f : Rn →
R∪{+∞} be a proper lower semicontinuous function. Assume that f is constant on Ω and
satisfies the KL property at each point of Ω. Then, there exist ϵ > 0, η > 0, and φ ∈ Φη

such that for all x̄ ∈ Ω and for all x in the following intersection

{x ∈ Rn : d(x,Ω) < ϵ} ∩ [f(x̄) < f < f(x̄) + η],

one has,
φ′(f(x) − f(x̄))d(0, ∂f(x)) ≥ 1.

Definition 2.8 ([4]). A proper lower semicontinuous function f : Rn → R∪{+∞} is called
semiconvex with constant ω ≥ 0 if the function

x 7−→ f(x) +
ω

2
∥x∥2

is convex. Specially, if ω = 0, then g is convex.

Remark 2.9. (i). Definition 2.8 is equivalent to

f(y) ≥ f(x) + ⟨p, y − x⟩ − ω

2
∥y − x∥2, (2.2)

for all x, y ∈ Rn and all p ∈ ∂f(x).

(ii). It is well-known that the set of semiconvex functions contains several important classes
of (nonsmooth) functions as special cases, for example, φ-convex functions [9] and
primal-lower-nice functions [27]. Moreover, it is easily seen that every twice continuous
differentiable function f with bounded second derivative is semiconvex. For general
properties of semiconvex functions, see, e.g. [4, 6].

Definition 2.10. We say (x∗, y∗, λ∗) is a critical point of the augmented Lagrangian func-
tion Lβ(·) (1.2), if it satisfies: ATλ∗ −∇xH(x∗, y∗) ∈ ∂f1(x∗),

λ∗ −∇yH(x∗, y∗) = ∇f2(y∗),
Ax∗ + y∗ − b = 0.

(2.3)
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The following lemma is useful in the derivation of the main results.

Lemma 2.11 ([29]). Let h : Rn → R be a continuously differentiable function whose
gradient ∇h is Lipschitz continuous with constant L > 0, then for any x, y ∈ Rn, we have

|h(y) − h(x) − ⟨∇h(x), y − x⟩| ≤ L

2
∥y − x∥2.

For any two vectors x and y with the same dimensions, we have

∥x + y∥2 ≤ (1 + ξ)∥x∥2 + (1 +
1

ξ
)∥y∥2, ∀ξ > 0. (2.4)

3 Convergence

In this section, we prove the convergence of the ADMM (1.3) under the following assumption.

Assumption 3.1. Let f1 : Rn → R∪{+∞} be a semiconvex function with constant ω > 0,
f2 : Rm → R be a continuously differentiable function whose gradient ∇f2 is Lipschitz
continuous with constant L1 > 0, and let H : Rn ×Rm → R be a smooth function. Assume
the following holds:

(i) inf
(x,y)∈Rn×Rm

H(x, y) > −∞, inf
x∈Rn

f1(x) > −∞, inf
y∈Rm

f2(y) > −∞;

(ii) For any fixed x, the partial gradient ∇yH(x, y) is globally Lipschitz with constant
L2(x), that is

∥∇yH(x, y1) −∇yH(x, y2)∥ ≤ L2(x)∥y1 − y2∥, ∀y1, y2 ∈ Rm;

For any fixed y, the partial gradient ∇xH(x, y) is globally Lipschitz with constant
L3(y), that is

∥∇xH(x1, y) −∇xH(x2, y)∥ ≤ L3(y)∥x1 − x2∥, ∀x1, x2 ∈ Rn;

(iii) There exist L2, L3 > 0 such that

sup{L2(xk) : k ∈ N} ≤ L2, sup{L3(yk) : k ∈ N} ≤ L3;

(iv) ∇H is Lipschitz continuous on bounded subsets of Rn × Rm. In other words, for
each bounded subset B1 × B2 ⊆ Rn × Rm, there exists M > 0 such that for all
(xi, yi) ∈ B1 ×B2, i = 1, 2:

∥(∇xH(x1, y1)−∇xH(x2, y2),∇yH(x1, y1)−∇yH(x2, y2))∥ ≤ M∥(x1 − x2, y1 − y2)∥;

(v) ATA ⪰ µI for some µ > 0;

(vi)

β > max{
(L3 + ω) +

√
(L3 + ω)2 + 16µM2

2µ
,

(L1 + L2) +
√

(L1 + L2)2 + 16(L2
1 + M2)

2
}.

(3.1)
Note that, if we set

δ := min{βµ
2

− L3 + ω

2
− 2M2

β
,
β − L1 − L2

2
− 2L2

1

β
− 2M2

β
},

we know δ > 0 in view of (vi) of Assumption 3.1.



494 K. GUO, D. HAN AND T. WU

Remark 3.1. Now, we specify the conditions in Assumption 3.1 to some special cases of
f1, f2 and H. For example, the SCAD-ℓ2 model model proposed in [35] can be rewritten in
the following equivalent form:

min
x,y

∥Mx−My − b∥2 +

n∑
i=1

gλ(|xi|) + ∥y∥2,

s.t. x + y = 0.

(3.2)

where

gλ(|xi|) :=


λ|xi

1|, |xi1| ≤ λ,
−(xi

1)
2+2aλ|xi

1|−λ2

2(a−1) , λ < |xi
1| ≤ aλ,

(a+1)λ2

2 , |xi
1| > aλ.

If we set f1(x) :=
∑n

i=1 gλ(|xi|), f2(y) := ∥y∥2, H(x, y) := ∥Mx−My−b∥2 and A := I, then
problem (3.2) fits our scenario. Since ∇xH(x, y) = 2MT (Mx −My − b) and ∇yH(x, y) =
−2MT (Mx−My − b), it is easy to know the conditions (i)-(v) in Assumption 3.1 hold.

Before the proof, let us present the variational characterization of the scheme (1.3).
Invoking the optimality condition for (1.3), we have 0 ∈ ∂f1(xk+1) + ∇xH(xk+1, yk) −ATλk + βAT (Axk+1 + yk − b),

0 = ∇f2(yk+1) + ∇yH(xk+1, yk+1) − λk + β(Axk+1 + yk+1 − b),
λk+1 = λk − β(Axk+1 + yk+1 − b).

(3.3)

Using the last equality and rearranging terms, we obtain ATλk+1 + βAT (yk+1 − yk) −∇xH(xk+1, yk) ∈ ∂f1(xk+1),
λk+1 −∇yH(xk+1, yk+1) = ∇f2(yk+1),
λk+1 = λk − β(Axk+1 + yk+1 − b).

(3.4)

In the sequel for convenience, we often use the notation {wk := (xk, yk, λk)}k∈N and
{vk := (xk, yk)}k∈N . We begin our analysis with the following lemma.

Lemma 3.2. Let {wk}k∈N be the sequence generated by the ADMM (1.3) which is assumed
to be bounded, then we have

Lβ(wk+1) ≤ Lβ(wk) − δ∥vk+1 − vk∥2. (3.5)

Proof. From the definition of the augmented Lagrangian function Lβ(·), we have

Lβ(xk+1, yk+1, λk+1) = Lβ(xk+1, yk+1, λk) + ⟨λk − λk+1, Axk+1 + yk+1 − b⟩

= Lβ(xk+1, yk+1, λk) +
1

β
∥λk − λk+1∥2. (3.6)

Note that

Lβ(xk+1, yk, λk) − Lβ(xk+1, yk+1, λk)

= f1(xk+1) + f2(yk) + H(xk+1, yk) − ⟨λk, Axk+1 + yk − b⟩

+
β

2
∥Axk+1 + yk − b∥2 − {f1(xk+1) + f2(yk+1) + H(xk+1, yk+1)

−⟨λk, Axk+1 + yk+1 − b⟩ +
β

2
∥Axk+1 + yk+1 − b∥2}
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= f2(yk) − f2(yk+1) + ⟨λk, yk+1 − yk⟩ +
β

2
∥Axk+1 + yk − b∥2 − β

2
∥Axk+1 + yk+1 − b∥2

+H(xk+1, yk) −H(xk+1, yk+1). (3.7)

By the Lipschitz continuity of ∇f2, it follows from Lemma 2.11 and the second equality of
(3.4) that

f2(yk) − f2(yk+1) ≥ ⟨λk+1 −∇yH(xk+1, yk+1), yk − yk+1⟩ − L1

2
∥yk+1 − yk∥2. (3.8)

By simple manipulations and using λk+1 = λk − β(Axk+1 + yk+1 − b), we know

β

2
∥Axk+1 + yk − b∥2 − β

2
∥Axk+1 + yk+1 − b∥2

=
β

2
∥yk+1 − yk∥2 + ⟨λk − λk+1, yk − yk+1⟩. (3.9)

Since ∇yH(xk+1, ·) is Lipschitz with constant L2(xk+1), it follows from Lemma 2.11 that

H(xk+1, yk) −H(xk+1, yk+1) ≥ ⟨∇yH(xk+1, yk+1), yk − yk+1⟩ − L2(xk+1)

2
∥yk+1 − yk∥2.

(3.10)
Substituting (3.8), (3.9) and (3.10) into (3.7) yields

Lβ(xk+1, yk, λk) − Lβ(xk+1, yk+1, λk) ≥ β − L1 − L2(xk+1)

2
∥yk+1 − yk∥2. (3.11)

On the other hand,

Lβ(xk, yk, λk) − Lβ(xk+1, yk, λk)

= f1(xk) + f2(yk) + H(xk, yk) − ⟨λk, Axk + yk − b⟩ +
β

2
∥Axk + yk − b∥2

−{f1(xk+1) + f2(yk) + H(xk+1, yk) − ⟨λk, Axk+1 + yk − b⟩ +
β

2
∥Axk+1 + yk − b∥2}

= f1(xk) − f1(xk+1) + ⟨λk, Axk+1 −Axk⟩ +
β

2
∥Axk + yk − b∥2 − β

2
∥Axk+1 + yk − b∥2

+H(xk, yk) −H(xk+1, yk). (3.12)

Combining (2.2) and the first relation of (3.4), and using the semiconvexity of f1, we have

f1(xk) ≥ f1(xk+1)+⟨ATλk+1+βAT (yk+1−yk)−∇xH(xk+1, yk), xk−xk+1⟩−ω

2
∥xk+1−xk∥2.

Again since ∇xH(·, yk) is Lipschitz with constant L3(yk), it follows from Lemma 2.11 that

H(xk, yk) −H(xk+1, yk) ≥ ⟨∇xH(xk+1, yk), xk − xk+1⟩ − L3(yk)

2
∥xk+1 − xk∥2.

By (v) of Assumption 3.1, it follows that

∥Axk+1 −Axk∥2 ≥ µ∥xk+1 − xk∥2.

Thus, combining the above three inequalities with (3.12), we obtain

Lβ(xk, yk, λk) − Lβ(xk+1, yk, λk) ≥ βµ− L3(yk) − ω

2
∥xk+1 − xk∥2. (3.13)
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Furthermore, since ∇H is Lipschitz continuous on bounded subsets and {(xk, yk)}k∈N is
bounded, we have

∥λk+1 − λk∥2

= ∥∇f2(yk+1) + ∇yH(xk+1, yk+1) −∇f2(yk) −∇yH(xk, yk)∥2

≤ 2∥∇f2(yk+1) −∇f2(yk)∥2 + 2∥∇yH(xk+1, yk+1) −∇yH(xk, yk)∥2

≤ 2L2
1∥yk+1 − yk∥2 + 2M2∥xk+1 − xk∥2 + 2M2∥yk+1 − yk∥2

= (2L2
1 + 2M2)∥yk+1 − yk∥2 + 2M2∥xk+1 − xk∥2, (3.14)

which, together with (3.6), (3.11) and (3.13) implies

Lβ(wk+1) ≤ Lβ(wk) + (
L3(yk+1) + ω

2
− βµ

2
+

2M2

β
)∥xk+1 − xk∥2

+(
2L2

1

β
+

2M2

β
− β − L1 − L2(xk+1)

2
)∥yk+1 − yk∥2

≤ Lβ(wk) − δ∥vk+1 − vk∥2,

where the second inequality follows from (vi) of the Assumption 3.1. The proof is complete.

If (3.1) holds, then δ > 0, and it follows Lemma 3.2 that {Lβ(ωk)}k∈N is monotonicity
nonincreasing. The range of β in the assumption is not optimal. In fact, the range of β is
nothing but β > 2L proposed in [19] when H ≡ 0. We show this in the following.

First, we recalculate (3.14). By (2.4), for any ξ > 0 we have

∥λk+1 − λk∥2

= ∥∇f2(yk+1) + ∇yH(xk+1, yk+1) −∇f2(yk) −∇yH(xk, yk)∥2

≤ (1 + ξ)∥∇f2(yk+1) −∇f2(yk)∥2 + (1 +
1

ξ
)∥∇yH(xk+1, yk+1) −∇yH(xk, yk)∥2

≤ 2L2
1∥yk+1 − yk∥2 + 2M2∥xk+1 − xk∥2 + 2M2∥yk+1 − yk∥2

= ((1 + ξ)L2
1 + (1 +

1

ξ
)M2)∥yk+1 − yk∥2 + (1 +

1

ξ
)M2∥xk+1 − xk∥2. (3.15)

Substituting (3.11), (3.13) and (3.15) into (3.6), we obtain

Lβ(wk+1) ≤ Lβ(wk) + (
L3(yk+1) + ω

2
− βµ

2
+

M2

β
(1 +

1

ξ
))∥xk+1 − xk∥2

+(
(1 + ξ)L2

1

β
+

(1 + 1
ξ )M2

β
− β − L1 − L2(xk+1)

2
)∥yk+1 − yk∥2.

By simple calculation, when
β > max{β1, β2}, (3.16)

where

β1 :=
(L1 + L2) +

√
(L1 + L2)2 + 8[(1 + ξ)L2

1 + (1 + 1
ξ )M2]

2

and

β2 :=
L3 + ω +

√
(L3 + ω)2 + 8µM2(1 + 1

ξ )

2µ
.
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Then, we have
Lβ(wk+1) ≤ Lβ(wk) − δ̄∥vk+1 − vk∥2,

where δ̄ := min{L3+ω
2 − βµ

2 + M2

β (1 + 1
ξ ),

(1+ξ)L2
1

β +
(1+ 1

ξ )M
2

β − β−L1−L2

2 } > 0.

If H ≡ 0, then we have L2 = L3 = M = 0. Moreover, we have ξ = 0. Thus (3.16)
reduces to

β > max{2L1,
ω

µ
}. (3.17)

Furthermore, if f1 is a convex function, then ω = 0 and (3.17) is the same condition as
that proposed in [19] to ensure (3.5) holds. Notice that, in [19], they only assume f1 is a
proper semicontinuous function. The reason is that, to prove (3.5) holds, it does not need to
estimate the difference between Lβ(xk, yk, λk) and Lβ(xk+1, yk, λk) in [19]. Consequently,
from this point of view, the condition in [19] is a special case of our condition.

Lemma 3.3. Let {wk}k∈N be the sequence generated by the ADMM (1.3) which is assumed
to be bounded. Then the following holds

+∞∑
k=0

∥wk+1 − wk∥2 < +∞.

Proof. Since {wk}k∈N is bounded, then there exists a subsequence {wkj}j∈N such that
wkj → w∗. First, we know Lβ(·) is lower semicontinuous due to the continuity of f2 and H
and the closedness of f1. That is

Lβ(w∗) ≤ lim inf
j→+∞

Lβ(wkj ).

Consequently, {Lβ(wkj )}j∈N is bounded from below. Note that, Lemma 3.2 implies that
{Lβ(ωk)}k∈N is nonincreasing and thus {Lβ(wkj )}j∈N is convergent. Moreover, we have
{Lβ(wk)}k∈N is convergent and Lβ(wk) ≥ Lβ(w∗). Rearranging terms of (3.5) leads to

δ∥vk+1 − vk∥2 ≤ Lβ(wk) − Lβ(wk+1),

Now, summing the above inequality over k = 0, . . . , n yields

n∑
k=0

δ∥vk+1 − vk∥2 ≤ Lβ(w0) − Lβ(wn+1) ≤ Lβ(w0) − Lβ(w∗) < +∞,

Since δ > 0, we have
∑+∞

k=0 ∥vk+1 − vk∥2 < +∞. Thus,

+∞∑
k=0

∥xk+1 − xk∥2 < +∞,

+∞∑
k=0

∥yk+1 − yk∥2 < +∞. (3.18)

Moreover, it follows from (3.14) and (3.18) that
+∞∑
k=0

∥λk+1 − λk∥2 < +∞. Therefore, we

obtain
∑+∞

k=0 ∥wk+1 − wk∥2 < +∞.

Lemma 3.4. Let {wk}k∈N be the sequence generated by the ADMM (1.3) which is assumed
to be bounded. Then, there exists ζ > 0 such that

d(0, ∂Lβ(wk+1)) ≤ ζ∥vk+1 − vk∥.
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Proof. By the definition of the augmented Lagrangian function Lβ(·) and (iv) of Remark
2.2, we have ∂xLβ(wk+1) = ∂f1(xk+1) + ∇xH(xk+1, yk+1) −ATλk+1 + βAT (Axk+1 + yk+1 − b),

∂yLβ(wk+1) = ∇f2(yk+1) + ∇yH(xk+1, yk+1) − λk+1 + β(Axk+1 + yk+1 − b),
∂λLβ(wk+1) = −(Axk+1 + yk+1 − b).

(3.19)
Substituting (3.4) into (3.19) produces

AT (λk − λk+1) + βAT (yk+1 − yk) + ∇xH(xk+1, yk+1) −∇xH(xk+1, yk) ∈ ∂xLβ(wk+1),
(λk − λk+1) ∈ ∂yLβ(wk+1),
1
β (λk+1 − λk) ∈ ∂λLβ(wk+1).

Set (ξk+1
1 , ξk+1

2 , ξk+1
3 ) := (AT (λk−λk+1)+βAT (yk+1−yk)+∇xH(xk+1, yk+1)−∇xH(xk+1, yk),

λk−λk+1, 1
β (λk+1−λk)), then it follows from Lemma 2.3 that (ξk+1

1 , ξk+1
2 , ξk+1

3 ) ∈ ∂Lβ(wk+1).
Furthermore, there exist ζ1, ζ2, ζ3 > 0 such that

∥(ξk+1
1 , ξk+1

2 , ξk+1
3 )∥

≤ ζ1∥yk+1 − yk∥ + ζ2∥λk+1 − λk∥ + ζ3∥∇xH(xk+1, yk+1) −∇xH(xk+1, yk)∥.(3.20)

Again since ∇H is Lipschitz continuous on bounded subsets and {(xk, yk)} is bounded, it
follows

∥∇xH(xk+1, yk+1) −∇xH(xk+1, yk)∥ ≤ M∥yk+1 − yk∥. (3.21)

From (3.14) we know

∥λk+1 − λk∥ ≤
√

2M∥xk+1 − xk∥ +
√

2L2
1 + 2M2∥yk+1 − yk∥. (3.22)

By setting ζ :=
√

(ζ1 +
√

2L2
1 + 2M2 · ζ2 + Mζ3)2 + (

√
2ζ3M)2, it follows from (3.20),

(3.21) and (3.22) that

d(0, ∂Lβ(wk+1))

≤ ∥(ξk+1
1 , ξk+1

2 , ξk+1
3 )∥

≤ (ζ1 +
√

2L2
1 + 2M2ζ2 + Mζ3)∥yk+1 − yk∥ +

√
2ζ3M∥xk+1 − xk∥

≤ ζ∥vk+1 − vk∥,

where the third inequality follows from the Cauchy inequality. The proof is complete.

Let {wk}k∈N be a sequence generated by the ADMM (1.3) from a starting point w0.
The set of all limit points is denoted by S(w0), i.e.,

S(w0) := {w∗ : ∃ a subsequence {wkj}j∈N of {wk}k∈N converges to w∗}.

In the following, we summarize several properties of the limit point set.

Lemma 3.5. Let {wk}k∈N be the sequence generated by the ADMM (1.3) which is assumed
to be bounded. Let S(w0) denote the set of its limit points. Then

(i) S(w0) is a nonempty compact set, and

d(wk, S(w0)) → 0, as k → +∞;
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(ii) S(w0) ⊂ crit Lβ;

(iii) Lβ(·) is finite and constant on S(w0), equal to inf
k∈N

Lβ(wk) = lim
k→+∞

Lβ(wk).

Proof. We prove the results item by item.
(i). This item follows as an elementary consequence of the definition of limit points.
(ii). For any fixed (x∗, y∗, λ∗) ∈ S(w0), there exists a subsequence {(xkj , ykj , λkj )}j∈N of
{(xk, yk, λk)}k∈N converges to (x∗, y∗, λ∗). Since xk+1 is the global minimizer of Lβ(x, yk, λk)
for the variable x, it holds

Lβ(xk+1, yk, λk) ≤ Lβ(x∗, yk, λk).

Using the above inequality and the continuity of Lβ(·) with respect to y and λ ensure

lim sup
j→+∞

Lβ(xkj+1, ykj , λkj ) = lim sup
j→+∞

Lβ(xkj+1, ykj+1, λkj+1) ≤ Lβ(x∗, y∗, λ∗). (3.23)

On the other hand, Lemma 3.3 implies ∥wk+1−wk∥ → 0, which means that the subsequence
{(xkj+1, ykj+1, λkj+1)}j∈N also converges to (x∗, y∗, λ∗). From the lower semicontinuity of
Lβ(·), we have

lim inf
j→+∞

Lβ(xkj+1, ykj+1, λkj+1) ≥ Lβ(x∗, y∗, λ∗). (3.24)

Then by combining (3.23) and (3.24) together we can get

lim
j→+∞

Lβ(xkj+1, ykj+1, λkj+1) = Lβ(x∗, y∗, λ∗), (3.25)

which implies
lim

j→+∞
f(xkj+1) = f(x∗). (3.26)

Passing to the limit in (3.4) along the subsequence {(xkj+1, ykj+1, λkj+1)}j∈N and invoking
(3.26) and the continuity of ∇f2(·),∇xH(·, ·),∇yH(·, ·), it follows that ATλ∗ −∇xH(x∗, y∗) ∈ ∂f1(x∗),

λ∗ −∇yH(x∗, y∗) = ∇f2(y∗),
Ax∗ + y∗ − b = 0.

Then, (x∗, y∗, λ∗) is a critical point of (1.3), i.e., (x∗, y∗, λ∗) ∈ crit Lβ .
(iii). For any point (x∗, y∗, λ∗) ∈ S(w0), there exists a subsequence {(xkj , ykj , λkj )}j∈N

converges to (x∗, y∗, λ∗). Since {Lβ(wk)}k∈N is nonincreasing, combining (3.23) and (3.24)
lead to

lim
k→+∞

Lβ(xk, yk, λk) = Lβ(x∗, y∗, λ∗).

Therefore, Lβ(·) is constant on S(w0). Moreover, inf
k∈N

Lβ(wk) = lim
k→+∞

Lβ(wk).

We are now ready for proving the main result of this paper.

Theorem 3.6. Let {wk}k∈N be the sequence generated by the ADMM (1.3) which is assumed
to be bounded. Suppose that Lβ(·) is a KL function, then {wk}k∈N has finite length, that is

+∞∑
k=0

∥wk+1 − wk∥ < +∞,

and as a consequence, we have {wk}k∈N converges to a critical point of Lβ(·).
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Proof. Since from the proof of Lemma 3.5, it follows that Lβ(wk) → Lβ(w∗) for all w∗ ∈
S(w0). We consider two cases.

(i). If there exists an integer k0 for which Lβ(wk0) = Lβ(w∗). Rearranging terms of
(3.5) we have that for any k > k0,

δ∥vk+1 − vk∥2 ≤ Lβ(wk) − Lβ(wk+1) ≤ Lβ(wk0) − Lβ(w∗) = 0,

implying that vk+1 = vk for any k > k0. Associated with (3.14), for any k > k0 + 1, it
follows that wk+1 = wk and the assertion holds.

(ii). Now, assume Lβ(wk) > Lβ(w∗) for all k. We claim there exists k̃ > 0 such that for

all k > k̃,
δ∥vk+1 − vk∥2 ≤ ζ∥vk − vk−1∥∆k,k+1, (3.27)

where ∆p,q := φ(Lβ(wp) − Lβ(w∗)) − φ(Lβ(wq) − Lβ(w∗)). To see this, note that

d(wk, S(w0)) → 0 and Lβ(wk) → Lβ(w∗), then for all ϵ, η > 0, there exists k̃ > 0 such

that when k > k̃, we have

d(wk, S(w0)) < ϵ, Lβ(w∗) < Lβ(wk) < Lβ(w∗) + η.

Since S(w0) is a nonempty compact set and Lβ(·) is constant on S(w0), applying Lemma

2.7 with Ω := S(w0), we deduce that for any k > k̃

φ′(Lβ(wk) − Lβ(w∗))d(0, ∂Lβ(wk)) ≥ 1.

Since Lβ(wk)−Lβ(wk+1) = (Lβ(wk)−Lβ(w∗))− (Lβ(wk+1)−Lβ(w∗)), making use of the
concavity of φ we get that

φ(Lβ(wk)−Lβ(w∗))−φ(Lβ(wk+1)−Lβ(w∗)) ≥ φ′(Lβ(wk)−Lβ(w∗))(Lβ(wk)−Lβ(wk+1)).

Thus, using the inequalities d(0, ∂Lβ(wk)) ≤ ζ∥vk − vk−1∥ and φ′(Lβ(wk) − Lβ(w∗)) > 0,
we obtain

Lβ(wk) − Lβ(wk+1)

≤ φ(Lβ(wk) − Lβ(w∗)) − φ(Lβ(wk+1) − Lβ(w∗))

φ′(Lβ(wk) − Lβ(w∗))

≤ ζ∥vk − vk−1∥[φ(Lβ(wk) − Lβ(w∗)) − φ(Lβ(wk+1) − Lβ(w∗))].

Combining Lemma 3.2 with the above relation gives (3.27), as desired. Moreover, (3.27)
implies

∥vk+1 − vk∥ ≤
√

ζ

δ
∆k,k+1∥vk − vk−1∥ 1

2 .

Notice that 2
√
αβ ≤ α + β, for all α, β ≥ 0. Then we obtain

2∥vk+1 − vk∥ ≤ ∥vk − vk−1∥ +
ζ

δ
∆k,k+1. (3.28)

Summing the inequality (3.28) over k = k̃ + 1, . . . ,m yields

2

m∑
k=k̃+1

∥vk+1 − vk∥ ≤
m∑

k=k̃+1

∥vk − vk−1∥ +
ζ

δ
∆k̃+1,m+1.
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Since φ(Lβ(wm+1) − Lβ(w∗)) > 0, rearranging terms and letting m → +∞ lead to

+∞∑
k=k̃+1

∥vk+1 − vk∥ ≤ ∥vk̃+1 − vk̃∥ +
ζ

δ
φ(Lβ(wk̃+1) − Lβ(w∗)), (3.29)

which implies
+∞∑
k=0

∥vk+1 − vk∥ < +∞.

Thus, it follows that

+∞∑
k=0

∥xk+1 − xk∥ < +∞,

+∞∑
k=0

∥yk+1 − yk∥ < +∞.

These, together with (3.22), we obtain

+∞∑
k=0

∥λk+1 − λk∥ < +∞.

Moreover, note that

∥wk+1 − wk∥
= (∥xk+1 − λk∥2 + ∥yk+1 − yk∥2 + ∥λk+1 − λk∥2)

1
2

≤ ∥xk+1 − λk∥ + ∥yk+1 − yk∥ + ∥λk+1 − λk∥. (3.30)

Therefore,
+∞∑
k=0

∥wk+1 − wk∥ < +∞,

and {wk}k∈N is a Cauchy sequence (see P.482 of [5] for a simple proof), which converges.
The assertion then follows immediately from Lemma 3.5.

We now establish the convergence rate for the ADMM (1.3). The proof of the following
result is similar to that in [19] and hence omitted here.

Theorem 3.7. Let {wk}k∈N be the sequence generated by the ADMM (1.3) and converges to
w∗ := (x∗, y∗, λ∗). Assume that Lβ(·) has the KL property at (x∗, y∗, λ∗) with φ(s) := cs1−θ,
θ ∈ [0, 1), c > 0. Then the following estimations hold:

(i) If θ = 0, then the sequence {wk}k∈N converges in a finite number of steps.

(ii) If θ ∈ (0, 1
2 ], then there exist c > 0 and τ ∈ [0, 1), such that

∥(xk, yk, λk) − (x∗, y∗, λ∗)∥ ≤ cτk.

(iii) If θ ∈ ( 1
2 , 1), then there exists c > 0, such that

∥(xk, yk, λk) − (x∗, y∗, λ∗)∥ ≤ ck
θ−1
2θ−1 .
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4 Extensions

The simple structure of ADMM allows us to extend it to the more general setting involving
p > 2 blocks for which Theorem 3.1 holds. Thus, we can easily extend our previous analysis
to the more general model:

min
xi

p∑
i=1

fi(xi) + H(x1, · · · , xp)

s.t. A1x1 + A2x2 + · · · + Ap−1xp−1 + xp = b,

(4.1)

where f1 : Rn1 → R ∪ {+∞}, fi : Rni → R, i = 2, · · · , p − 1, fp : Rm → R and H :
Rn1 × · · ·Rnp−1 ×Rm → R are functions, Ai ∈ Rm×ni , i = 1, · · · , p − 1 is a given matrix,
b ∈ Rm is a vector. Using the Gauss-Seidel idea in solving the associated augmented
Lagrangian function, it is natural to directly extend the scheme (1.3) to the problem (4.1)
with p > 2, and the resulting iterative recursion is:

xk+1
1 ∈ argminx1

{Lp
β(x1, x

k
2 , · · · , xk

m, λk)},
· · ·
xk+1
i ∈ argminxi

{Lp
β(xk+1

1 , · · · , xk+1
i−1 , xi, x

k
i+1, · · · , xk

p, λ
k)},

· · ·
xk+1
p ∈ argminxp

{Lp
β(xk+1

1 , · · · , xk+1
p−1, xp, λ

k)},

λk+1 = λk − β(
p−1∑
i=1

Aix
k+1
i + xk+1

p − b),

(4.2)

where

Lp
β(x1, · · · , xp, λ) :=

p∑
i=1

fi(xi)+H(x1, · · · , xp)−⟨λ,
p−1∑
i=1

Aixi+xp−b⟩+β

2
∥
p−1∑
i=1

Aixi+xp−b∥2

is the augmented Lagrangian function of problem (4.1), λ is the Lagrangian multiplier
associated with the linear constraint, and β > 0 is the penalty parameter.

Next, we use the notation {ŵk := (xk
1 , · · · , xk

p, λ
k)}k∈N and {v̂k := (xk

1 , · · · , xk
p)}k∈N for

succinctness.

Theorem 4.1. Let f1 : Rn1 → R ∪ {+∞} be a semiconvex function with constant ω > 0,
fi : Rni → R, i = 2, · · · , p− 1, fp : Rm → R and H : Rn1 ×· · ·Rnp−1 ×Rm → R be smooth
functions with inf H(x1, · · · , xp) > −∞, inf

xi∈Rni
fi(xi) > −∞ for any i = 1, · · · , p − 1,

inf
xp∈Rm

fp(xp) > −∞. Let {ŵk}k∈N be the sequence generated by algorithm (4.2) which is

assumed to be bounded, then there exists δ1 > 0 such that

Lp
β(ŵk+1) ≤ Lp

β(ŵk) − δ1∥v̂k+1 − v̂k∥2.

Moreover, suppose that Lp
β(·) is a KL function, then {ŵk}k∈N has finite length, that is

+∞∑
k=0

∥ŵk+1 − ŵk∥ < +∞,

and as a consequence, we have {ŵk}k∈N converges to a critical point of Lp
β(·).
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Proof. Since the proof is similar to Lemma 3.2 and Theorem 3.6, we omit the details.

Remark 4.2. If H ≡ 0, then problem (4.1) and algorithm (4.2) reduce to those considered
in [18].

Remark 4.3. Recently, Li, Sun and Toh [25] present a majorized ADMM with indefinite
proximal terms for solving linearly constrained two-block convex composite optimization
problems. From a numerical point of view, it is advantageous to pick an indefinite S or
T whenever possible. Motivated by this, we can also solve both subproblems by adding
indefinite terms, leading to the following scheme: Let S and T be given symmetric, possibly
indefinite matrix. The ADMM with indefinite proximal terms for problem (1.1) reads as:

xk+1 ∈ argminx{Lβ(x, yk, λk) + 1
2∥x− xk∥2S},

yk+1 ∈ argminy{Lβ(xk+1, y, λk) + 1
2∥y − yk∥2T },

λk+1 = λk − β(Axk+1 + yk+1 − b).
(4.3)

Furthermore, we can also extend the algorithm (4.2) with indefinite proximal terms to solve
(4.1). We omit these details for succinctness.

5 Conclusions

In this paper, we analyzed the convergence of the alternating direction method of multipliers
(ADMM) for solving linearly constrained nonconvex minimization model whose objective
contains coupled functions. Under the assumption that the associated functions satisfy
the Kurdyka- Lojasiewicz inequality, we proved that the iterative sequence generated by the
ADMM converges to a critical point of the augmented Lagrangian function, provided that
the penalty parameter in the augmented Lagrangian function is larger than a threshold.
Under some further conditions on the problem’s data, the convergence rate of the algorithm
was also established. Some extensions are also presented.
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