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where γ ∈ (0, 2) guarantees the convergence. However, the nonseparability of the (x, y)-
minimization problem in (1.3) may destroy the functions θ1 and θ2’s own properites/strcutures.
To overcome this difficulty, one may consider the following ADMM [16, 13] scheme to solve
(1.1): 

xk+1 = argmin{Lβ(x, y
k, λk) |x ∈ X}, (1.4a)

yk+1 = argmin{Lβ(x
k+1, y, λk) | y ∈ Y}, (1.4b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.4c)

with γ ∈ (0, 1+
√
5

2 ). Note the ADMM decouples the subproblem (1.3a) into two easier ones
by fixing one variable and minimizing with the other, followed by a dual updating step.
We remark here that the ADMM scheme (1.4) is different from the over-relaxed ADMM
(see [2, 8, 9]). Thus, the parameter γ in (1.4c) is different from the relaxed factor in the
over-relaxed ADMM. The convergence of (1.4) has long been established under a different
context [7, 8, 12, 13]. We refer to, e.g., [2, 9, 10, 15], for some reviews on ADMM.

By noting the fact that the subproblems in (1.4) may still be difficult to solve even if each
proximity of the functions θ1 and θ2 [18] preserves a closed-form solution. A remedy way is
to add an appropriately chosen quadratic proximal term in the corresponding subproblem.
Let us take the x-subproblem as an example. Suppose that the proximity of the function
θ1 deserves a closed-form solution, e.g., θ1(x) = ∥x∥1 [2]. In order to solve the subproblem
(1.5a) relatively easily, we can linearize the augmented Lagrange term by choosing R =
ξI − βA⊤A when A ̸= I. Moreover, if the function θ1 is a quadratic function, namely,
θ1(x) = 1

2x
⊤Σ1x + c⊤x, then we can linearize either the function θ1 or both θ1 and the

augmented Lagrange term simultaneously. Or equivalently, we choose R = ξI−Σ1 if A = I,
or set R = ξI − βA⊤A−Σ1 when A is not identity. A similar strategy is also applicable for
the y-subproblem, and more details can be found in [4, 18]. An immediate consequence is
that the related subproblem is usually easy to solve.

Hence, it results in the following proximal alternating direction method of multipliers
(PADMM) scheme:

xk+1 = argmin{Lβ(x, y
k, λk) +

1

2
∥x− xk∥2R |x ∈ X}, (1.5a)

yk+1 = argmin{Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2S | y ∈ Y}, (1.5b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.5c)

where γ ∈ (0, 1+
√
5

2 ) and R ⪰ 0 and S ⪰ 0 are two symmetric positive semidefinite matrices
[11]. When R and S are two positive scalar matrices (i.e., cI with some positive constant
c), the above PADMM scheme with γ = 1 reduces to the splitting method in [7]. He et al.
[17] established the global convergence of (1.5) with γ = 1, and both of R, S are symmetric
positive definite matrices in the variational inequality context and even considered varying
β, R and S at each iteration. Later, Xu [26] extended the convergence analysis for (1.5)

with γ ∈ (0, 1+
√
5

2 ), and both of R, S are symmetric positive definite matrices. Recently,

Fazel et al. [11] analyzed the convergence of (1.5) with γ ∈ (0, 1+
√
5

2 ) and R, S are both
self-adjoint positive semidefinite linear operators. Since R, S can be positive semidefinite
linear operators, the PADMM (1.5) includes the classical ADMM (1.4) as a special case.

In [11], the PADMM is also called semi-Proximal ADMM.
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The introduction of the relaxation factor γ in (1.5c) is attributed to Fortin and Glowinski.
Both of the x- and y-subproblems in (1.5) are usually computationally expensive, while
updating the Lagrange multiplier is much cheaper. Moreover, it has been numerically verified
that a large step size in (1.5c) leads to a better performance, see numerical results in [14] and
further in [5, 20, 25]. Furthermore, the relaxation parameter γ’s range is (0, 2) in the ALM

(1.3) while the range is (0, 1+
√
5

2 ) in the PADMM (1.5) (including ADMM). This gap may
result from the fact that the step (1.3a) in the ALM is substituted by the componentwise
minimization steps (1.4a) and (1.4b) in the ADMM, since the latter is regarded as an
incomplete version of the former.

Besides [13], this question has recently attracted some efforts in the literatures [24, 6]. In
[24], the authors showed the first attempt to adopt a large step size in the PADMM (1.5) for
solving conic programming. Furthermore, the authors [6] simplified the conditions in [24]

and emphasized the necessity of further enlarging the range γ ∈ (0, 1+
√
5

2 ) and commented
as “the ADMM with a computationally more attractive large step-length that can even

exceed the practically much preferred golden ratio of 1+
√
5

2 ”. These conditions proposed
therein (see Theorem 2.2 in [24] and Theorem 4.1 in [6]) require the summability of an
sequence asymptotically and some practical techniques were introduced to implement these
conditions.

In this paper, we conduct a rigorous convergence analysis of the PADMM (1.5) with a

step size γ ∈ (0, 1−τ+
√
τ2+6τ+5
2 ) under some moderate and checkable conditions. This range

is much larger than (0, 1+
√
5

2 ) and the scalar τ will be specified in Assumption 2.2. Indeed,
there always exists a positive scalar τ satisfying Assumption 2.2 by setting S = ζI − Σ2

and ζ = λmax(Σ2) with Σ2 defined in (2.2). This choice of S is usually adopted when the
function θ2 is a quadratic function [4]. Note the above setting of S is positive semidefinite
instead of positive definite. It implies that we obtain some improvement on the range for γ
without any enlargement for the matrix S involved in the y-subproblem (1.5b). In addition to
establishing the global convergence, we also analyze its ergodic iteration-complexity. Indeed,
we carry out the ergodic iteration analysis in terms of the partial primal-dual gap [3] (see
page 121), the feasibility violation and the decrement of the objective function.

The remainder of this paper is organized as follows. In Section 2, we summarize some
notations, present the basic assumptions, and characterize the optimality condition of (1.1).
In Section 3, we prepare some properties, lemmas and theorems for facilitating global con-
vergence and convergence rate analysis. Then, the global convergence and convergence rate
are studied in Section 4. Finally, some conclusions are made in Section 5.

During the second round review of this paper, we noticed that He and Ma [19] considered
the following proximal-ADMM to solve (1.1):

xk+1 = argmin{Lβ(x, y
k, λk) |x ∈ X},

yk+1 = argmin{Lβ(x
k+1, y, λk) + τβ

2 ∥B(y − yk)∥2 | y ∈ Y},
λk+1 = λk − γβ(Axk+1 +Byk+1 − b),

(1.6)

with Lβ defined in (1.2). They established the global convergence of (1.6) for solving (1.1)

with Σ1 = Σ2 = 0 defined in (2.1)-(2.2) when the step size γ ∈ (0, 1−τ+
√
τ2+6τ+5
2 ) and B has

full column rank; and also derive a worst-case O(1/t) convergence rate in the ergodic sense.
Note that the scheme (1.6) is a special case of the (1.5) with setting R = 0 and S = τβB⊤B.
This case has been covered by our results, see Remark 2.1 in Section 2. Nevertheless, our
results differs from theirs in three aspects. First, our results are more general: We introduce
semi-proximal terms both in x and y subproblems. Second, the proximal matrix S in (1.5)
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is not necessarily positive definite while the proximal matrix in (1.6), i.e. τβB⊤B is positive
definite due to B full column rank. Moreover, our analysis shows that the range of the step

size γ can still be larger than (0, 1+
√
5

2 ) when θ2 is a quadratic or smooth function while
without any enlargement in the proximal term, see Remark 2.2. Third, we carry out the
ergodic iteration analysis in terms of the partial primal-dual gap, the feasibility violation
and the decrement of the objective function, while the ergodic iteration analysis in [19] is
measured by the partial primal-dual gap.

2 Preliminaries

In this section, we define some notations to be used, present some assumptions, and show
the optimality condition of the model (1.1) in the variational inequality context.

2.1 Notations

For a set D, ri(D) denotes the relative interior of D. For a vector x ∈ Rn, ∥x∥2 represents√∑n
i=1 |xi|2. Given a symmetric positive semidefinite matrix Σ, we denote ∥x∥Σ :=

√
x⊤Σx.

The notation M ⪰ 0 means M is positive semidefinite and M ≻ 0 means M is positive
definite. Since θ1 and θ2 are closed convex functions, there exists two symmetric positive
semidefinite matrices Σ1 and Σ2 such that

(x− x′)⊤(g − g′) ≥ ∥x− x′∥2Σ1
, ∀ x, x′ ∈ dom(θ1), g ∈ ∂θ1(x), g

′ ∈ ∂θ1(x
′),

(2.1)

and

(y − y′)⊤(h− h′) ≥ ∥y − y′∥2Σ2
, ∀ y, y′ ∈ dom(θ2), h ∈ ∂θ2(y), h

′ ∈ ∂θ2(y
′).

(2.2)

The definitions above for θ1 and θ2 are flexible enough to include convex functions, i.e., θi’s
(i = 1, 2) are convex when Σi = 0.

By letting

u :=

(
x
y

)
, s :=

(
g
h

)
, Σ =

(
Σ1 0
0 Σ2

)
,

the inequalities (2.1)-(2.2) can be written compactly as

(u− u′)⊤(s− s′) ≥ ∥u− u′∥2Σ.

2.2 Assumptions

Throughout this paper, we suppose that the following assumptions hold.

Assumption 2.1. The solution set of (1.1) is nonempty. There exists

u′ = (x′, y′) ∈ ri(dom(θ1)× dom(θ2)) ∩ F ,

where

F := {u = (x, y) ∈ X × Y | Ax+By = b} .
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Assumption 2.2. Suppose θ1 and θ2 in (1.1) satisfy (2.1)-(2.2) with two symmetric positive
semidefinite matrices Σ1, Σ2. The matrices R and S defined in (1.5) are symmetric positive
semidefinite. The matrices A, B in (1.1), Σ1, Σ2 and R, S satisfy

Σ1 +A⊤A+R ≻ 0, Σ2 +B⊤B + S ≻ 0.

For given β > 0, there exists a positive scalar τ > 0 such that

2Σ2 + S ≻ βτB⊤B. (2.3)

Remark 2.3. The condition (2.3) can be relaxed to

2Σ2 + S ⪰ βτB⊤B, (2.4)

whenever B has full column rank.

Remark 2.4. We remark that if the function θ2 is a quadratic or smooth function, then
there always exists a positive scalar τ (not small) satisfying (2.3) for the PADMM (1.5) even
with a positive semidefinite proximal term [6, 11]. For example, let θ2(y) :=

1
2y

⊤Σ2y+ c⊤y.
We can choose S = ζI − Σ2 with ζ = λmax(Σ2) when B = I, and S = ζI − βB⊤B − Σ2

with ζ = λmax(βB
⊤B + Σ2) when B ̸= I and it has full column rank. Then the maximum

scalar τ satisfying (2.3) can be computed as follows:

τ =
λmin(Σ2) + ζ

βλmax(B⊤B)
− 1.

Further, it reduces to

τ =
λmin(Σ2) + ζ

β
,

when B = I. Usually, the τ defined above is large when λmax(Σ2) is large with β given due
to ζ ≥ λmax(Σ2).

Each subproblem in (1.5) is well-defined under Assumptions 2.1 and 2.2.

2.3 Optimality condition

In this section, we characterize the optimality condition of the problem (1.1) in the varia-
tional inequality context. Denote Ω := X ×Y ×Rm. Define the Lagrangian function of the
problem (1.1) by

L(x, y, λ) = θ1(x) + θ2(y)− λ⊤(Ax+By − b). (2.5)

Under Assumption 2.1, it follows from [23, Corollary 28.2.2] and [23, Corollary 28.3.1] that
(x∗, y∗) ∈ domθ1 × domθ2 is a solution of (1.1) if and only if there exists a Lagrangian
multiplier λ∗ ∈ Rm such that (x∗, y∗, λ∗) is a saddle point to the Lagrangian function (2.5).
Thus, under Assumptions 2.1 and 2.2, we can characterize the optimality condition of (1.1)
as

x∗ ∈ X , θ1(x)− θ1(x
∗) + (x− x∗)⊤(−A⊤λ∗) ≥ 1

2∥x− x∗∥2Σ1
, ∀x ∈ X ,

y∗ ∈ Y, θ2(y)− θ2(y
∗) + (y − y∗)⊤(−B⊤λ∗) ≥ 1

2∥y − y∗∥2Σ2
, ∀ y ∈ Y,

λ∗ ∈ Rm, (λ− λ∗)⊤(Ax∗ +By∗ − b) ≥ 0, ∀ λ ∈ Rm.

(2.6)
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More compactly, the system (2.6) can be written as the following variational inequality (VI):

VI(Ω, F, θ) : w∗ ∈ Ω, θ(u)− θ(u∗) + (w − w∗)⊤F (w∗) ≥ 1

2
∥u− u∗∥2Σ, ∀w ∈ Ω,

(2.7a)

where

u =

(
x
y

)
, w =

 x
y
λ

 , θ(u) = θ1(x) + θ2(y), F (w) =

 −A⊤λ
−B⊤λ

Ax+By − b

 .

(2.7b)

The solution set of VI(Ω, F, θ) is denoted by Ω∗ which is nonempty under Assumption 2.1.

3 Preparation for Convergence

In this section, we present several lemmas and theorems for facilitating global convergence
and convergence rate analysis. The following three lemmas are elementary, and the proof is
trivial and thus omitted.

Lemma 3.1. The mapping F (w) defined in (2.7b) satisfies

(w′ − w)⊤[F (w′)− F (w)] = 0, ∀w′, w ∈ Rn1+n2+m.

Lemma 3.2. For a matrix H ∈ Rn×n with H ⪰ 0 and vectors a, b, c, d ∈ Rn, we have

(a− b)⊤H(c− d) =
1

2

[
∥a− d∥2H − ∥a− c∥2H

]
+

1

2

[
∥c− b∥2H − ∥d− b∥2H

]
.

Lemma 3.3. Suppose that Σ1, Σ2 and R, S are symmetric positive semidefinite. The
matrices A and B are given in (1.1). Then, for any β > 0, we have Σ1 + βA⊤A + R ≻ 0
whenever Σ1+A⊤A+R ≻ 0. Analogously, Σ2+βB⊤B+S ≻ 0 whenever Σ2+B⊤B+S ≻ 0.

Next, we introduce an auxiliary vector w̃k = (x̃k, ỹk, λ̃k), defined as

x̃k = xk+1, ỹk = yk+1, (3.1a)

and

λ̃k = λk − β(Axk+1 +Byk − b), (3.1b)

where the sequence {wk} is generated by the PADMM (1.5).
The coming lemma reveals the relationship among wk, w̃k and wk+1.

Lemma 3.4. Let {wk+1} be generated by (1.5) and w̃k be defined by (3.1). Then, we have

wk+1 = wk −M(wk − w̃k),

where

M =

 I 0 0
0 I 0
0 −γβB γIm

 . (3.2)
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In the following, we characterize the optimality condition of the PADMM (1.5) with
variational inequality.

Lemma 3.5. Let {wk+1} be generated by the PADMM (1.5) and w̃k be defined by (3.1).
Then, we have

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)⊤
[
F (w̃k)−Q(wk − w̃k)

]
≥ 0, ∀ w ∈ Ω,

(3.3a)

where θ(u) and F (w) are defined in (2.7b) and the matrix Q is defined by

Q =

 R 0 0
0 S + βB⊤B 0
0 −B 1

β I

 . (3.3b)

Proof. First, according to the optimality condition of the x-subproblem in (1.5a), we get

x̃k ∈ X , θ1(x)− θ1(x̃
k) + (x− x̃k)⊤

[
−A⊤λ̃k +R(x̃k − xk)

]
≥ 1

2
∥x− x̃k∥2Σ1

,

∀ x ∈ X . (3.4)

Analogously, using the optimality condition of the y-subproblem in (1.5b), we have

ỹk ∈ Y, θ2(y)− θ2(ỹ
k) + (y − ỹk)⊤

[
−B⊤λ̃k + (S + βB⊤B)(ỹk − yk)

]
≥ 1

2
∥y − ỹk∥2Σ2

, ∀ y ∈ Y. (3.5)

Finally, according to the definition of λ̃k, we obtain

λ̃k ∈ Rm, (λ− λ̃k)⊤
[
(Ax̃k +Bỹk − b)−B(ỹk − yk) + (1/β)(λ̃k − λk)

]
≥ 0,

∀λ ∈ Rm. (3.6)

Combining (3.4), (3.5) and (3.6), and using the notations in (2.7b) and the definition of Q
in (3.3b), the assertion follows immediately.

Next, we further introduce a positive semidefinite matrix

H =

 R 0 0
0 S + βB⊤B 0
0 0 1

γβ I

 . (3.7)

According to the definitions of Q in (3.3b) and M in (3.2), it holds that Q = HM . Conse-
quently, we can rewrite

(w − w̃k)⊤Q(wk − w̃k) = (w − w̃k)⊤H(wk − wk+1), (3.8)

where the equality follows from Lemma 3.4. Based on Lemma 3.5 and (3.8), we show the
discrepancy between the auxiliary vector w̃k and any point in Ω.

Theorem 3.6. For the sequence {wk} generated by the PADMM (1.5), we have

θ(u)− θ(ũk) + (w − w̃k)⊤F (w̃k)

≥ 1

2

(
∥w − wk+1∥2H − ∥w − wk∥2H

)
+

1

2

(
∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H

)
, ∀ w ∈ Ω,

(3.9)

where H is defined in (3.7).
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Proof. First, since Q = HM , substituting (3.8) into (3.3a) yields

w̃k ∈ Ω, θ(u)− θ(ũk) + (w − w̃k)⊤F (w̃k) ≥ (w − w̃k)⊤H(wk − wk+1), ∀ w ∈ Ω. (3.10)

Due to Lemma 3.2, we have

(w − w̃k)⊤H(wk − wk+1) =
1

2

(
∥w − wk+1∥2H − ∥w − wk∥2H

)
+
1

2
(∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H). (3.11)

Substituting (3.11) into the right-hand side of (3.10), the assertion follows directly.

Consequently, we take a further analysis for the second term of the right-hand side of
(3.9). Thus, we define it as:

∆(wk, wk+1) =
1

2

(
∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H

)
. (3.12)

Lemma 3.7. For the sequence {wk} generated by the PADMM (1.5), we have

∆(wk, wk+1) =
1

2

(
∥xk − xk+1∥2R + ∥yk − yk+1∥2S+βB⊤B

+(2− γ)β∥rk+1∥2 + 2β(Byk −Byk+1)⊤rk+1
)
,

(3.13)

with

rk+1 := Axk+1 +Byk+1 − b. (3.14)

Proof. First, due to (3.1), we have

λk − λ̃k = βrk+1 + βB(yk − yk+1). (3.15)

Consequently, combining with (1.5c), we get

λk+1 − λ̃k = λk+1 − λk + λk − λ̃k

= −γβrk+1 + βrk+1 + βB(yk − yk+1)

= (1− γ)βrk+1 + βB(yk − yk+1). (3.16)

Combining the above two equalities, we further obtain

1

γβ

(
∥λk − λ̃k∥2 − ∥λk+1 − λ̃k∥2

)
=

1

γβ

(
∥βrk+1 + βB(yk − yk+1)∥2 − ∥(1− γ)βrk+1 + βB(yk − yk+1)∥2

)
= β

[
(2− γ)∥rk+1∥2 + 2(Byk −Byk+1)⊤rk+1

]
. (3.17)

On the other hand, invoking (3.1) and the definition of the matrix H in (3.7), we get

1

2

(
∥wk − w̃k∥2H − ∥wk+1 − w̃k∥2H

)
=

1

2

[
∥xk − xk+1∥2R + ∥yk − yk+1∥2S+βB⊤B +

1

γβ

(
∥λk − λ̃k∥2 − ∥λk+1 − λ̃k∥2

)]
.

Finally, substituting (3.17) into the above equality, and recalling the definition of ∆(wk, wk+1)
in (3.12), the assertion follows immediately.
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Then, we give a further analysis for the crossing term in the right-hand side of (3.13).

Lemma 3.8. Let {wk+1} be generated by the PADMM (1.5) and w̃k be defined by (3.1).
Then, we have

β(Byk −Byk+1)⊤rk+1 ≥ (1− γ)β(Byk −Byk+1)⊤rk + ∥yk − yk+1∥2Σ2

+
1

2
∥yk − yk+1∥2S − 1

2
∥yk − yk−1∥2S , (3.18)

where rk+1 is defined in (3.14).

Proof. Setting y = yk in (3.5) and y = yk+1 in (3.5) with k := k − 1, recalling ỹk = yk+1

(see (3.1a)), and then adding them together, we obtain

(yk − yk+1)⊤
{
−B⊤(λ̃k − λ̃k−1) + (S + βB⊤B)[(yk+1 − yk)− (yk − yk−1)]

}
≥ ∥yk − yk+1∥2Σ2

. (3.19)

On the other hand, due to (3.15), we get

λ̃k − λ̃k−1 = [λk − βrk+1 + βB(yk+1 − yk)]− [λk−1 − βrk + βB(yk − yk−1)]

= λk − λk−1 − βrk+1 + βrk + βB(yk+1 − yk)− βB(yk − yk−1)

(1.5c)
= −γβrk + βrk − βrk+1 + βB(yk+1 − yk)− βB(yk − yk−1)

= (1− γ)βrk − βrk+1 + βB(yk+1 − yk)− βB(yk − yk−1).

Then, substituting the above equality into (3.19), we obtain

β(Byk −Byk+1)⊤rk+1 ≥ (1− γ)β(Byk −Byk+1)⊤rk

+∥yk − yk+1∥2S + (yk − yk+1)⊤S(yk − yk−1) + ∥yk − yk+1∥2Σ2
.

Finally, using Cauchy-Schwarz inequality, it yields

(yk − yk+1)⊤S(yk − yk−1) ≥ −1

2
∥yk − yk+1∥2S − 1

2
∥yk−1 − yk∥2S .

Combining the last two inequalities, the assertion follows directly.

In the following lemma, we further treat the crossing term in (3.18).

Lemma 3.9. Let {wk+1} be generated by (1.5). Suppose that Assumptions 2.1 and 2.2 hold
and γ ∈ (0, 2). Then, there exists a sufficiently small positive scalar σ such that

(1− γ)β(Byk −Byk+1)⊤rk +
1

2
∥yk − yk+1∥2S+2Σ2+βB⊤B +

2− γ

2
β∥rk+1∥2

≥ 1

2
C1β∥Byk −Byk+1∥2 + (1− γ)2

2κ
β
(
∥rk+1∥2 − ∥rk∥2

)
+
1

2
C2β∥rk+1∥2 + 1

2
σ∥yk − yk+1∥2S ,

(3.20)

where rk is defined in (3.14) and

κ :=
1

2

(
1 + τ +

(1− γ)2

2− γ

)
, (3.21)
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C1 := 1 + τ − κ, (3.22)

C2 := 2− γ − (1− γ)2

κ
. (3.23)

Proof. First, invoking (2.3) in Assumption 2.2, there exists a sufficiently small positive scalar
σ (0 < σ < 1) such that

2Σ2 + (1− σ)S ⪰ βτB⊤B.

Consequently, we get

(1− γ)β(Byk −Byk+1)⊤rk +
1

2
∥yk − yk+1∥2S+2Σ2+βB⊤B +

2− γ

2
β∥rk+1∥2

≥ (1− γ)β(Byk −Byk+1)⊤rk +
β

2
(1 + τ)∥Byk −Byk+1∥2

+
2− γ

2
β∥rk+1∥2 + 1

2
σ∥yk − yk+1∥2S .

(3.24)

Then, using Cauchy-Schwarz inequality, we have

(1− γ)β(Byk −Byk+1)⊤rk ≥ −κ

2
β∥Byk −Byk+1∥2 − (1− γ)2

2κ
β∥rk∥2.

Consequently, substituting the last inequality into (3.24), and combining the definitions of
C1 in (3.22) and C2 in (3.23), the conclusion follows directly.

The lemma below shows that both of the coefficients C1, C2 are positive when γ belongs

to a certain range larger than (0, 1+
√
5

2 ).

Lemma 3.10. Assume that τ ∈ (0,+∞), and the step size γ in (1.5) satisfies

γ ∈

(
0,

1− τ +
√
τ2 + 6τ + 5

2

)
. (3.25)

Then, we have

i) (1 + τ)− (1−γ)2

2−γ > 0;

ii) C1 > 0 and C2 > 0, where C1, C2 are defined in (3.22), (3.23), respectively.

Proof. For assertion i), we first observe that

1 + τ − (1− γ)2

2− γ
> 0 ⇔ γ2 + (τ − 1)γ − (1 + 2τ) < 0.

Then, it is easy to show that the above last inequality holds when γ satisfies (3.25). For
assertion ii), note that the upper bound for γ in (3.25) is an increasing function with respect
to the parameter τ . Moreover, the limit value of the upper bound is 2 when τ tends to

positive infinity. Thus, we have γ ∈ (0, 1−τ+
√
τ2+6τ+5
2 ) ⊂ (0, 2). Consequently, we have

γ satisfies (3.25)
(a)⇒ (1− γ)2

2− γ
< κ < 1 + τ

(b)⇒ C1 > 0, C2 > 0.



ADMM WITH LARGER STEP SIZE THAN GLOWINSKI’S 517

In fact, for implication (a), (3.25) guarantees the inequality (1−γ)2

2−γ < 1+ τ holds. Note that

κ defined in (3.21) is the middle point of the interval
(

(1−γ)2

2−γ , 1 + τ
)
. Thus, the implication

(a) is obviously true. The implication (b) follows directly from the definitions of C1 in (3.22)
and C2 in (3.23).

The coming theorem is the basis for establishing the global convergence and estimating
the convergence rate for the sequence generated by the PADMM (1.5).

Theorem 3.11. Let {wk+1} be generated by the PADMM (1.5) and w̃k be defined in (3.1).
Suppose that Assumptions 2.1 and 2.2 hold. Then, for any w ∈ Ω, we have

Φ(wk+1, wk, w) ≤ Φ(wk, wk−1, w) + θ(u)− θ(ũk) + (w − w̃k)⊤F (w)

−
{
1

2
C1β∥Byk −Byk+1∥2 + 1

2
C2β∥rk+1∥2 + 1

2
∥xk − xk+1∥2R +

1

2
σ∥yk − yk+1∥2S

}
,

(3.26)

with

Φ(wk+1, wk, w) :=
1

2
∥wk+1 − w∥2H +

1

2
∥yk − yk+1∥2S +

(1− γ)2

2κ
β∥rk+1∥2,

(3.27)

where κ is defined in (3.21).

Proof. First, substituting (3.18) into (3.13), we get

∆(wk, wk+1)

≥ 1

2

(
∥xk − xk+1∥2R + ∥yk − yk+1∥2S+2Σ2+βB⊤B + (2− γ)β∥rk+1∥2

+2(1− γ)β(Byk −Byk+1)⊤rk
)
+

1

2
∥yk − yk+1∥2S − 1

2
∥yk − yk−1∥2S .

Then, using (3.20) and the definitions of C1 and C2 in (3.22), (3.23), respectively, we have

∆(wk, wk+1)

≥ 1

2
C1β∥Byk −Byk+1∥2 + (1− γ)2

2κ
β
(
∥rk+1∥2 − ∥rk∥2

)
+

1

2
C2β∥rk+1∥2

+
1

2
∥xk − xk+1∥2R +

1

2
∥yk − yk+1∥2S − 1

2
∥yk − yk−1∥2S +

1

2
σ∥yk − yk+1∥2S .

Consequently, invoking Theorem 3.6 and the definition ∆(wk, wk+1) in (3.12), and then
combining the above inequality, we obtain

θ(u)− θ(ũk) + (w − w̃k)⊤F (w̃k)

≥ 1

2

(
∥w − wk+1∥2H − ∥w − wk∥2H

)
+

1

2
∥xk − xk+1∥2R

+
1

2
C1β∥Byk −Byk+1∥2 + (1− γ)2

2κ
β
(
∥rk+1∥2 − ∥rk∥2

)
+

1

2
C2β∥rk+1∥2

+
1

2
∥yk − yk+1∥2S − 1

2
∥yk − yk−1∥2S +

1

2
σ∥yk − yk+1∥2S .

Finally, invoking Lemma 3.1 and using the definition Φ(wk+1, wk, w) in (3.27), the assertion
(3.26) follows directly.
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Based on Theorem 3.11, we can show the following contractive property of the sequence
{wk} generated by the PADMM (1.5).

Theorem 3.12. Let the sequence {wk} be generated by the PADMM (1.5). Suppose that
Assumptions 2.1 and 2.2 hold. Then, for any w∗ ∈ Ω∗, we have

Φ(wk+1, wk, w∗) ≤ Φ(wk, wk−1, w∗)

−
{
1

2
C1β∥Byk −Byk+1∥2 + 1

2
C2β∥rk+1∥2 + 1

2
∥xk − xk+1∥2R

+
1

2
∥uk+1 − u∗∥2Σ +

1

2
σ∥yk − yk+1∥2S

}
.

(3.28)

Proof. First, using the definition of w̃k in (3.1) and combining (2.7) with setting w = wk+1,
we have

θ(ũk)− θ(u∗) + (w̃k − w∗)⊤F (w∗)

= θ(uk+1)− θ(u∗) + (wk+1 − w∗)⊤F (w∗)

≥ 1

2
∥uk+1 − u∗∥2Σ.

Setting w = w∗ in (3.26)-(3.27), and combining the above inequality, the assertion (3.28)
follows directly.

4 Convergence analysis

In this section, we show the global convergence and estimate the convergence rate in terms
of the iteration complexity for the PADMM (1.5).

4.1 Global convergence

We summarize the global convergence of (1.5) in the following theorem.

Theorem 4.1. Suppose Assumptions 2.1 and 2.2 hold. Assume that the step size γ satisfies
(3.25). Let the sequence {wk} be generated by the PADMM (1.5). Then, the sequence {wk}
converges to a solution point w∞ ∈ Ω∗.

Proof. Let (x0, y0, λ0) be the initial iterate. According to Theorem 3.12, we have

Φ(wk+1, wk, w∗) ≤ Φ(wk, wk−1, w∗)

−
(
1

2
C1β∥B(yk − yk+1)∥2 + 1

2
C2β∥rk+1∥2

+
1

2
∥xk+1 − xk∥2R +

1

2
∥uk+1 − u∗∥2Σ +

1

2
σ∥yk − yk+1∥2S

)
, ∀w∗ ∈ Ω∗. (4.1)

It follows from the above inequality that

∞∑
k=1

(
1

2
C1β∥B(yk − yk+1)∥2 + 1

2
C2β∥rk+1∥2 + 1

2
∥xk+1 − xk∥2R
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+
1

2
σ∥yk − yk+1∥2S +

1

2
∥uk+1 − u∗∥2Σ

)
≤ Φ(w1, w0, w∗).

Invoking Lemma 3.10, it yields C1, C2 > 0, and hence we have

lim
k→∞

∥B(yk − yk+1)∥ = 0, lim
k→∞

∥rk+1∥ = 0,

lim
k→∞

∥xk+1 − xk∥R = 0, lim
k→∞

∥yk − yk+1∥S = 0,

(4.2)

and

lim
k→∞

∥xk+1 − x∗∥Σ1
= 0, lim

k→∞
∥yk+1 − y∗∥Σ2

= 0. (4.3)

Then, it follows from the last equations that the sequences {Σ1x
k+1} and {Σ2y

k+1} are
bounded. It follows from (3.28) and the definitions of Φ(wk+1, wk, w) in (3.27) , H in (3.7)
that the sequences {Rxk+1}, {(S+ βB⊤B)yk+1} and {λk} are all bounded. Combining the
boundedness of the sequences {Σ2y

k+1} and {(S + βB⊤B)yk+1}, the sequence {(S +Σ2 +
βB⊤B)yk+1} is bounded. Together with the positive definiteness of (S +Σ2 + βB⊤B), this
implies the boundedness of {yk+1}. Noting Ax∗+By∗ = b, and using the triangle inequality,
we have

∥A(xk+1 − x∗)∥ ≤ ∥rk+1∥+ ∥Byk+1 −By∗∥.

We further obtain the boundedness of the sequence {Axk+1}. Combining with the bounded-
ness of the sequences {Rxk+1}, {Σ1x

k+1}, and the positive definiteness of (R+Σ1+βA⊤A),
the sequence {xk+1} is bounded. Thus, the subsequence {wk} is bounded. Hence, there
exists a point w∞ ∈ Ω and a subsequence {wkt} such that

lim
t→∞

∥wkt − w∞∥ = 0. (4.4)

According to the optimality condition of (1.5), we have
θ1(x)− θ1(x

k+1)
+(x− xk+1)⊤{−A⊤ [λk+1 − (1− γ)βrk+1 − βB(yk − yk+1)

]
+R(xk+1 − xk)} ≥ 0,

θ2(y)− θ2(y
k+1) + (y − yk+1)⊤{−B⊤ [λk+1 + (γ − 1)βrk+1

]
+ S(yk+1 − yk)} ≥ 0,

(λ− λk+1)⊤[Axk+1 +Byk+1 − b− 1
βγ (λ

k − λk+1)] ≥ 0,

∀ w ∈ Ω.

Setting k = kt − 1 in the above inequality system, and then letting t → ∞ and using (4.2),
(4.4) and the lower-semicontinuity of θ1 and θ2, we have

θ1(x)− θ1(x
∞) + (x− x∞)⊤{−A⊤λ∞} ≥ 0,

θ2(y)− θ2(y
∞) + (y − y∞)⊤{−B⊤λ∞} ≥ 0,

(λ− λ∞)⊤(Ax∞ +By∞ − b) ≥ 0, ∀ w ∈ Ω.

It implies that w∞ is a solution point. Hence, (4.1) is also valid if w∗ is replaced by w∞,
i.e.,

Φ(wk+1, wk, w∞) ≤ Φ(wk, wk−1, w∞).
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Since Φ(wk+1, wk, w∞) ≥ 0, it implies that limk→∞ Φ(wk+1, wk, w∞) exists. Thus, we get

lim
k→∞

Φ(wk+1, wk, w∞) = lim
t→∞

Φ(wkt , wkt−1, w∞) = 0, (4.5)

where the last equality follows from the definition of Φ(wk+1, wk, w) in (3.27) and (4.4) and
(4.2). Then, it follows from (4.5) that

lim
k→∞

∥xk+1 − x∞∥R = 0, lim
k→∞

∥yk+1 − y∞∥S+βB⊤B = 0, lim
k→∞

∥λk+1 − λ∞∥ = 0.

(4.6)

Moreover, (4.3) is also valid if w∗ is replaced by w∞, i.e.,

lim
k→∞

∥xk+1 − x∞∥Σ1
= 0, lim

k→∞
∥yk+1 − y∞∥Σ2

= 0. (4.7)

Hence, we can show

lim
k→∞

∥yk+1 − y∞∥Σ2+βB⊤B+S = 0.

Using the positive definiteness of (S +Σ2 + βB⊤B), we get

lim
k→∞

∥yk+1 − y∞∥ = 0.

Then, using the triangle inequality, we have

∥Axk+1 −Ax∞∥ ≤ ∥rk+1∥+ ∥Byk+1 −By∞∥.

Thus, it follows that

lim
k→∞

∥Axk+1 −Ax∞∥ = 0.

Then, combining (4.6) and (4.7) with the above equality, we obtain

lim
k→∞

∥xk+1 − x∞∥Σ1+βA⊤A+R = 0.

Thus, due to the positive definiteness of (R+Σ1 + βA⊤A), we get

lim
k→∞

∥xk+1 − x∞∥ = 0.

Therefore, we have shown that the whole sequence {wk} converges to w∞, which is a solution
point. This completes the proof.

Remark 4.2. From the proof, we see that Theorem 4.1 is also valid even if (2.4) holds and
B has full column rank.

Remark 4.3. As we mentioned before, the PADMM (1.5) is reduced to the classical ADMM
(1.4) when R = S = 0. Therefore, the convergence of the ADMM (1.4) with γ satisfying
(3.25) can also be established under Assumptions 2.1 and 2.2 with R = S = 0.
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4.2 Convergence rate

To estimate the convergence rate in terms of the iteration complexity, we first recall the
concept the partial primal-dual gap in [3] which is defined as:

GD(w̃) := sup
w∈D

{
L(ũ, λ)− L(u, λ̃)

}
, ∀ w̃ ∈ Ω,

where the set D is a subset of Ω.
With simple calculations, we have

GD(w̃) = sup
w∈D

{
θ(ũ)− θ(u) + (w̃ − w)⊤F (w)

}
.

As shown in [3], if D contains a solution of the VI (2.7), we have GD(w̃) ≥ 0 for any w̃ ∈ Ω.
If w̃ lies in the interior of D and GD(w̃) = 0, then w̃ is a saddle point of L defined in (2.5).

Next, we define the average of the past t iterations as follows:

x̃t :=
1

t

t∑
k=1

x̃k, ỹt :=
1

t

t∑
k=1

ỹk, ũt :=
1

t

t∑
k=1

ũk, and w̃t :=
1

t

t∑
k=1

w̃k. (4.8)

Obviously, w̃t ∈ Ω because of the convexity of Ω. In the following, we characterize the
convergence rate of w̃t defined in (4.8) in terms of the partial primal-dual gap, and the
feasibility violation and the decrement of the objective function.

Theorem 4.4. Suppose Assumptions 2.1 and 2.2 hold. Assume that the step size γ satisfies
(3.25). Let the sequence {wk} be generated by the PADMM (1.5), and x̃t, ỹt, ũt w̃t be defined
in (4.8). Then, the following assertions hold.

1) Let w̃t be defined in (4.8). There exists a point w∞ ∈ Ω∗ such that

lim
t→∞

w̃t = w∞.

[2)] For C̄1 := 1
2∥y

0 − y1∥2S + (1−γ)2

2κ β∥r1∥2 with κ defined in (3.21), we have

θ(ũt)− θ(u) + (w̃t − w)⊤F (w) ≤ 1

t

[
1

2
∥w1 − w∥2H + C̄1

]
. (4.9)

3) There exists a constant C̄2 > 0 such that

∥Ax̃t +Bỹt − b∥2 ≤ C̄2

t2
. (4.10)

4) There exists a constant C̄3 > 0 such that

|θ(ũt)− θ(u∞)| ≤ C̄3

t
. (4.11)

Proof. 1) First, it follows from Theorem 4.1 that there exists w∞ ∈ Ω∗ such that wk con-
verges to it. Then, from (4.8), we have

lim
t→∞

w̃t = lim
t→∞

1

t

t∑
k=1

w̃k = lim
k→∞

w̃k = lim
k→∞

wk+1 = w∞,



522 M. TAO

where the second equality is due to Stolz-Cesàro Theorem (see, e.g. [1]), and the third
follows from (3.1), (3.16) and Theorem 4.1.

2) It follows from Theorem 3.11 that

θ(u)− θ(ũk) + (w − w̃k)TF (w) ≥ Φ(wk+1, wk, w)− Φ(wk, wk−1, w), ∀ w ∈ Ω.

(4.12)

Then, summarizing the inequalities (4.12) over k = 1, . . . , t, we obtain

tθ(u)−
t∑

k=1

θ(ũk) +
(
tw −

t∑
k=1

w̃k
)⊤

F (w) + Φ(w1, w0, w) ≥ 0, ∀ w ∈ Ω.

Then, using the notation of w̃t in (4.8), the last inequality can be written as

1

t

t∑
k=0

θ(ũk)− θ(u) + (w̃t − w)⊤F (w) ≤ 1

t
Φ(w1, w0, w), ∀ w ∈ Ω. (4.13)

It follows from the definition of ũt in (4.8) and the convexity of θ(u), it follows that

θ(ũt) ≤
1

t

t∑
k=1

θ(ũk).

Substituting them into (4.13), the assertion (4.9) follows directly.
3) By invoking Theorem 4.1, we see that the sequence {wk} converges to a solution point

w∞ ∈ Ω∗. Thus, the sequence {wk} is bounded. Let us define

C̄2 :=
2

β2γ2

(
∥λ1 − λ∞∥2 + sup

k
[∥λk+1 − λ∞∥2]

)
which is a constant independent of k. Then, we have

∥Ax̃t +Bỹt − b∥2 =

∥∥∥∥∥1t
t∑

k=1

[
Ax̃k +Bỹk − b

]∥∥∥∥∥
2

=

∥∥∥∥∥1t
t∑

k=1

[
1

βγ
(λk − λk+1)

]∥∥∥∥∥
2

=

∥∥∥∥ 1

tβγ

(
λ1 − λt+1

)∥∥∥∥2 ≤ 2

β2γ2t2
(
∥λ1 − λ∞∥2 + ∥λk+1 − λ∞∥2

)
=

C̄2

t2
,

where the first equality follows from (4.8), the second follows from (1.5c) and the fourth
follows from Cauchy-Schwarz inequality. The assertion (4.10) is proved immediately.

4) It follows from L(ũt, λ
∞) ≥ L(u∞, λ∞) that

θ(ũt)− θ(u∞) ≥ ⟨λ∞, Ax̃t +Bỹt − b⟩ ≥ −1

2

(
1

t
∥λ∞∥2 + t∥Ax̃t +Bỹt − b∥2

)
≥ − 1

2t
(∥λ∞∥2 + C̄2),

(4.14)

where the second inequality is because of the Cauchy-Schwarz inequality and the last is due
to (4.10). On the other hand, setting w := w∞ in (4.9), we obtain

θ(ũt)− θ(u∞) + (w̃t − w∞)⊤F (w∞) ≤ 1

t

[
1

2
∥w1 − w∞∥2H + C̄1

]
.
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Invoking the definition of F in (2.7b), we have

(w̃t − w∞)⊤F (w∞) = −⟨λ∞, Ax̃t +Bỹt − b⟩ ≥ − 1

2t
(∥λ∞∥2 + C̄2),

where the last inequality is similar to (4.14). Combining these two inequalities above, we
get

θ(ũt)− θ(u∞) ≤ 1

t

[
1

2
∥w1 − w∞∥2H + C̄1

]
+

1

2t
(∥λ∞∥2 + C̄2). (4.15)

The inequalities (4.14) and (4.15) indicate that the assertion (4.11) holds by setting C̄3 :=[
1
2∥w

1 − w∞∥2H + C̄1

]
+ 1

2 (∥λ
∞∥2 + C̄2).

From the proof, we can see that the assertions 3) and 4) of Theorem 4.4 follow directly
from the first two assertions. Suppose that the set D is compact and contains the sequence
{wk} and its limit w∞, then we define

Λ̃ := sup
w∈D

{1
2
∥w1 − w∥2H + C̄1}.

Thus, after t iterations of the PADMM (1.5), the point w̃t defined in (4.8) satisfies

GD(w̃t) ≤
Λ̃

t
.

Therefore, we establish the O(1/t) ergodic convergence rate measured by the partial primal-
dual gap, the primal feasibility and the objective function, respectively.

5 Conclusions

The proximal alternating direction method of multipliers (PADMM) (including ADMM as a
special case) is a popular and efficient method for separable convex programming. Moreover,

Glowinski proposed a large dual step size belonging (0, 1+
√
5

2 ) to accelerate the numerical
performance of ADMM. However, it was unknown whether or not the step size in the
Glowinski’ ADMM can be further enlarged; a case with potential advantages in numerics.
We carry out a rigorous convergence analysis in a more general framework, i.e. PADMM
under some moderate and checkable conditions. Furthermore, we also establish the worst-
case O(1/t) convergence rate in the ergodic sense, measured by the partial primal-dual gap,
the feasibility violation and the decrement of the objective function.
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