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In support vector machines, computing the maximum margin hyperplane also gives rise to
a nonnegatively constrained convex quadratic programming problem [32].

Furthermore, if li and ui are both bounded, and li < ui for any i ∈ {1, . . . , n}, problem
(P1) can be converted into the following special box constrained convex quadratic program-
ming

min q(x) = 1
2x

TQx+ cTx
s.t. 0 ≤ x ≤ e,

(P3)

where e denotes the n-dimensional column vector of all ones.
From a general point of view, there are iterative methods and continuous trajectory

methods in the field of computational optimization. Different from the conventional iter-
ative optimization methods, the main feature of the continuous trajectory method is that
a continuous trajectory starting from the initial point can be generated. This trajectory
eventually will converge to an equilibrium point (or a limit set), which is exactly an optimal
solution (or a subset of the optimal solution set) for the underlying optimization problem in
the limit [21]. Many iterative schemes can be regarded as the discrete realization of certain
continuous trajectories, for example, [5] and [6] for combinatorial optimization, [30] and
[31] for constrained minimization problems. Among the methods for solving unconstrained
problems, the steepest descend method, the Newton method and the power method, all can
be taken as typical discretization examples of the corresponding differential systems [10].
In the literature, the research on continuous trajectory (or dynamical system) methods for
linear programming can be found in Adler and Monteiro [2], Anstreicher [3], Bayer and
Lagarias [7, 8], Megiddo and Shub [25], Monteiro [26], Chu and Lin [11], and Liao [23].

To solve constrained optimization problems using continuous trajectory methods, there
are three ways in constructing a dynamical system:

(i) adopting the gradient of certain penalty function [34, 37];

(ii) employing the Karush-Kuhn-Tucher (KKT) conditions of the underlying optimization
problem [19, 36, 46] and;

(iii) utilizing the projection together with variational inequality [9, 18, 40, 41, 42, 44, 47].

Undoubtedly, the three strategies above play important roles in constructing dynamical
systems for neural network models in past decades. In the case (i), the objective function
will be added by some kind of penalty term, then the penalty parameter must be driven to
certain large number for reaching the optimal solution of the original problem. In the case
(ii), by using the KKT system, both multiplier and dual variables must be added. There-
fore, the variable dimension will be increased. In the case (iii), some projection is needed to
ensure that the intermediate solutions remain in the feasible region. Different from above
strategies, the construction of our dynamical systems adopts the interior point approach. In
this paper, motivated by a first-order interior point method for linearly constrained smooth
optimization proposed by Tseng et al. [35], we study the corresponding continuous trajec-
tory (or dynamical system, or ordinary differential equation (ODE)) model for problem
(P2), and then extend the model to solve problem (P3). The first-order (iterative) interior
point method in [35] unifies and extends the first-order affine scaling method and replica-
tor dynamics method for standard quadratic programming. The direction for no equality
constraint case in [35] is as follows:

d = −X2γ∇q(x), (1.1)
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where ∇q(x) is the gradient of the objective function q(x) (q(x) is defined in problem (P1),
γ > 0 is a parameter, andX2γ = diag(x2γ

1 , · · · , x2γ
n ) ∈ Rn×n. It should be noticed that based

on the relationship between Hopfield networks and interior point algorithms as discussed
in [45], the direction of Faybusovich’s approach is just (1.1) with γ = 1

2 for no equality
constraint case, and the direction of affine scaling approach is just (1.1) with γ = 1. So
our dynamical system model for problem (P2) in Section 2 can be viewed as the continuous
realization of the interior point method. The matrix X (or X2γ) in direction (1.1) plays
the role of a barrier which keeps the continuous trajectory staying in the positive orthant
(see [7, 8] for more discussions). This idea can be extended to the box constraint, thus our
second dynamical system model in Section 3 can be established for problem (P3).

Based on above discussions, in this paper, we (a) study a dynamical system model (see
system (2.1) in Section 2) by adopting the first-order affine scaling direction d in (1.1) for
nonnegatively constrained convex quadratic programming problem (P2); (b) propose an in-
terior point dynamical system model (see system (3.1) in Section 3) for box constrained
convex quadratic programming problem (P3); (c) prove the convergence of the solutions of
the two ODE systems for any interior feasible solution in the limit; and (d) show that the
limiting points of the two ODE systems are indeed the optimal solutions for the correspond-
ing optimization problems. It should be mentioned that the two ODE systems in our two
dynamical system models only require matrix-vector multiplications, therefore it is expected
that the computation for finding the limit points can be achieved very fast.

The rest of this paper is organized as follows. In Section 2, a simple dynamical system
model will be constructed for problem (P2). Then, a thorough study on the continuous
trajectory of the ODE resulting from this dynamical system model will be investigated.
Various theoretical properties including the strong convergence in the limit will be explored.
In Section 3, similar study and investigations for problem (P3) will be conducted. Some
numerical results of the two simple ODE systems will be illustrated in Section 4. Finally,
some concluding remarks will be drawn in Section 5.

For simplicity, in what follows, unless otherwise specified, Rn
+ denotes the constrained

region {x ∈ Rn | x ≥ 0}, ∥ · ∥ denotes the 2-norm, e denotes the n-dimensional vector
of all ones, ei denotes the unity column vector whose ith component is 1. For each index
subset J ⊆ {1, . . . , n}, we denote by xJ the vector composed of those components of x ∈ Rn

indexed by j ∈ J . In stands for the n× n identity matrix.

2 A Simple Dynamical System for Nonnegatively Constrained
Convex Quadratic Programming

Based on direction (1.1) in [35], the following ODE system for problem (P2) can be con-
structed.

dx(t)

dt
= −X2γ(Qx+ c), t ≥ t0, x(t0) = x0 > 0, (2.1)

where γ ≥ 1
2 is a fixed constant.

To simplify the following presentation, in the remaining of this paper, x(t) (or X(t)) will
be replaced by x (or X) whenever no confusion would occur. Throughout this section we
make the following assumption.

Assumption 2.1. The optimal solution set for problem (P2) is bounded.

To make our theoretical discussions more readable in this section, we divide the following
discussions into 4 subsections.
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2.1 Existence and feasibility of trajectory (2.1)

Lemma 2.2 ([14]). If gi : R
n → R, i = 1, . . . ,m, are concave functions, and if G = {x |

gi(x) ≥ 0, i = 1, . . . ,m} is a nonempty bounded set, then for any set of values {ϵi}, where
ϵi ≥ 0, i = 1, . . . ,m, the set

{x | gi(x) ≥ −ϵi, i = 1, . . . ,m}

is bounded.

For any given x0 in ODE (2.1), let us define the level set

L1(x
0) = {x ∈ Rn

+ | q(x) ≤ q(x0)}, where q(x) is defined in (P2).

Following Lemma 2.2, we have

Lemma 2.3. For problem (P2), the level set L1(x
0) is bounded.

Since X2γ(Qx+ c) is continuously differentiable on Rn, X2γ(Qx+ c) is locally Lipschitz
continuous on Rn. Thus, there exists a unique solution x(t) for ODE (2.1) on the maximal
existence interval [t0, β) for some β > 0.

Theorem 2.4. Let x(t) be the solution of ODE (2.1) with the maximal existence interval
[t0, β). Then x(t) > 0 ∈ Rn for any t ∈ [t0, β).

Proof. We will prove x(t) > 0 for any t ∈ [t0, β) by contradiction. Suppose that there exists
a t∗ ∈ [t0, β) and an i ∈ {1, . . . , n} such that xi(t

∗) = 0. Since xi(t) is continuous on t,
let t∗ be the minimum t such that xi(t) = 0 for some i ∈ {1, . . . , n}, i.e., x(t) > 0 for all
0 ≤ t < t∗.

Let
M1 = max

t∈[t0, t∗]
∥Qx(t) + c∥+ 1,

M2 = max
t∈[t0, t∗]

∥x(t)∥2γ−1 + 1,

t1 = max{t∗ − 1

2M1M2
, 0},

and t̄ be the time satisfying
xi(t̄) = max

t∈[t1, t∗]
xi(t) > 0.

Notice that
dx(t)

dt
= −X2γ(Qx+ c),

we have

xi(t) = xi(t
∗) +

∫ t∗

t

xi(τ)
2γ
(Qx(τ) + c)idτ.

For any t ∈ [t1, t∗], notice that xi(t
∗) = 0 and xi(t) ≥ 0, from the above equation, we have

xi(t) ≤ M1(t
∗ − t) max

τ∈[t, t∗]
xi(τ)

2γ

≤ M1(t
∗ − t1) max

t∈[t1, t∗]
xi(t)

2γ
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= M1(t
∗ − t1)xi(t̄)

2γ

≤ 1

2
xi(t̄).

Since t ∈ [t1, t
∗] is arbitrary, taking t = t̄, then

xi(t̄) ≤
1

2
xi(t̄).

Thus xi(t̄) = 0, which is a contradiction with the definition of t̄.

Suppose x(t) is the solution of ODE (2.1), and [t0, β) is the corresponding maximal
existence interval. By Theorem 2.4, x(t) > 0 for any t ∈ [t0, β). Thus

dq(x(t))

dt
= −(Qx+ c)TX2γ(Qx+ c) ≤ 0 ∀t ∈ [t0, β),

i.e., q(x) is monotonically nonincreasing along the solution trajectory x(t). So x(t) is con-
tained in the compact level set L1(x

0). Thus x(t) is a global solution, i.e., β = +∞.

Corollary 2.5. There exists a unique solution x(t) for ODE (2.1) on [t0, +∞), and x(t) > 0
for any t ∈ [t0, +∞).

2.2 Weak convergence and infinite stopping of trajectory (2.1)

Lemma 2.6 ([33, Barbalat’s Lemma]). If the differentiable function g(t) has a finite limit
as t → +∞, and ġ is uniformly continuous, then ġ → 0 as t → +∞.

Now we will show the weak convergence of the solution x(t) of ODE (2.1) as t → +∞,
i.e., the right-hand side of ODE (2.1) approaching to zero as t → +∞.

Theorem 2.7. Let x(t) be the solution of ODE (2.1). Then limt→+∞ X2γ(Qx+ c) = 0.

Proof. From Corollary 2.5, we know that the unique solution x(t) of ODE (2.1) is always

positive on [t0,+∞). Since dq(x)
dt = −(Qx + c)TX2γ(Qx + c) ≤ 0 and q(x) is bounded

below, q(x) has a finite limit along the trajectory x(t). Obviously, (Qx + c)TX2γ(Qx + c)
is continuously differentiable with respect to x, and x(t) is contained in compact level set
L1(x

0). Therefore, there exists a constant K1 > 0 such that

|dq(x)
dt

|t=t1 −dq(x)

dt
|t=t2 | ≤ K1∥x(t1)− x(t2)∥

= K1∥
∫ t2

t1

X2γ(Qx+ c)dt∥

≤ K2K1|t1 − t2|,

where K2 = maxx∈L1(x0) ∥X2γ(Qx + c)∥. Thus dq(x)
dt is uniformly continuous on [t0,+∞).

Then Lemma 2.6 ensures

lim
t→+∞

(Qx+ c)TX2γ(Qx+ c) = 0.

Since x(t) is bounded and nonnegative, we have

lim
t→+∞

X2γ(Qx+ c) = 0.
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Theorem 2.7 ensures the weak convergence of x(t) in the limit, i.e. dx(t)
dt → 0 as t → +∞.

The results in the following theorems reveal more properties on the trajectory x(t) of ODE
(2.1).

The result in the following theorem indicates that if x0 is not an optimal solution for
problem (P2), then ODE system (2.1) will never stop, i.e. dx

dt = 0, in finite t, and the
objective function value will be strictly decreased along the solution of ODE (2.1).

Theorem 2.8. Let x(t) be the solution of ODE (2.1). If X2γ(Qx + c)|t=t0 ̸= 0, then
X2γ(Qx+ c) ̸= 0 for any t ≥ t0.

Proof. The proof is similar to the one for Theorem 3 in [21]. Assume that the conclusion is
not true. Then there exists a finite time, say t̄ > t0, such that X2γ(Qx+c)|t=t̄ = 0. From the
continuity ofX2γ(Qx+c), we can assume that t̄ is the minimum t such thatX2γ(Qx+c) = 0.
We know that X2γ(Qx+ c) is Lipschitz continuous in bounded set L1(x

0), and let L̄ be the
corresponding Lipschitz constant and δ = min{ t̄

2 ,
1
2L̄

}. Then for any t1, t2 ∈ [t̄ − δ, t̄], we
have

∥X2γ(Qx+ c)|t=t1∥ − ∥X2γ(Qx+ c)|t=t2∥ ≤ ∥X2γ(Qx+ c)|t=t1 −X2γ(Qx+ c)|t=t2∥
≤ L̄∥x(t1)− x(t2)∥

= L̄∥
∫ t2

t1

X2γ(Qx+ c)|t=τdτ∥

≤ L̄ · δ · max
τ∈[t̄−δ,t̄]

∥X2γ(Qx+ c)|t=τ∥.

Notice that the above inequality is true for any t1, t2 ∈ [t̄−δ, t̄] and X2γ(Qx+c)|t=t̄ = 0,
then we can choose t1 and t2 such that

∥X2γ(Qx+ c)|t=t1∥ = max
τ∈[t̄−δ,t̄]

∥X2γ(Qx+ c)|t=τ∥,

and
∥X2γ(Qx+ c)|t=t2∥ = min

τ∈[t̄−δ,t̄]
∥X2γ(Qx+ c)|t=τ∥,

thus we have

0 = min
τ∈[t̄−δ,t̄]

∥X2γ(Qx+ c)|t=τ∥

≥ (1− L̄δ) max
τ∈[t̄−δ,t̄]

∥X2γ(Qx+ c)|t=τ∥.

This implies that X2γ(Qx + c)|t=τ = 0 for any τ ∈ [t̄ − δ, t̄] which contradicts with the
definition of t̄. Thus the proof is complete.

2.3 Optimality and cluster points of trajectory (2.1)

Next we will show that any cluster point of the solution x(t) of ODE (2.1) as t → +∞ is an
optimal solution for problem (P2). But first, let us define the limit set

Ω1(x
0) = {y ∈ Rn

+ | y is a cluster point of x(t) of ODE (2.1) as t → +∞}. (2.2)

Because of the boundedness of x(t), Ω1(x
0) is nonempty, compact, and connected (see

Theorem 1.1 on page 390 in [12]).
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Following the KKT conditions for problem (P2) which are:{
Qx+ c = s, s ≥ 0,
Xs = 0, x ≥ 0,

(2.3)

where X = diag(x) ∈ Rn×n and s ∈ Rn, we can define the dual estimate as

s(x) = Qx+ c. (2.4)

Note: s(x(t)) may not be nonnegative for all t ≥ t0. Furthermore, we choose an x̄ ∈ Ω1(x
0),

and define
s̄ = Qx̄+ c.

Corollary 2.9. Let q(x) be defined in problem (P2). Then (i) q(x) = q(x̄) ∀x ∈ Ω1(x
0);

(ii) Xs(x) = 0 ∀x ∈ Ω1(x
0), where s(x) is defined in (2.4).

Proof. (i) Since dq(x)
dt = −(Qx+ c)TX2γ(Qx+ c) ≤ 0 and q(x) is bounded below, it is easy

to see that q(x) equals a constant for any x ∈ Ω1(x
0).

(ii) From Theorem 2.7, this is straightforward.

For the pair x̄ and s̄ defined above, we define

J̄ = {j|s̄j = 0, j ∈ {1, · · · , n}}, J̄c = {1, . . . , n} \ J̄ ,

Λ̄1 = {x ∈ Rn
+|xJ̄c = 0, q(x) = q(x̄)}. (2.5)

From Theorem 2.7, we have

X̄s̄ = 0 or x̄is̄i = 0, i = 1, · · · , n.

This and the definition of J̄c imply for any j ∈ J̄c

s̄j ̸= 0 and x̄j = 0.

This and Corollary 2.9 (i) ensure that the set Λ̄1 is nonempty since x̄ ∈ Λ̄1. In addition, it
is easy to see that Λ̄1 is closed. Next we will reveal some properties for Λ̄1.

Lemma 2.10. Λ̄1 in (2.5) is a convex set.

Proof. Let x be an arbitrary point in the convex hull co(Λ̄1) of Λ̄1, i.e., x is a positive linear
convex combination of some points in Λ̄1. From the definition of Λ̄1 in (2.5), we know that
xJ̄c=0 and x ≥ 0. From the convexity of q(x), the following inequality holds

q(x) ≤ q(x̄).

On the other hand, let ∆x = x − x̄. Then (∆x)J̄c = 0 and s̄T (∆x) = 0. Again by the
convexity of q(x), we have

q(x) ≥ q(x̄) +∇q(x̄)T (∆x)

= q(x̄) + s̄T (∆x)

= q(x̄).

So q(x) = q(x̄) for all x ∈ co(Λ̄1), thus x ∈ Λ̄1 and Λ̄1 is convex.
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Lemma 2.11 ([24, 35]). Let f : Rn → R be a convex twice continuously differentiable
function. If f(·) is constant on a convex set Ω ∈ Rn, then ∇f(·) is constant on Ω.

Lemma 2.12. s(x) = s̄ for all x ∈ Λ̄1.

Proof. From the definition of Λ̄1, q(x) = q(x̄) ∀x ∈ Λ̄1. Then Lemma 2.10 and Lemma 2.11
ensure the result.

Theorem 2.13. Ω1(x
0) ⊆ Λ̄1, where Ω1(x

0) is defined in (2.2).

Proof. Our proof here is similar to the one for Lemma 8 in [35]. If J̄c is empty, Λ̄1 becomes
{x ∈ Rn

+|q(x) = q(x̄)}. From Corollary 2.9 (i), the result holds clearly. Suppose there exists

a point x̂ ∈ Ω1(x
0) but x̂ /∈ Λ̄1 with x̂ĵ > 0 for some ĵ ∈ J̄c, then q(x̂) = q(x̄) and x̂ ≥ 0.

Clearly Λ̄1 lies inside the bounded level set L1(x
0), this and Λ̄1 being closed ensure that Λ̄1

is compact. Thus s(x) is uniformly continuous over Λ̄1. Lemma 2.12 implies that, for all
δ > 0 sufficiently small,

|sj(x)| ≥ |s̄j |/2 ∀j ∈ J̄c, ∀x ∈ U(Λ̄1, δ), (2.6)

where U(Λ̄1, δ) is the δ-neighborhood of set Λ̄1. We take δ small enough so that δ < x̂ĵ . Then

x̂ /∈ U(Λ̄1, δ) since |x̂ĵ − xĵ | = x̂ĵ > δ for all x ∈ Λ̄1. Notice x̄ ∈ Ω1(x
0)∩ Λ̄1 and x̂ ∈ Ω1(x

0)

but x̂ /∈ U(Λ̄1, δ), by the connectivity of Ω1(x
0), there must exist an x̃ ∈ Ω1(x

0) ∩ U(Λ̄1, δ)
but x̃ /∈ Λ̄1. x̃ ∈ Ω1(x

0) ensures

x̃ ≥ 0, q(x̃) = q(x̄).

x̃ /∈ Λ̄1 indicates that there must exist some r ∈ J̄c such that x̃r ̸= 0. (2.6) and x̃ ∈ U(Λ̄1, δ)
imply |sj(x̃)| ≥ |s̄j |/2 for all j ∈ J̄c, thus X̃s(x̃) ̸= 0, which contradicts with the fact

X̃s(x̃) = 0 since x̃ ∈ Ω1(x
0) from Corollary 2.9 (ii).

Theorem 2.14. If x(t) is the solution of ODE (2.1), limt→+∞(Qx(t) + c) = s̄ and s̄ ≥ 0.

Proof. Based on the continuity of s(x(t)), compactness of Ω1(x
0), Lemma 2.12, and Theorem

2.13, it is easy to have
lim

t→+∞
(Qx(t) + c) = s̄.

Suppose there exists some j̄ ∈ {1, . . . , n} such that s̄j̄ < 0. For any cluster point x̂ ∈ Ω1(x
0),

from Corollary 2.9 (ii), we have X̂s(x̂) = 0. This, Lemma 2.12, and Theorem 2.13 imply
X̂s̄ = 0, thus x̂j̄ = 0. Since s(x(t)) is continuous, there exists some tK such that sj̄(x(t)) < 0
for all t ≥ tK , notice that

dx(t)

dt
= −X2γ(Qx+ c),

and x(t) > 0 for all t ≥ 0. We have
dxj̄(t)

dt ≥ 0 and xj̄(t) ≥ xj̄(tK) > 0 for all t ≥ tK , which
contradicts with x̂j̄ = 0, thus the proof is complete.

Theorem 2.15. Any point x ∈ Ω1(x
0) is an optimal solution of problem (P2).
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Proof. For any x ∈ Ω1(x
0), by Corollary 2.9 (ii), Lemma 2.12, Theorem 2.13, and Theorem

2.14, the following conditions hold{
Qx+ c = s̄, s̄ ≥ 0,
Xs̄ = 0, x ≥ 0,

which are exactly the KKT conditions (2.3).

The result in Theorem 2.15 ensures that any limit point of x(t) of ODE (2.1) as t → +∞
is an optimal solution for problem (P2).

2.4 Strong convergence of trajectory (2.1)

Lemma 2.16 ([29, Inverse Function Theorem, Theorem 9.24]). Let D2 ⊂ Rn be open and
f : D2 → Rn be a continuously differentiable function on D2. If f ′(α) is invertible for some
α ∈ D2, then, there exists a neighborhood U of α and a neighborhood V of η := f(α) such
that f is an invertible function on U .

Theorem 2.17. Ω1(x
0) defined in (2.2) only contains a single point.

Proof. Our proof strategy is to show that the set Ω1(x
0) defined in (2.2) contains only an

isolated point.
Since Ω1(x

0) is nonempty, assume x∗ ∈ Ω1(x
0) and the number of its nonzero components

is maximum for all x ∈ Ω1(x
0), the index set {1, . . . , n} can be partitioned into two disjoint

sets B and N such that
B = {i|x∗

i > 0, i ∈ {1, . . . , n}}

and
N = {i|x∗

i = 0, i ∈ {1, . . . , n}}.

If B = ∅, we can conclude there is a single point x∗ = 0 in Ω1(x
0). So we will focus on the

case that B is nonempty, without loss of generality, we assume

B = {1, . . . , k} (k ≥ 1) and N = {k + 1, . . . , n}.

Correspondingly, for any x ∈ Rn, it can be denoted by x =

(
xB

xN

)
. Similarly, we can

partition s =

(
sB
sN

)
, c =

(
cB
cN

)
respectively, where xB , sB , cB ∈ Rk, and xN , sN , cN ∈

R(n−k).
Let δ1 = 1

2 mini∈B{x∗
i }. Together with the definition of x∗, we know

xB > 0 and xN = 0 ∀x ∈ Ω1(x
0) ∩ U(x∗, δ1),

where U(x∗, δ1) is the δ1−neighborhood of x∗. Next we will prove that x∗ is an isolated
point of Ω1(x

0).
For any point x ∈ Ω1(x

0), from Lemma 2.12 and Theorem 2.13, we have

Qx+ c = Qx∗ + c
.
= s∗. (2.7)

For the convenience of discussion, we denote

Q = [q1, q2, . . . , qn] and b = s∗ − c.
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If x ∈ Ω1(x
0) ∩ U(x∗, δ1), we have xB > 0 and xN = 0. Then the first equality in (2.7) can

be written as

x1q1 + · · ·+ xkqk = b ∀x ∈ Ω1(x
0) ∩ U(x∗, δ1). (2.8)

Thus, rank[q1, q2, . . . , qk] = rank[q1, q2, . . . , qk, b].
If rank[q1, q2, . . . , qk] = k, b can be expressed uniquely as a linear combination of

q1, q2, . . . , qk, thus except for x∗, there is no x in Ω1(x
0) ∩ U(x∗, δ1) such that (2.8) holds,

in other words, x∗ is an isolated point of Ω1(x
0).

If rank[q1, q2, . . . , qk] = r < k and r = 0, then q1 = q2 = · · · = qk = 0, dxi(t)
dt in ODE

(2.1) will be reduced to
dxi(t)

dt
= −cixi

2γ , i = 1, . . . , k.

From Theorem 2.7, limt→+∞
dxi(t)
dt = 0, thus there are two cases

(a) ci = 0 ⇒ xi(t) ≡ x0
i , since x0

i > 0 is arbitrary, therefore the optimal solution set is
unbounded, which contradicts with the boundedness of the optimal solution set;

(b) ci ̸= 0 ⇒ x∗
i = 0, this is a contradiction with the assumption that x∗

i is positive.

So we only consider the case that 1 ≤ r < k, and assume {qp1 , qp2 , . . . , qpr} is a maximal
linearly independent subset of {q1, q2, . . . , qk}, and {qpr+1

, qpr+2
, . . . , qpk

} = {q1, q2, . . . , qk}\
{qp1 , qp2 , . . . , qpr}. Thus there exists a matrix W = (wij)(k−r)×r ∈ R(k−r)×r such that

qpr+i
=

r∑
j=1

wijqpj
, i = 1, . . . , k − r. (2.9)

We consider the following sub-system (k rows) of the first equation in (2.7)

qTp1
x = bp1 ,
...

qTpr
x = bpr

,

qTpr+1
x = bpr+1 ,

...
qTpk

x = bpk
.

(2.10)

Combining (2.10) with (2.9), we have

bpr+i =

r∑
j=1

wijbpj , i = 1, . . . , k − r. (2.11)

From Corollary 2.9 (ii), we have X∗s∗ = 0 which implies s∗B = 0. Thus

cB = −bB ,

where b =

(
bB
bN

)
. This and (2.11) indicate

cpr+i
=

r∑
j=1

wijcpj
, i = 1, . . . , k − r.
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Clearly x∗ is a solution of (2.10), but linear system (2.10) is degenerate. To overcome the
difficulty caused by the degeneracy of linear system (2.10), we define

yi(t) =


∑r

j=1 wij lnxpj
(t)− lnxpr+i

(t) if γ = 1
2 ,∑r

j=1 wij
xpj

(t)1−2γ

1−2γ − xpr+i
(t)1−2γ

1−2γ if γ > 1
2 ,

where i = 1, . . . , k− r, t ≥ t0, and x(t) is the solution of ODE (2.1). From Theorem 2.4, we
know x(t) > 0 for all t ≥ 0. Therefore, yi(t), i = 1, . . . , k − r are well defined for t ≥ t0.
Notice that

dx(t)

dt
= −X2γ(Qx+ c),

then we have

dyi(t)

dt
=

r∑
j=1

wij

dxpj
(t)

dt

xpj
2γ

−
dxpr+i

(t)

dt

xpr+i
2γ

= (−
r∑

j=1

wijq
T
pj

+ qTpr+i
)x−

r∑
j=1

wijcpj + cpr+i

≡ 0, i = 1, . . . , k − r, t ≥ t0.

Thus there exist k − r constants c̄i (i = 1, . . . , k − r) such that

yi(t) ≡ c̄i, i = 1, . . . , k − r, t ≥ t0.

In particular, ∀x ∈ Ω1(x
0) ∩ U(x∗, δ1)

r∑
j=1

wij lnxpj − lnxpr+i ≡ c̄i, i = 1, . . . , k − r, (2.12)

if γ = 1
2 , or

r∑
j=1

wij

xpj (t)
1−2γ

1− 2γ
−

xpr+i
(t)

1−2γ

1− 2γ
≡ c̄i, i = 1, . . . , k − r, (2.13)

if γ > 1
2 . Let H ∈ Rr×k be a matrix generated by choosing r linearly independent rows,

say l1, . . . , lr, from matrix [qp1 , . . . , qpr , qpr+1 , . . . , qpk
]. Thus H can be written as

H =


ql1p1

· · · ql1pr
ql1pr+1

· · · ql1pk

ql2p1 · · · ql2pr ql2pr+1 · · · ql2pk

...
. . .

...
...

. . .
...

qlrp1 · · · qlrpr qlrpr+1 · · · qlrpk

 .

Then the following nonlinear system

ql1p1z1 + ql1p2z2 + · · ·+ ql1pk
zk = bl1,

ql2p1
z1 + ql2p2

z2 + · · ·+ ql2pk
zk = bl2,

...
qlrp1

z1 + qlrp2
z2 + · · ·+ qlrpk

zk = blr,
w11 ln z1 + · · ·+ w1r ln zr − ln zr+1 = c̄1,
w21 ln z1 + · · ·+ w2r ln zr − ln zr+2 = c̄2,

...
w(k−r)1 ln z1 + · · ·+ w(k−r)r ln zr − ln zk = c̄k−r,

(2.14)
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if γ = 1
2 , or 

ql1p1z1 + ql1p2z2 + · · ·+ ql1pk
zk = bl1,

ql2p1
z1 + ql2p2

z2 + · · ·+ ql2pk
zk = bl2,

...
qlrp1

z1 + qlrp2
z2 + · · ·+ qlrpk

zk = blr,

w11
z1

1−2γ

1−2γ + · · ·+ w1r
zr

1−2γ

1−2γ − zr+1
1−2γ

1−2γ = c̄1,

w21r + 1 + · · ·+ w2r
zr

1−2γ

1−2γ − zr+2
1−2γ

1−2γ = c̄2,
...

w(k−r)1
z1

1−2γ

1−2γ + · · ·+ w(k−r)r
zr

1−2γ

1−2γ − zk
1−2γ

1−2γ = c̄k−r,

(2.15)

if γ > 1
2 , is introduced. From (2.10) , (2.12), and (2.13), we know that for any x ∈

Ω1(x
0)∩U(x∗, δ1), z = (xp1 , . . . , xpr , xpr+1 , . . . , xpk

)T is a solution of system (2.14) or (2.15).
The Jacobian matrix of nonlinear system (2.14) or (2.15) is

J(z) = 

ql1p1
· · · ql1pr

ql1pr+1
ql1pr+2

· · · ql1pk

ql2p1
· · · ql2pr

ql2pr+1
ql2pr+2

· · · ql2pk

...
. . .

...
...

...
. . .

...
qlrp1

· · · qlrpr
qlrpr+1

qlrpr+2
· · · qlrpk

w11
1

z12γ · · · w1r
1

zr2γ − 1
zr+1

2γ 0 · · · 0

w21
1

z12γ · · · w2r
1

zr2γ 0 − 1
zr+2

2γ · · · 0
...

. . .
...

...
...

. . .
...

w(k−r)1
1

z12γ · · · w(k−r)r
1

zr2γ 0 0 · · · − 1
zk2γ


.

From (2.9), after a series of Gaussian eliminations, it is not hard to verify that J(z) is
invertible if z (∈ Rk) > 0.

Now let F (z) = 0 be system (2.14) or (2.15). From previous discussions, we know (i)
∀x ∈ Ω1(x

0) ∩ U(x∗, δ1), z = (xp1
, . . . , xpr

, xpr+1
, . . . , xpk

)T is a solution of F (z) = 0, in

particular, z∗ = (x∗
p1
, . . . , x∗

pr
, x∗

pr+1
, . . . , x∗

pk
)T is also a solution of F (z) = 0; (ii) ∂F

∂z is

invertible ∀z (∈ Rk) > 0; and (iii) z∗ > 0. By Lemma 2.16, z = z∗ must be an isolated
point satisfying F (z) = 0. Therefore, there exists a δ2 > 0 (δ2 ≤ δ1) such that for any
x ∈ Ω1(x

0) ∩ U(x∗, δ2), z = (xp1
, . . . , xpr

, xpr+1
, . . . , xpk

)T is a solution of system (2.14) or
(2.15) if and only if x = x∗. Thus there is only one point x∗ ∈ Ω1(x

0) ∩ U(x∗, δ2), i.e., x
∗

is an isolated point of Ω1(x
0). But Ω1(x

0) is connected, thus there is only one point x∗ in
Ω1(x

0). The proof is complete.

Theorem 2.17 ensures the strong convergence of the solution x(t) of ODE (2.1) as t →
+∞. This along with Theorem 2.15 guarantee that the limit point is an optimal solution
for problem (P2). It should be mentioned that the limit point depends on the starting point
x0 in general.

3 A Simple Dynamical System for Box Constrained
Convex Quadratic Programming

In this section, we focus on solving problem (P3) by constructing another simple dynamical
system model. Based on active set strategies, some algorithms for solving box constrained
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problems were proposed in [15] and [20]. By solving a series of equality constrained quadratic
optimization problems, finally the optimal solution of the original problem is obtained. But
for large scale problems, there are two main disadvantages, one is that some constraints
are added (dropped) at a time to (from) the working set, which would lead to an excessive
number of iterations. The other disadvantage is that the exact minimizer on the current
working face is required before adding (dropping) constraints [17]. In order to avoid these
disadvantages, some gradient projection based algorithms were proposed in [4, 22, 39, 27, 28].
An algorithm that combines active set strategy with the gradient projection method was
discussed in [17]. Xia and Wang presented a projected dynamical system to solve the
convex programming with box constraints [43]. As discussed in Section 1, the construction
of our dynamical system models is based on the interior point approach. In this section,
a dynamical system model will be introduced for the box constrained convex quadratic
problem (P3).

In ODE (2.1), X plays the role of a barrier such that the entire solution trajectory stays
in the positive region. Extending the same idea for problem (P3), we construct the following
ODE, which shares the similar properties of ODE (2.1)

dx(t)

dt
= −X2γ(In −X)2γ(Qx+ c), x(t0) = x0, 0 < x0 < e, (3.1)

where γ ≥ 1
2 is a fixed constant.

It should be noticed that there are some continuous trajectory models that are very
similar to system (3.1). From the form h(x) in Assumptions 1 and 2 in [1], we can see that
our ODE in (3.1) shares the same format as the ODE (4) in [1] and ODE (3.1) in [5] (after
trivial transformations). But our ODE system (3.1) is not contained in [1] and [5], since the
target function in [1] and [5] is multilinear, however our target function is convex quadratic
which is not multilinear. So our ODE system (3.1) only coincides with that of [1] and [5] in
the linear case. Since the problems concerned in [1] and [5] may not be convex, there is no
convergence study there.

In later discussions, the following KKT system of problem (P3) will be used: Qx+ c = z − y, 0 ≤ x ≤ e,
(In −X)y = 0, y ≥ 0,
Xz = 0, z ≥ 0,

(3.2)

where y, z ∈ Rn. Similar to Section 2, the following discussions will reveal some important
theoretical properties for ODE (3.1). The proofs of some results will be provided only if
necessary.

Theorem 3.1. Let x(t) be the solution of ODE (3.1) with the maximal existence interval
[t0, β). Then 0 < x(t) < e for any t ∈ [t0, β).

Proof. We will prove that 0 < x(t) < e for any t ∈ [t0, β) by contradiction. In other words,
rank(X(In −X)) ≡ n for any t ∈ [t0, β).

Suppose that there exists a t∗ ∈ [t0, β) such that rank(X∗(In − X∗)) ≤ n − 1. Since
xi(t) is continuous on t, let t∗ be the minimal t such that rank(X∗(In − X∗)) ≤ n − 1,
i.e., 0 < x(t) < e for all t0 ≤ t < t∗. Thus there must exist some j ∈ {1, . . . , n} such that
xi(t

∗) = 1 or xi(t
∗) = 0. First suppose xi(t

∗) = 1, and

rank(X(t)(In −X(t))) = n ∀t ∈ [t0, t
∗).
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Let
M1 = sup{∥X(Qx+ c)∥2γ + 1 : 0 ≤ x ≤ e},

M2 = max
t∈[t0, t∗]

∥1− x(t)∥2γ−1 + 1,

and

t1 = max{t0, t∗ −
1

2M1M2
}.

Further, let t̄ be the time satisfying

xi(t̄) = min
t∈[t1,t∗]

xi(t) < 1.

Notice that
dx(t)

dt
= −(In −X)2γX2γ(Qx+ c),

we have

xi(t
∗)− xi(t) = −

∫ t∗

t

(1− xi(τ))
2γeTi X

2γ(Qx+ c)dτ.

For any t ∈ [t1, t
∗], 0 ≤ xi(t) ≤ 1, since xi(t

∗) = 1, we have

1− xi(t) ≤ M1|t∗ − t|(1− xi(t̄))
2γ ≤ 1

2
(1− xi(t̄)).

Since t is arbitrary in [t1, t
∗], taking t = t̄ in the above inequality, we have

1− xi(t̄) ≤
1

2
(1− xi(t̄)).

Thus, xi(t̄) = 1, which is a contradiction with the definition of xi(t̄), xi(t
∗) = 1 is rejected.

Similarly, xi(t
∗) = 0 is rejected for some i and some t∗ ∈ [t0, β).

In (3.1), the matrix X2γ(In −X)2γ plays the role of a box barrier such that the entire
solution trajectory of ODE (3.1) will stay in the interior of the box constrained region. Thus
β = +∞.

Corollary 3.2. There exists a unique solution x(t) for ODE (3.1) on [t0, +∞), and 0 <
x(t) < e for any t ∈ [t0, +∞).

Theorem 3.3. Let x(t) be the solution of ODE (3.1) on [t0, +∞). Then limt→+∞ X2γ(In−
X)2γ(Qx+ c) = 0.

Theorem 3.4. Let x(t) be the solution of ODE (3.1). If X2γ(In −X)2γ(Qx + c)|t=0 ̸= 0,
then X2γ(In −X)2γ(Qx+ c) ̸= 0 for any t ≥ t0.

Similar to (2.4), we define
u(x) = Qx+ c. (3.3)

Let x(t) be the solution of ODE (3.1). Define the limit set

Ω2(x
0) = {y ∈ Rn | y is a cluster point of x(t) of ODE (3.1) as t → +∞}. (3.4)
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Corollary 3.2 implies 0 < x(t) < e for any t ≥ t0, thus the limit set Ω2(x
0) is nonempty,

compact, connected [12]. For some given x̄ ∈ Ω2(x
0), let

ū = Qx̄+ c.

By the monotonicity of q(x(t)) in terms of t and Theorem 3.3, we have the following
corollary.

Corollary 3.5. Let q(x) be defined in problem (P3). Then (i) q(x) = q(x̄) ∀x ∈ Ω2(x
0);

(ii) X(In −X)u(x) = 0 ∀x ∈ Ω2(x
0), where u(x) is defined in (3.3).

Let J̄ = {j|ūj = 0, j ∈ {1, . . . , n}} and J̄c = {1, . . . , n} \ J̄ , then

ūj ̸= 0, for any j ∈ J̄c.

Based on this and X̄(In − X̄)ū = 0, we partition J̄c by

J̄c
l = {j|x̄j = 0, j ∈ J̄c} and J̄c

u = {j|x̄j = 1, j ∈ J̄c},

and define set

Λ̄2 = {x ∈ Rn | 0 ≤ x ≤ e, xJ̄c
l
= 0, xJ̄c

u
= 1, q(x) = q(x̄)}, (3.5)

clearly Λ̄2 is closed. Λ̄2 is nonempty since x̄ ∈ Λ̄2. The following results are similar to those
in Section 2.

Theorem 3.6. Λ̄2 in (3.5) is a convex set.

Proof. Let x be an arbitrary point in the convex hull co(Λ̄2), i.e., x is a positive linear convex
combination of some points in Λ̄2, thus xJ̄c

l
=0, xJ̄c

u
=1, 0 ≤ x ≤ e. Based on the convexity

of q(x), the following inequality holds

q(x) ≤ q(x̄). (3.6)

On the other hand, let ∆x = x − x̄, then (∆x)J̄c = 0 and ūT (∆x) = 0, again by the
convexity of q(x), we have

q(x) ≥ q(x̄) +∇q(x̄)T (∆x)

= q(x̄) + ūT (∆x)

= q(x̄),

this and (3.6) imply q(x) = q(x̄) for all x ∈ co(Λ̄2), thus x ∈ Λ̄2, hence Λ̄2 in convex.

By Lemma 2.11 and Theorem 3.6, the following theorem is straightforward.

Theorem 3.7. u(x) = ū for all x ∈ Λ̄2, where u(x) is defined in (3.3).

Theorem 3.8. Ω2(x
0) ⊆ Λ̄2, where Ω2(x

0) is defined in (3.4).



542 H. YUE, L.-Z. LIAO AND X. QIAN

Proof. If J̄c
0 is empty, Λ̄2 = {x ∈ Rn | 0 ≤ x ≤ e, q(x) = q(x̄)}. From Corollary 3.5

(i), the result holds clearly. Now we consider the case that J̄c
0 is nonempty. Suppose

there exists a point x̂ ∈ Ω2(x
0) but x̂ /∈ Λ̄2. Notice that Λ̄2 lies inside the bounded set

{x ∈ Rn | 0 ≤ x ≤ e}, so Λ̄2 is compact (since Λ̄2 is closed). Thus u(x) in (3.3) is uniformly
continuous over Λ̄2. Theorem 3.7 implies there exists some δ0 > 0 such that

|uj(x)| ≥ |ūj |/2 > 0 ∀ j ∈ J̄c
0 , ∀ x ∈ U(Λ̄2, δ0), (3.7)

where U(Λ̄2, δ0) is the δ0-neighborhood of set Λ̄2. Since x̂ /∈ Λ̄2 and Λ̄2 is compact, there
exists some δ1 ∈ (0, δ0] ∩ (0, 0.1] such that x̂ /∈ U(Λ̄2, δ1). Notice x̄ ∈ Ω2(x

0) ∩ Λ̄2

and x̂ ∈ Ω2(x
0) but x̂ /∈ U(Λ̄2, δ1), by the connectivity of Ω2(x

0), there must exist some
x̃ ∈ Ω2(x

0) ∩ U(Λ̄2, δ1) but x̃ /∈ Λ̄2. x̃ ∈ Ω2(x
0) and Corollary 3.5 (i) imply

0 ≤ x̃ ≤ e, q(x̃) = q(x̄).

Since x̃ /∈ Λ̄2, x̃ ∈ Ω2(x
0), and at least one of the sets J̄c

l and J̄c
u is nonempty, then at least

one of the following two cases will occur

(a) x̃J̄c
l
= 0 is not true, i.e. there exists some j1 ∈ J̄c

l such that x̃j1 > 0; or

(b) x̃J̄c
u
= eJ̄c

u
is not true, i.e. there exists some j2 ∈ J̄c

u such that x̃j2 < 1.

If case (a) arises, since x̃ ∈ Ω2(x
0) ∩ U(Λ̄2, δ1) and δ1 ≤ 0.1, then x̃j1 < 0.1. Thus,

0 < x̃j1 < 0.1.
If case (b) arises, since x̃ ∈ Ω2(x

0) ∩ U(Λ̄2, δ1) and δ1 ≤ 0.1, then x̃j2 > 0.9. Thus,
0.9 < x̃j2 < 1.

In either case, there exists a j (j1 or j2) ∈ J̄c
0 such that x̃j(1− x̃j) ̸= 0. (3.7) and δ1 ≤ δ0

ensure |uj(x̃)| > 0, thus x̃j(1−x̃j)uj(x̃) ̸= 0. This contracts with the fact X̃(In−X̃)u(x̃) = 0
(Corollary 3.5 (ii)) since x̃ ∈ Ω2(x

0), thus the proof is complete.

Theorem 3.9. If x(t) is the solution of ODE (3.1), then limt→+∞(Qx+c) = ū, and ūJ̄c
l
> 0

if J̄c
l is nonempty, ūJ̄c

u
< 0 if J̄c

u is nonempty.

Proof. By the continuity of s(x(t)), compactness of Λ̄2, Theorem 3.8, and Theorem 3.9,
clearly

lim
t→+∞

(Qx+ c) = ū.

If J̄c
l is nonempty, by the definition of J̄c

l , ūj ̸= 0 for any j ∈ J̄c
l . Suppose there exists

some j̄ ∈ J̄c
l such that ūj̄ < 0. Since u(x(t)) is continuous on [t0, ∞), there exists some

tK such that uj̄(x(t)) < 0 for all t ≥ tK . For any cluster point x̄ ∈ Ω2(x
0), j̄ ∈ J̄c

l implies
x̄j̄ = 0. Notice that

dx(t)

dt
= −X2γ(In −X)2γ(Qx+ c),

and 0 < x(t) < e for any t ∈ [t0, ∞). Thus
dxj̄(t)

dt ≥ 0 , so xj̄(t) ≥ xj̄(tK) > 0 for all t ≥ tK ,
which contradicts with x̄j̄ = 0.

Similarly, we can prove s̄J̄c
u
< 0 if J̄c

u is nonempty.

Theorem 3.10. Any x ∈ Ω2(x
0) is an optimal solution for problem (P3).
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Proof. For any x ∈ Ω2(x
0), we have

Qx+ c = Qx̄+ c = ū

and
X(In −X)ū = 0.

By Theorem 3.9, together with the definitions of J̄ , J̄c
u, and J̄c

l , for any i ∈ {1, . . . , n}, we
have

ūi = 0, if 0 < xi < 1;
ūi ≤ 0, if xi = 1;
ūi ≥ 0, if xi = 0.

Let’s define z, y ∈ Rn by zi = 0, yi = 0, if 0 < xi < 1;
zi = 0, yi = −ūi, if xi = 1;
zi = ūi, yi = 0, if xi = 0.

Thus the following relations hold Qx+ c = z − y, 0 ≤ x ≤ e,
(In −X)y = 0, y ≥ 0,
Xz = 0, z ≥ 0,

which are exactly the KKT conditions (3.2) of problem (P3). Thus the optimality of x is
obvious.

Theorem 3.11. The limit set Ω2(x
0) only contains a single point.

Proof. Assume x∗ ∈ Ω2(x
0) and the rank of matrix X∗(In − X∗) is maximum for all x ∈

Ω2(x
0), then the index set {1, 2, . . . , n} can be partitioned into three disjoint sets B̄, N̄1, N̄2

such that  0 < x∗
i < 1, i ∈ B̄,

x∗
i = 0, i ∈ N̄1,

x∗
i = 1, i ∈ N̄2.

If B̄ = ∅, we can conclude there exist at most 2n points in Ω2(x
0). Since Ω2(x

0) is connected,
there is only one point in Ω2(x

0). If B̄ is nonempty, similar to the lengthy proof of Theorem
2.17, it can be proved that x∗ is an isolated point of Ω2(x

0).

For general bound constrained convex quadratic programming (P1) with l < u, if the
optimal solution set is bounded, the following ODE system can be used

dx(t)

dt
= −diag(g(x))(Qx+ c), x(t0) = x0, l < x0 < u, (3.8)

where g : Rn → Rn is defined as follows

gi(x) =


(ui − xi)

2γ if li = −∞, ui < +∞,
(ui − xi)

2γ(xi − li)
2γ if −∞ < li, ui < +∞,

(xi − li)
2γ if −∞ < li, ui = +∞,

1 if li = −∞, ui = +∞,

γ ≥ 1
2 is a fixed constant, and i = 1, 2, . . . , n. Obviously, ODE systems (2.1) and (3.1) are

special forms of ODE system (3.8). Similarly, the previous theoretical results in Section 2
and Section 3 should also hold for ODE (3.8).
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4 Numerical Simulation

In this section, two small examples and a set of randomly generated large size (Q, c)s are
provided to illustrate the performance of our two interior point continuous trajectory models.
The simulation is conducted in Matlab R2015a on a PC. Matlab ODE solvers are not used
since these ODE solvers tend to track the trajectory of the ODE rather than computing
the limit point (or equilibrium point) of the ODE. Therefore, the following explicit Euler
scheme is adopted to solve ODE (3.8). The resulting iterative algorithm is as follows:
Algorithm 1: Explicit Euler scheme for ODE (3.8)

xk+1 = xk − hkdiag(g(xk))(Qxk + c), k = 0, 1, . . .

where x0 is chosen as an interior point, g(x) is defined in (3.8) and hk is chosen so that xk+1

stays in the interior region and q(xk+1) < q(xk) (q(x) is the objective function in problem
(P1)).

In the following computation, γ = 0.5 is used for Algorithm 1.
Our first small convex quadratic programming with nonnegativity constraint example is

constructed to exam the behavior of our dynamical system (2.1) or (3.8). For this example,
there are many optimal solutions.

Example 4.1.

min{1
2
xTQx+ cTx : xi ≥ 0, i = 1, 2, 3}

where matrix Q and vector c are given by

Q =

1 1 1
1 1 1
1 1 3

 and c =

−1
−1
1

 .

The optimal solution is x∗ = (ξ∗, 1− ξ∗, 0)T , where ξ∗ ∈ [0, 1]. The x-space behavior of
solution trajectories of ODE (2.1) with 30 random initial points is displayed in Fig. 1.

Fig. 1 illustrate that all solution trajectories of our dynamical system (2.1) converge to
some optimal solutions of Example 4.1. In general, the limit point depends on the initial
point if there are more than one optimal solution.

Our second example is a box constrained convex quadratic programming problem which
is constructed according to Example 1 in [38]:

Example 4.2.

min{1
2
xTQx+ cTx : −20 ≤ xi ≤ 20, i = 1, 2, 3}

where matrix Q and vector c are given by

Q =

 0.18 0.648 0.288
0.648 2.88 0.72
0.288 0.72 0.72

 and c =

0.4
0.2
0.3

 .

In Example 4.2, the optimal solution is x∗ = (−20, 3.38, 4.204)T . Starting from 30
random points, the transient behavior of all components of trajectories of ODE (3.1) is
displayed in Fig. 2.
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Figure 1: The x-space behavior of solution trajectories of ODE (2.1) with 30 random initial
points for Example 4.1.
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Figure 2: Transient behavior of all components of trajectories of ODE (3.1) with 30 random
initial points for Example 4.2.
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To better understand the performance of the proposing interior point continuous tra-
jectory models in this paper, a set of large size random problems are tested. For the non-
negatively constrained convex quadratic programming of form (P2), combining with KKT
condition (2.3), Q and c are constructed as follows: Q = WTW, W = rand(r, n), r = rank(Q) < n;

ci =

{
rand(1, 1)− [Qx∗]i, if x∗

i = 0;
−[Qx∗]i, if x∗

i ̸= 0;

where x∗ ∈ Rn
+ is given and rand(·, ·) is the Matlab random function. In our test, for vector

x∗, 1
4n components are set to 0, 1

4n components equal 1 and the remaining components are
assigned to random values between 0 and 1. The above values are distributed randomly
among the components of x∗. The initial points are set to x0 = rand(n, 1). The stopping

criterion for our Algorithm 1 is set at q(x)−q(x∗)
|q(x∗)|+1 ≤ 10−6. In addition, Matlab function

quadprog, which is a very reliable and powerful iterative solver for convex quadratic problems,
is used to compare with our Algorithm 1. The numbers reported in the following Tables 1

and 2 are the average of 20 runs, where Relative error in q is the final value of q(x)−q(x∗)
|q(x∗)|+1 .

Similarly, combining with KKT condition (3.2), for the box constrained convex quadratic
programming of form (P3), Q and c are constructed as follows:

Q = WTW, W = rand(r, n), r = rank(Q) < n;

ci =

 rand(1, 1)− [Qx∗]i, if x∗
i = 0;

−rand(1, 1)− [Qx∗]i, if x∗
i = 1;

−[Qx∗]i, if 0 < x∗
i < 1;

where x∗ ∈ {x ∈ Rn | 0 ≤ x ≤ e}. In our next test, x∗ and x0 are set the same as the ones
in the above test. With the same stopping criterion for our Algorithm 1, the simulation
results are reported in Tables 3 and 4. Again, the numbers reported in Tables 3 and 4 are
the average of 20 runs.

Remarks for Tables 1–4: (i) Matlab function quadprog is a second-order algorithm,
therefore it requires less number of iterations (normally less than 20) and achieves higher
accuracy (see Relative error in q). (ii) Algorithm 1 is a first-order algorithm, therefore it
requires more iterations to reach the same accuracy. However, the computation per iteration
is much more economic as seen from these tables.

5 Conclusions

Two interior point continuous trajectory models are introduced for solving nonnegatively and
box constrained convex quadratic programming problems. Without requiring any projection
and introducing any dual variable, the two ODE systems in our interior point continuous
trajectory models are sufficiently simple, only requiring matrix-vector multiplication. Fur-
thermore, the two ODE systems have been proved (without using Lyapunov function) to
converge to optimal solutions of the respective optimization problems for any interior feasible
point in the limit. Our numerical results have shown that the two interior point continuous
trajectory models are attractive and efficient in obtaining the optimal solutions. Finally, it
should be mentioned that our dynamical system models for problem (P1) can be extended
to include linear constraint Ax = b.
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Table 1: Rank(Q) = 0.1n for problem (P2)

CPU Time (s) Relative error in q Iteration No.
n Alg. 1 quadprog Alg. 1 quadprog Alg. 1 quadprog

2,500 4.0208 95.7349 8.8e-7 1.1e-11 657 9.7
5,000 1.9771 578.4559 9.3e-7 1.3e-12 132 9.9
10,000 5.8089 5250.9351 7.6e-7 5.2e-13 133 10.0
20,000 25.3015 > 8-hour 7.6e-7 – 150 –

where − indicates the unavailable data due to the forced stop.

Table 2: Rank(Q) = 0.2n for problem (P2)

CPU Time (s) Relative error in q Iteration No.
n Alg. 1 quadprog Alg. 1 quadprog Alg. 1 quadprog

2,500 3.1860 102.801 8.8e-7 2.7e-12 625 10.3
5,000 3.2265 709.443 8.4e-7 3.0e-12 207 10.2
10,000 6.7420 5757.005 8.1e-7 9.8e-13 182 10.8
20,000 36.5718 > 8-hour 8.0e-7 – 238 –

where − indicates the unavailable data due to the forced stop.

Table 3: Rank(Q) = 0.1n for problem (P3)

CPU Time (s) Relative error in q Iteration No.
n Alg. 1 quadprog Alg. 1 quadprog Alg. 1 quadprog

2,500 7.9848 24.1298 1.0e-6 1.2e-8 3,013 9.3
5,000 26.1597 112.3274 1.0e-6 1.5e-8 3,178 10.1
10,000 81.6944 631.8784 1.0e-6 1.6e-8 3,484 11.5
20,000 358.5901 7251.73 9.9e-7 2.3e-8 3,786 12.3

Table 4: Rank(Q) = 0.2n for problem (P3)

CPU Time (s) Relative error in q Iteration No.
n Alg. 1 quadprog Alg. 1 quadprog Alg. 1 quadprog

2,500 6.3998 30.9790 9.9e-7 5.7e-9 2,345 10.4
5,000 21.5205 131.717 9.9e-7 5.9e-9 2,636 11.9
10,000 64.6213 681.1962 9.9e-7 1.1e-8 2,772 12.2
20,000 291.0788 7481.171 9.8e-7 7.5e-9 3,087 13.3
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