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was suggested by Fletcher in [9] for solving a special nonsmooth composite function. Then,
Powell in [18] proposed a nonsmooth trust region method for solving another type of com-
posite functions in which a differentiable function is composed with a nonsmooth convex
function. Global convergence property of Powell’s method was investigated by Yuan in [20].
A crucial aspect in TR methods for nonsmooth optimization is the way of constructing
an appropriate quadratic model for the TR subproblem. Under some conditions on the
quadratic model, Dennis et al. in [7] presented a unified approach for global convergence
property of the TR methods for a class of nonsmooth functions, named as regular func-
tions. They showed that these conditions are fulfilled by several nonsmooth TR methods
in the literature. By relaxing the regularity condition in [7], Qi and Sun in [19] proposed
a quadratic model for locally Lipschitz functions in which the first order information is re-
placed by the so called iteration function in its structure. Based on the proposed model,
they constructed a TR algorithm for locally Lipschitz functions and established its global
convergence property. Despite several nonsmooth TR methods, a local model that is practi-
cally and efficiently implementable on locally Lipschitz functions has been rarely presented
in the literature. Recently, Akbari et al [2] introduced a practical nonsmooth TR method
for locally Lipschitz functions. In their suggested method, the quadratic model was con-
structed based on the approximation of the steepest descent direction, as proposed in [14].
They established the global convergence property of their algorithm under some standard
assumptions and compared it with some other nonsmooth optimization algorithms in terms
of number of iterations and function evaluations. A survey on the reported numerical results
shows that the proposed algorithm has acceptable performance on medium-scale problems
and performs well on large-scale problems.

Solving the TR subproblem is the most computationally expensive part in numerical
performance of TR methods as it may require solving one or more linear systems or an
iterative process with high computational cost. Therefore, the concept of line search tech-
niques along the rejected trial steps have been exploited in the structure of TR methods for
smooth optimization to reduce the number of subproblems that need to be solved; see e.g.
[1, 3, 17]. From this point of view, if the sufficient reduction in the objective function is not
achieved by the trial step, a line search along the trial step, which is usually a decreasing
direction for smooth problems, is performed instead of re-solving the subproblem. In this
regard, none of trial steps are rejected and therefore the number of subproblem solving and
function evaluations are reduced significantly.

In this paper, we exploit line search techniques in the structure of TR methods for
minimizing locally Lipschitz functions. In fact, we equip the nonsmooth TR method as
proposed in [2] with a backtracking line search technique in order to improve its practical
performance. Unlike TR methods for smooth problems, the trial step generated by the
TR subproblem might not be a descent direction for the objective function of nonsmooth
problems. Therefore, a search along this direction may not cause any reduction in the
objective function. In this case, at the current point, we introduce a descent direction and
perform a line search in this direction whenever a sufficient reduction is not achieved by the
trial step. Under some standard assumptions, we establish the global convergence property
of the new algorithm for locally Lipschitz functions. Preliminary numerical results on some
test problems show the efficiency and effectiveness of the new algorithm in comparison with
that of proposed in [2], which in turn has better performance than some other existing
methods in the literature, especially in the large-scale settings.

The rest of the paper is organized as follows: Section 2 is devoted to describe some
preliminaries in the context of nonsmooth problems and to recall the proposed TR method
in [2]. The structure of the new proposed nonsmooth TR algorithm for locally Lipschitz
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functions is constructed in Section 3. The global convergence property of this algorithm
is established in Section 4 under some standard assumptions. An implementation of the
proposed algorithm along with its numerical results are provided in Section 5. The paper
ends up with some concluding remarks in Section 6.

2 Preliminaries

In this section, after a short review on the concepts of nonsmooth analysis, we recall the
nonsmooth TR method as proposed in [2] for minimizing locally Lipschitz functions.

Let f : Rn → R be a locally Lipschitz function. The Clarke generalized directional
derivative of the function f at point x in the direction p, denoted by f◦(x, p), is defined by
[5]:

f◦(x, p) := lim sup
y→x,t↓0

f(y + tp)− f(x)

t
.

Based on this definition, the Clarke generalized subdifferential is defined as follows [5]:

∂f(x) :=
{
v ∈ Rn : f◦(x, p) ≥ vT p, ∀p ∈ Rn

}
.

It can be seen that f◦(x, p) = supv∈∂f(x) v
T p. Let L be the Lipschitz constant in the

neighborhood of x. Then, we have:

∥v∥2 ≤ L, ∀v ∈ ∂f(x).

If f is differentiable at x, then ∇f(x) ∈ ∂f(x). Furthermore, if f is continuously differen-
tiable at x, then

∂f(x) = {∇f(x)}.

If x is a minimizer (or stationary point) of f , then 0 ∈ ∂f(x).
For given ε > 0, the ε-subdifferential of the function f at point x is defined by [10]:

∂εf(x) := conv{v : v ∈ ∂f(y), ∥x− y∥2 ≤ ε}.

If 0 ∈ ∂εf(x), then x is called as an ε-stationary point.
Now, let us briefly describe the nonsmooth TR algorithm, denoted by ”Ntrust”, for

minimizing locally Lipschitz functions as proposed in [2]. In this algorithm, at first, an
approximation of the steepest descent direction for locally Lipschitz functions at point xk is
computed by solving the following problem:

min
v∈∂∆k

f(xk)
∥v∥2, (2.1)

where ∆k is the TR radius. Let vk be a solution of (2.1). Then, a sufficient reduction along
vk is achieved whenever the following inequality holds:

f(xk −∆kvk)− f(xk) ≤ −c1∆k∥vk∥22, (2.2)

where c1 > 0 is a constant. An approach for efficiently computing the solution vk for
the problem (2.1) has been proposed in [14], called as MY algorithm, which guarantees a
sufficient reduction in the objective function, i.e. (2.2) holds. In the MY algorithm, ∂εf(x)
is approximated iteratively until a search direction which staisfies in the Armijo condition is
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found. LetW be a finite subset of ∂εf(x) and its convex hull is considered as an aproximation
of ∂εf(x). In each iteration, the following minimization problem is solved:

v0 = arg min
v∈convW

∥v2∥2.

If −v0 is satisfied the Armijo condition then convW is considered as an acceptable approxi-
amtion for ∂εf(x). Else a new element of ∂εf(x) is added to W such that this element does
not belong to convW [14] (Algorithm 3.1). If ∥v0∥2 is less than a predefined threshold or
−v0 is satisfied in the Armijo condition then My algorithm is terminated. This algorithm is
terminated after finitely many iterations.

Using MY algorithm, the Ntrust method constructs a local quadratic model as below:

m(xk, p) = f(xk) + vTk p+
1

2
pTBkp,

where Bk is a positive definite matrix. Therefore, at point xk, the trial step is computed by
solving the following subproblem:

min m(xk, p) = f(xk) + vTk p+
1

2
pTBkp

s.t. ∥p∥2 ≤ ∆k. (2.3)

Using the so-called CG-Steihaug method [16], an approximate solution pk is computed for
the problem (2.3). Note that a sufficient reduction in the objective function along pk is
achieved whenever the following inequality holds:

f(xk + pk)− f(xk) ≤ c1v
T
k pk.

As long as the sufficient reduction is not achieved, Ntrust reduces the TR radius and re-
computes an approximation of steepest descent by MY algorithm. Soon after achieving a
sufficient reduction, the TR ratio is computed by:

ρk =
f(xk + pk)− f(xk)

m(xk, pk)−m(xk, 0)
. (2.4)

Based on the magnitude of ρk, the new point and the radius are updated appropriately.
The structure of the Ntrust algorithm for minimizing locally Lipschitz functions is outlined
in Algorithm 2.1.

Algorithm 2.1: A nonsmooth trust region algorithm (Ntrust) [2]

Step 0: Given ∆0,∆1 > 0, η > 0, θ∆, δ1, θδ ∈ (0, 1), x1 ∈ Rn, ξ1 ∈ ∂f(x1), c4 > 1,
0 < c2 < c3 < 1 and c1 ∈ (0, 1), let B1 = I and k = 1.

Step 1: Apply the MY algorithm [14] at point xk with the parameters ε = ∆k, δ = δk and
c = c1, and obtain an approximate steepest descent direction vk.

Step 2: If ∥vk∥2 ≤ η, then Stop. If ∥vk∥2 ≤ δk, then set ∆k+1 = θ∆∆k, xk+1 = xk,
δk+1 = δkθδ, k := k + 1 and go to Step 1. Else, set δk+1 = δk and go to Step 3.

Step 3: Solve the subproblem (2.3) to obtain the trial step pk.
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Step 4: If f(xk + pk) − f(xk) ≤ c1v
T
k pk, then go to Step 5. Else, set ∆k+1 = θ∆∆k,

xk+1 = xk, k := k + 1 and go to Step 1.

Step 5: Compute ρk using (2.4).
If ρk > c2, then set xk+1 = xk + pk. Else set xk+1 = xk.
If ρk > c3 and ∥pk∥2 = ∆k, then set ∆k+1 = min{∆0, c4∆k}. Else if ρk < c2, then set
∆k+1 = θ∆∆k. Else, set ∆k+1 = ∆k.

Step 6: Select a subgradient ξk+1 ∈ ∂f(xk+1), and update the matrix Bk by the BFGS
formula. Set k := k + 1 and go to Step 1.

Remark 2.1. We select ξk+1 ∈ ∂f(xk+1), if the secant equation is satisfied and

yTk pk > 0,

where yk = ξk+1 − ξk and ξk ∈ ∂f(xk), then we update Bk+1 by the BFGS formula as
following:

Bk+1 = Bk − Bkpkp
T
kBk

pTkBkpk
+

yky
T
k

yTk pk
.

Remark 2.2. Let Bk be a positive definite matrix. Then, the Cauchy point algorithm
returns the following solution for the subproblem (2.3); see e.g. [16];

pk = −∆k
vk

∥vk∥2
.

This solution implies a sufficient reduction in the objective function. Besides, if vk satisfies

vTk vk
vTk Bkvk

∥vk∥2 ≥ ∆k,

then the CG-Steihaug method returns exactly the Cauchy point.

In the next section, by appropriately exploiting the concept of line search techniques in the
framework of TR algorithms, we try to improve the efficiency of the Ntrust algorithm.

3 A New Nonsmooth TR Algorithm

In Ntrust algorithm, as long as a sufficient reduction is not achieved, i.e., ρk < c2, the
trial step pk is rejected by the algorithm, the TR radius is shrunk, a new approximation
of the steepest descent direction is computed by the MY algorithm and the subproblem is
re-solved. This procedure causes an increase in the number of function evaluations, which
in turn may harm the efficiency of the algorithm.
To prevent further subproblem re-solving, we develop a variant of the Ntrust algorithm
which is equipped with a line search technique. It has to be noted that the computed trial
direction in Step 3 of Algorithm 2.1 is not necessarily a descent direction for locally Lipschitz
functions. Therefore, instead of performing a line search along this direction, whenever it
is rejected, we perform a line search along the direction −vk, which is a descent direction.
More precisely, in Step 4 of Algorithm 2.1, if the following condition holds:

f(xk + pk)− f(xk) > c1v
T
k pk,
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i.e., the sufficient decrease is not achieved, then the backtracking procedure, as outlined in
Algorithm 3.1, is performed along the direction −vk.

Algorithm 3.1: Backtracking procedure.

Given c1 > 0, ∆k > 0, ϱ ∈ (0, 1), xk and vk, set α := 1;

While f
(
xk − α vk

∥vk∥2

)
− f(xk) > −c1α∥vk∥2 and αk ≥ ∆k

α := ϱα

End(While)

Return αk = max{α,∆k}.

Now, our new proposed nonsmooth TR algorithm for minimizing locally Lipschitz functions
is constructed by modifying Step 4 of Algorithm 2.1 as below:

Step 4: If f(xk + pk) − f(xk) ≤ c1v
T
k pk, then go to Step 5. Else, Apply Algorithm 3.1 in

the direction −vk to obtain the step length αk ∈ (0, 1]. Set xk+1 = xk − αk
vk

∥vk∥2
,

∆k+1 = θ∆∆k, k := k + 1 and go to Step 6.

From now on, we call the new proposed nonsmooth TR algorithm as ”Ltrust”. In fact, the
structure of Ltrust is exactly the same as Ntrust in which Step 4 is modified as above.

4 Convergence Analysis

In this section, our aim is to analyze the global convergence property of the Ltrust algorithm
for minimizing locally Lipschitz functions. Note that, as Ltrust is a modification of Ntrust,
the proofs in this section are very similar to those presented in [2].
Let K1 be the set of all successful iterations, i.e.,

K1 = {k : ρk ≥ c2},

and K2 be the set of all iterations that the line search is performed, i.e.,

K2 = {k : f(xk + pk)− f(xk) > c1v
T
k pk}.

Moreover, assume that K is the set of all iterations and K̄ = K1

∪
K2.

Lemma 4.1. Assume that the level set L := {x : f(x) ≤ f(x1)} is bounded and there exists
a constant M > 0 so that ∥Bk∥ ≤ M , for all k. Furthermore, let vk be an approximation of
the steepest descent direction, which is generated by the MY algorithm. If Ltrust does not
terminate after finitely many iterations, then

lim inf
k→∞,k∈K̄

∥vk∥2 = 0. (4.1)

Proof. Suppose that, on the contrary, there exists ϵ > 0 so that, for all k ∈ K̄,

∥vk∥2 ≥ ϵ. (4.2)
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Using Theorem 4.4 in [16], at each iteration k ∈ K, there exists α ∈ (0, 1) so that

m(xk, 0)−m(xk, pk) ≥ α∥vk∥2 min

{
∆k,

∥vk∥2
∥Bk∥

}
. (4.3)

Using (4.3) and the stopping criteria of the MY algorithm [14], for all k ∈ K1, we have:

1− ρk =
f(xk + pk)−m(xk, pk)

m(xk, 0)−m(xk, pk)

=
f(xk + pk)− f(xk)− vTk pk − 1

2p
T
kBkpk

m(xk, 0)−m(xk, pk)

≤
(c1 − 1)vTk pk − 1

2p
T
kBkpk

α∥vk∥2 min
{
∆k,

∥vk∥2

∥Bk∥

}
≤ (1− c1)∥pk∥2

αmin
{
∆k,

∥vk∥2

∥Bk∥

} , (4.4)

where the last inequality is obtained from the Cauchy-Schwartz inequality and the fact that
Bk is a positive definite matrix. Thus, for all k ∈ K1, (4.2) and (4.4) imply that

1− ρk ≤ (1− c1)∆k

αmin
{
∆k,

ϵ
M

} . (4.5)

On the other, since ∥Bk∥ ≤ M and by (4.2), we have

vTk vk
vTk Bkvk

∥vk∥2 ≥ vTk vk
M∥vk∥22

∥vk∥2 =
∥vk∥2
M

≥ ϵ

M
.

Now, let ∆̃ be defined as follows:

∆̃ =
ϵ

M
.

Then, for all ∆k ≤ ∆̃, we have min
{
∆k,

ϵ
M

}
= ∆k and

vTk vk
vTk Bkvk

∥vk∥2 ≥ ϵ

M
≥ ∆k,

which in turn implies that the CG-Steihaug method returns exactly the Cauchy point and
the sufficient reduction is achieved. Now, using (4.5), we obtain

1− ρk ≤ (1− c1)

α
.

If c1 ≥ 1 − α(1− c2), then, for all ∆k ≤ ∆̃, we have ρk ≥ c2 and the CG-Stiehaug method
returns the Cauchy point and the sufficient reduction is achieved. In this situation, for
sufficiently large k, let say k ≥ k′, in the Ltrust algorithm we have ∆k+1 ≥ ∆k, which in
turn implies that

∆k ≥ min

{
∆k′ ,

∆̃

θ∆

}
, ∀k ∈ K1, k ≥ k′. (4.6)
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To complete the proof of lemma, we show that K̄ is a finite set. For this purpose, on the
contrary, assume that K̄ is an infinite set. Then, either K1 or K2 is infinite.
If K1 is an infinite set, then for k ∈ K1, we have:

f(xk)− f(xk+1) ≥ c2 (m(xk, 0)−m(xk, pk))

≥ c2α∥vk∥2 min

{
∆k,

∥vk∥2
∥Bk∥

}
(4.7)

≥ c2αϵmin
{
∆k,

ϵ

M

}
.

Now, since the sequence {f(xk)}k∈K1 is a decreasing and bounded below, (4.7) implies that

lim
k∈K1,k→∞

∆k = 0. (4.8)

On the other hand, if K2 is an infinite set, then for all k ∈ K2, we have ∆k ≤ αk. This
implies that

f(xk)− f(xk+1) ≥ c1αk∥vk∥2 ≥ c1∆kϵ, (4.9)

which in turn concludes that

lim
k∈K2,k→∞

∆k = 0. (4.10)

Therefore, considering (4.8) and (4.10), we have:

lim
k∈K̄,k→∞

∆k = 0, (4.11)

whenever K̄ is an infinite set. This means that there exists k′′ so that for all k > k′′ and
k ∈ K̄, we have ∆k ≤ ∆̃, which is a contradiction with (4.6). This shows that K̄ is a finite
set. Therefore, ρk < c2 or a sufficient reduction is not achieved, for all sufficiently large k.
In this situation, ∆k is multiplied by θ∆ at every iteration, and we have ∆k → 0, which is
again a contradiction with (4.6). Hence, the assumption (4.2) is false and (4.1) holds.

Now, we are ready to provide the global convergence property of the Ltrust algorithm.
The proof is very similar to the proof of Theorem 3.1 in [2]. In [2], K1 is just the set of
successful iterations. But here the successful iterations are K1

∪
K2.

Theorem 4.2. Suppose that f : Rn → R is a locally Lipschitz function and the level set
L = {x : f(x) ≤ f(x1)} is bounded. Assume that there exist positive constants M and
m̄ so that m̄∥p∥22 ≤ pTBkp ≤ M∥p∥22, for all k and p ∈ Rn. Then, the Ltrust algorithm
either stops at a certain k0 with ∥vk0∥2 = 0, or generates an infinite sequence {xk}k∈K̄ with
0 ∈ ∂f(x∗), where x∗ is its limit point.

Proof. If the Ltrust algorithm terminates at a certain iteration k0 with ∥vk0
∥2 = 0, then

0 ∈ ∂∆k0
f(xk0

) which shows that xk0
is a ∆k0

-stationary point of f .
Now, assume that {xk}k∈K̄ is an infinite sequence. Since L is a bounded set, then the
sequence {xk}k∈K̄ has at least one limit point. Let x∗ be a limit point of {xk}k∈K̄ and
{xkn

} be its subsequence so that xkn
→ x∗. On the other hand, the sequence {f(xk)}k∈K̄ is

a decreasing sequence and bounded below, therefore it converges to a point, let say f∗ > −∞.
Assume that, on the contrary, 0 ̸∈ ∂f(x∗). Since ∂f(·) is an upper semicontinuous function,
then there exists r > 0 so that 0 ̸∈ ∂rf(x

∗). Let

γ = min
v∈∂rf(x)

∥v∥2. (4.12)
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Since 0 ̸∈ ∂rf(x
∗), then γ > 0. We first prove that ∥vkn

∥2 converges to 0. To do so, on the
contrary, assume that there exist ϵ > 0 and a subsequence {∥vt∥2} of {∥vkn

∥2}, so that

∥vt∥2 ≥ ϵ, ∀t. (4.13)

Due to Lemma 4.1, we have lim infk→∞,k∈K̄ ∥vk∥2 = 0. Therefore, there exist some k ∈ K̄
so that ∥vk∥2 < κ̄ := min

{
ϵ
2 ,

γ
2

}
. For each t, let lt > t be the first iteration in K̄ so that

∥vlt∥2 < κ̄. Thus, we have

∥vk∥2 ≥ κ̄, for all k ∈ K̄ and t ≤ k < lt.

Now, for every k ∈ K1 ⊆ K̄ and t ≤ k < lt, we have

f(xk)− f(xk+1) ≥ c2 (m(xk, 0)−m(xk, pk))

≥ c2α∥vk∥2 min

{
∆k,

∥vk∥2
∥Bk∥

}
≥ c2ακ̄min

{
∆k,

κ̄

M

}
. (4.14)

On the other hand, for each k ∈ K2 ⊆ K̄ and t ≤ k < lt, we have

f(xk)− f(xk+1) ≥ c1αk∥vk∥2 ≥ c1∆kκ̄. (4.15)

Now, using (4.14) and (4.15) and the fact that {f(xk)} is a decreasing and convergent
sequence, we have:

∆k → 0, as k ∈ K̄, t ≤ k < lt and t → ∞.

Thus, for sufficiently large k ∈ K̄ with t ≤ k < lt, we conclude that:

∆k ≤ min

{
1

c2ακ̄
[f(xk)− f(xk+1)] ,

1

c1κ̄
[f(xk)− f(xk+1)]

}
.

Letting γ = min
{

1
c2ακ̄

, 1
c1κ̄

}
, for sufficiently large t, we have

∥xt − xlt∥2 ≤
lt−1∑

k=t,k∈K̄

∥xk+1 − xk∥2 ≤
lt−1∑

k=t,k∈K̄

∆k ≤ γ [f(xt)− f(xlt)] . (4.16)

Now, from the fact that the right-hand side of (4.16) converges to zero, we obtain that

∥xt − xlt∥2 → 0, as t → ∞.

Therefore, xlt → x∗. On the other hand, since ∆k → 0, then for sufficiently large t, we
obtain that ∂∆lt

f(xlt) ⊂ ∂rf(x
∗), which is a contradiction with (4.12) considering the fact

that ∥vlt∥2 ≤ κ̄ ≤ γ
2 . Thus, ∥vkn∥2 → 0, as kn → ∞.

Now, we show that ∆kn
→ 0. Assume that, on the contrary, there exists σ > 0 so that

∆kn
≥ σ. For each kn, we have

m(xkn
, pkn

)−m(xkn
, 0) = vTkn

pkn
+ pTkn

Bkn
pkn

≥ vTkn
pkn +∆2

kn
m̄

≥ vTkn
pkn

+ m̄σ2.
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Now, since ∥vkn
∥2 → 0, we have

lim
kn→∞

(m(xkn , pkn)−m(xkn , 0)) ≥ m̄σ2 > 0,

which is a contradiction with the fact that m(xkn
, pkn

) < m(xkn
, 0). Thus, ∆kn

→ 0 as
kn → ∞.
Finally, we show that 0 ∈ ∂f(x∗). Since, for each kn, we have vkn

∈ ∂∆kn
f(xkn

), then there
exists ykn

∈ N∆kn
(xkn

) so that vkn
∈ ∂f(ykn

), whereN∆kn
(xkn

) stands for the neighborhood
with radius ∆kn centered at xkn . Besides, ∆kn → 0 implies that ykn → x∗. Now, using the
fact that the function ∂f(·) is an upper semicontinuous function and vkn → 0, we obtain
that 0 ∈ ∂f(x∗), which completes the proof of the theorem.

5 Numerical Results

The promising practical behavior of the Ntrust algorithm [2] against some other existing
nonsmooth methods has been well studied in [2]. In this section, our aim is to compare the
numerical performance of the Ltrust and Ntrust algorithms. More precisely, we investigate
the effect of utilizing the line search technique in the structure of Ntrust algorithm.
The Ltrust and Ntrust algorithms are implemented in MATLAB environment on a PC with
CPU 2.0 GHz, 2GB RAM memory and double precision format. The specifications of the
considered test problems, taken from [11, 13], are provided in Table 1. These problems
are exactly those considered in [2] and are divided in two classes; the first class consists of
convex functions and the second class considers the nonconvex test functions.

Table 1: Test problems and their optimum values
First class of problems Second class of problems

No. problem optimal value No. problem optimal value

1 MAXQ 0 11 problem 2 from TEST29 0
2 MAXHILB 0 12 problem 5 from TEST29 0
3 LQ -1.412799e+003 13 problem 6 from TEST29 0
4 CB3I 1998 14 problem 11 from TEST29 1.203128e+004
5 CB3II 1998 15 problem 13 from TEST29 5.661313e+002
6 NACTFACES 0 16 problem 17from TEST29 0
7 Brown 2 0 17 problem 19 from TEST29 0
8 Mifflin 2 -7.065034e+002 18 problem 20 from TEST29 0
9 Crescent I 0 19 problem 22 from TEST29 0
10 Crescent II 0 20 problem 24 from TEST29 0

We have also utilized the advantages of the performance profile of Dolan and Moré [8]
(in log2 scale) in order to have a better comparison.
The parameters and stopping criteria in both Ntrust and Ltrust algorithms are initiated
same as the Ntrust algorithm in [2]. Numerical results are given in Tables 2 and 3. Since
the number of subgradient and function evaluations are equal, we just report the number of
function evaluations. In these tables, ”nfeval” stands for the number of function evaluations
and f∗ denotes the computed optimal value. Moreover, ”NLS” in Ltrust shows the number
of line search usages for solving a problem and n is the dimention of the problem.
The performance profile of the considered algorithms in terms of number of function evalu-
ations for the first and second classes of test problems are respectively drawn in Figures 1
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and 2. These figures reveal that the number of function evaluations are reduced significantly
in Ltrust. Moreover, Ltrust fails less often than Ntrust in the case n = 100. Besides, Ltrust
solves more problems than Ntrust, especially in large-scale settings, in the minimum num-
ber of function evaluations. For n = 1000, Ltrust is more efficient in 80% of test problems
in Figure 1 and 70% in Figure 2. In summary, Figures 1 and 2 show that Ltrust is more
efficient than the Ntrust as the number of fuction evaluations and iterations are reduced
significantly in Ltrust.
On the other hand, the number of subproblem resolvings is reduced in Ltrust. This fact
is shown in the performance profile drawn in terms of number of subproblem solvings in
Figures 3 and 4. These figures show that the number of subproblem resolvings is decreased
significanly in the new proposed algorithm.
It is worth mentioning that the step length αk = ∆k satisfies the Armijo condition. In
our experience, this step length did not give us any better result than the usual line search
method and therefore we ignored this case in our results. We believe that the usual line
search technique mostly finds a larger step length than ∆k, and therefore the objective
function can be decreased more.

Figure 1: Performance profile of the algorithms for the first class of problems in terms of
nfeval

Figure 2: Performance profile of the algorithms for the second class of problems in terms of
nfeval
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Table 2: Numerical results of test problems for n = 100
Ntrust Ltrust

No. f∗ nfeval f∗ nfeval NLS

1 1.236e+02 10002 1.221e+03 10002 257
2 1.232e-04 10006 8.926e-06 46927 10
3 -1.400e+02 10015 -1.400e+02 12383 1
4 1.980e+02 7803 1.980e+02 1999 1
5 1.980e+02 1863 1.980e+02 1199 3
6 6.883e-15 101 3.961e-11 144 1
7 5.507e-10 521 2.006e-10 673 1
8 -7.015e+01 10008 -7.014e+01 11921 3
9 3.071e-09 332 5.055e-09 293 2
10 2.000e+00 2500 2.226e-09 882 3
11 5.684e-11 5112 1.905e-10 8206 338
12 4.278e-05 10014 1.053e-06 22898 11
13 1.158e-11 197 1.786e-11 203 4
14 1.190e+03 10022 1.191e+03 9776 3
15 5.559e+01 5527 5.559e+01 2301 4
16 6.120e-11 4409 2.448e-10 5001 74
17 1.424e-01 7150 8.479e-09 12595 587
18 1.106e-07 10005 5.543e-10 26701 477
19 1.725e-04 10023 1.544e-04 7979 2
20 1.889e-02 10001 6.721e-03 23772 250

Table 3: Numerical results of test problems for n = 1000
Ntrust Ltrust

No. f∗ nfeval f∗ nfeval NLS

1 5.262e+05 100001 9.162e+05 100000 1047
2 8.404e-05 100007 1.058e-05 57868 21
3 -1.413e+03 100180 -1.413e+03 900030 1
4 1.998e+03 23398 1.998e+03 3073 2
5 1.998e+03 2723 1.998e+03 1226 2
6 3.996e-10 550 1.125e-09 210 3
7 5.829e-10 817 5.725e-10 660 4
8 -7.065e+02 1138 -7.065e+02 807 4
9 3.209e-09 403 6.694e-10 411 4
10 4.146e-09 1468 2.000e-09 1135 4
11 5.814e-11 48222 9.498e-11 30415 2653
12 3.336e-05 42349 5.414e-06 36967 13
13 2.824e-11 203 1.786e-11 160 4
14 1.203e+04 100054 1.203e+04 36065 15
15 5.661e+02 3108 5.661e+02 3830 5
16 5.808e-11 39251 9.776e-11 35227 513
17 4.059e-08 45890 5.066e-10 39006 5502
18 1.015e-05 100007 1.285e-05 100006 4197
19 4.085e-05 42096 1.023e-05 100163 20
20 4.016e-01 100033 1.387e-02 100010 2868
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Figure 3: Performance profile of the algorithms for the first class of problems in terms of
number of subproblem solvings

Figure 4: Performance profile of the algorithms for the second class of problems in terms of
number of subproblem solvings

6 Conclusions

In this paper, a backtracking line search technique is exploited in the structure of nonsmooth
trust region (TR) methods for minimizing locally Lipschitz functions. In this method,
a line search performs along an approximation of the steepest descent direction for locally
Lipschitz functions whenever the computed trial step of the TR subproblem is rejected by the
nonsmooth TR algorithm. This may significantly reduce the number of function evaluations
and therefore increases the efficiency of the algorithm. Under some standard assumptions,
the global convergence property of the new algorithm is established. Preliminary numerical
results show the efficiency and robustness of the new proposed algorithm compared with
the Ntrust algorithm in [2]. It is worth mentioning that the priority and well promising
behavior of Ntrust algorithm to some other existing nonsmooth methods for minimizing
locally Lipschitz functions has been investigated in [2].
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