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. B∗
k : The basin of the objective function at an isolated local minimum x∗

k.

. F (x): The continuous differentiable objective function at x ∈ Ω ⊂ Rn, where Ω is a closed
bounded domain.

We first introduce the definition [11] of the filled function and the related concepts as follows:

Definition 1.1 ([11]). The basin B∗
k of F (x) at an isolated minimum x∗

k is a connected
domain which contains x∗

k, and in this domain the steepest descent trajectory of F (x) will
converge to x∗

k starting from any initial point, but outside the basin the steepest descent
trajectory of F (x) does not converge to x∗

k.

A basin B∗
1 at x∗

1 is lower (or higher) than basin B∗
2 at x∗

2 iff

F (x∗
1) ≤ (or >)F (x∗

2)

Definition 1.2 ([11]). A function P (x, x∗
1) is called a filled function of F (x) at a local

minimum x∗
1 if it satisfies the following conditions:

(1) x∗
1 is a strictly local maximum of P (x, x∗

1), and the whole basin B∗
1 of F (x) becomes a

part of a hill of P (x, x∗
1).

(2) P (x, x∗
1) has no minima or stable points in any basin of F (x) higher than B∗

1 .

(3) If F (x) has a lower basin than B∗
1 , then there is a point x̄ in such a basin that minimizes

P (x, x∗
1) on the line through x and x∗

1.

It can be seen from condition (1) that it is easy to escape from the local minimum x∗
1 by

minimizing the filled functionP (x, x∗
1) since x∗

1 is a local maximum of P (x, x∗
1). Condition

(2) ensures the FFM will not find a worse local minimum by minimizing the filled function
P (x, x∗

1), and condition (3) means that if a local minimum better than x∗
1 exists, FFM is

able to enter a lower basin of F (x). Thus it is possible to get a better local minimum by
minimizing the filled function P (x, x∗

1) along a line from x to x∗
1.

The main idea of FFM is as follows: from an initial point x1 we can get a local minimum
x∗
1 of the original function F (x) by minimizing F (x), and then construct a filled function

P (x, x∗
1) at the local minimum x∗

1. Afterwards, we minimize the filled function P (x, x∗
1) to

get a local minimum x′ from an initial point y1 near x∗
1. From condition (1), we can see that

y1 is not a peak of P (x, x∗
1) and thus we can find a local minimum x′ of P (x, x∗

1) by any
descent direction method such as the steepest descent method. By condition (2), we can see
that x′ will not be in a basin higher than B∗

1 . Instead, this local minimum x′ will be in a
lower basin than B∗

1 if such basin exists by condition (3). Furthermore, by minimizing F (x)
from the initial point x′ we can get a better local minimum x∗

2 of F (x) by condition (3).
Finally, we can get a global minimum by repeating this process until no better minimum of
F (x) can be found.

In fact, FFM gives the insight of gradually moving from one local minimum to better
ones until a global minimum is found. However, condition 3 in definition 1.2 [11] is not easy
to verify. To make the conditions of a filled function be easily verified, in this paper, we give
a revised definition of the filled function and design a new filled function with the following
advantages: 1) it is continuous differentiable, and 2) it has no parameter to tune.

The remainder of this paper is organized as follows: Section 2 gives a brief overview of
filled functions. In Section 3, a revised definition of filled function is given and a novel filled
function is designed. Then, the properties of the filled function are discussed. In Section
4, a new filled function algorithm is proposed. Numerical experiments are carried out and
comparisons are made in Section 5. Section 6 makes the conclusions.
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2 A Brief Overview of Filled Functions

In this section we give a brief overview of filled functions.
The first filled function proposed by Ge [11] is

P (x, r, ρ) =
1

r + F (x)
exp(−∥x− x∗

1∥2

ρ2
) (2.1)

where r and ρ are two parameters which need to be carefully chosen to satisfy the aforemen-
tioned three conditions of a filled function. However, it is difficult to choose proper values of
these parameters for this filled function. Also, P (x, r, ρ) will approach to zero too fast when
∥x− x∗

1∥2 becomes larger and larger because of the exponential term, and its values change
slowly (change near zero and are very close to zero). Thus, it is very hard to distinguish
these changes and the algorithm may easily trap in a false minimum even a saddle point.

To avoid such effect of the term exp(−∥x − x∗
1∥/ρ2) of function P and overcome the

difficulty of the mutual adjustment of two parameters, another filled function called function
Q was proposed [13]. The function Q contains only one parameter and is defined by

Q(x,A) = −[F (x)− F (x∗
1)]exp[−A∥x− x∗

1∥2] (2.2)

Q̃(x,A) = −[F (x)− F (x∗
1)]exp[−A∥x− x∗

1∥] (2.3)

This function also contains the exponential term and has the similar drawback as the filled
function proposed by Ge [11]. Afterwards, many filled functions with one parameter were
proposed (e.g., [21, 19, 18, 27, 15] ). A typical one called function H was proposed in [21]
as follows:

H(x) =
1

ln(1 + F (x)− F (x∗
1))

− a∥x− x∗
1∥2 (2.4)

However, H(x) has no definition at point x where F (x) = F (x∗
1) and the logistic term

can cause the ill-conditioning problem [7]. To overcome this drawback, Liu [19] proposed
function M without the exponential or logistic term:

M(x, a) =
1

(F (x)− F (x∗
1))

1/m
− a∥x− x∗

1∥2 (2.5)

but this function has two parameters and adjusting two parameters becomes more difficult
than adjusting one parameter. To reduce the possibility of introducing additional local
minima by non-differential term of filled functions, Liu first proposed a class of continuous
differentiable filled functions without exponential and logistic terms [20]:

C(x, a) = −u[F (x)− F (x1)]w
a(∥x− x∗

1∥p) (2.6)

where u and w are two real functions defined in R1, and twice continuously differentiable in
their domains satisfying the following conditions:

u(0) = 0 w(0) = 1/a > 0

u′(t) > 0 w′(t) > 0, ∀t ∈ [0,∞)

lim
t→0

u(t)w′(t)

u′(t)w(t)
= 0

To make the definition more clear and exact, Zhang [28] provided a revised definition of
filled functions and gave some useful information to construct filled functions. Based on the
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revised definition, he proposed two filled functions with one parameter and two parameters,
respectively. The two-parameter filled function is defined by:

P (x, x∗
1, r, a) = φ(r + F (x))− a∥x− x∗

1∥ (2.7)

where a and r are the two parameters to tune with a > 0. Also, φ(t) needs to satisfy the
following conditions:
(1) φ(t) > 0 is continuously differentiable, t ∈ (0,+∞).
(2)φ′(t) < 0, φ′′(t) > 0, t ∈ (0,+∞).
The one parameter filled function is as follows:

P (x, x∗
1, µ) = −∥x− x∗

1∥+ µ{max[0, F (x)− F (x∗
1)]}+ 1/µ{min[0, F (x)− F (x∗

1)]}3 (2.8)

Using this definition, authors in [7] designed the following relatively simple filled function

F (x, x∗
1, P ) = −[F (x)− F (x∗

1) + P ]∥x− x∗
1∥2 (2.9)

with one parameter P . Authors in [5, 6] proposed a bounded filled function with two
parameters which can not cause the computation overflow as follows:

P (x, x∗
1) =

1

1 + ∥x− x∗
1∥2

+ g(F (x)− F (x∗
1)) (2.10)

g(t) =

{
0 t ≥ 0

r.arctan(tρ) t < 0

Recently, authors in [23, 17] proposed two similar filled functions

F (x, x∗
1, r, q) =

1

1 + ∥x− x∗
1∥

arctan(| F (x)− F (x∗
1) + r|

|F (x)− F (x∗
1)|+ q

) (2.11)

and

Px∗
1 ,A,ϵ(x) = min{−(∥x−x∗

1∥)2−
F 2(x)

A
,min{A(F (x)−F (x∗

1)),−ϵ}(F (x)−F (x∗
1))

2} (2.12)

with two parameters, respectively, where q, r, A and ϵ are parameters.
All aforementioned filled functions have one or two parameters and these parameters are

not easy to tune. To overcome this shortcoming, some filled functions without parameters
are proposed [9, 16]:

P (x, x∗
1) = −sign(F (x)− F (x∗

1))∥x− x∗
1∥2 (2.13)

sign(t) =

{
1 t ≥ 0
−t t < 0

P (x, x∗
1) = −sign(F (x)− F (x∗

1))arctan(∥x− x∗
1∥2) (2.14)

sign(t) =

{
1 t ≥ 0
−1 t < 0

However, because function sign(t) is not continuous, these two filled functions are not con-
tinuous and differentiable, and may result in extra local minima, which means extra search
works needed in looking for a global minimum. In this paper, a new filled function with-
out any parameter is proposed and it is continuous and differentiable. Based on this filled
function, a new filled function algorithm is designed.
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3 A New Filled Function and its Properties

The filled function method is an effective way to solve multi-modal unconstrained optimiza-
tion problems. However, the definition of the filled function proposed by Ge is not clear and
is confusing. To make the meaning of the definition clearer, some authors have given a few
revised definitions of filled functions [10, 24, 28, 16]. In the definition given in literature [16],
sub-gradients ∂P (x, x∗

k) were used in condition (2) to make the definition clearer. However,
according to this definition, the designed filled function may be not differentiable and may
introduce extra local minima. This may result in more difficulty for an algorithm to look for
a global minimum. To overcome this disadvantage, in this paper, we replace sub-gradients
in condition (2) by gradients to ensure the designed filled function to be differentiable. The
conditions in this new definition are stronger and more difficult to satisfy. Thus it is more
difficult for one to construct a filled function based on the new definition. But as soon as
such a filled function is designed, it is much easier for an algorithm to look for a global
minimum. The new definition of the filled function is as follows:

Definition 3.1. A function P (x, x∗
k) is called a filled function of F (x) at a strictly local

minimum x∗
k if it satisfies the following conditions:

(1) x∗
k is a strictly local maximum of P (x, x∗

k).
(2) For any x ∈ Ω1,∇P (x, x∗

k) ̸= 0, where Ω1 = {x ∈ Ω|F (x) ≥ F (x∗
k), x ̸= x∗

k}.
(3) If Ω2 = {x ∈ Ω|F (x) < F (x∗

k)} is not empty, then there exists a stationary point x′ ∈ Ω2

that fulfils ∇P (x′, x∗
k) = 0 and x′ is a local minimum of P (x, x∗

k).

As mentioned above, the conditions (2) and (3) in definition 3.1 are stronger than those
in definition [16], but they are convenient for readers to understand because many readers
especially the engineers may not be familiar to sub-gradients.

According to the revised definition, we propose a new filled function without any param-
eter as follows:

P (x, x∗
k) = −∥x− x∗

k∥2g(F (x)− F (x∗
k))

g(t) =

{
1 t ≥ 0

ln(1 + t2) + 1 t < 0

(3.1)

In the following, we suppose that F (x) is a continuous differentiable function on Rn. We
will first prove that the proposed filled function is continuous differentiable and then further
prove that it satisfies the three conditions in definition 3.1.

Theorem 3.2. The proposed filled function P (x, x∗
k) in (3.1) is continuous differentiable.

Proof. Note that the only point at which the filled function may be not continuous and
differentiable is t = 0 for g(t). So we only need to prove that g(t) is continuous differentiable
at t = 0.

Since lim
t→0+

g(t) = lim
t→0−

g(t) = 1, so P (x, x∗
k) = −∥x−x∗

k∥2g(F (x)−F (x∗
k)) is continuous.

Now we further prove that P (x, x∗
k) is differentiable. Since

g′+(0) = lim
t→0+

g(t)− g(0)

t− 0
= lim

t→0+

1− 1

t
= 0

and

g′−(0) = lim
t→0−

g(t)− g(0)

t− 0
=

ln(1 + t2)

t
= 0.

Thus, g′+(0) = g′−(0) = 0, and g′(0) = 0. Note that g′(t) = 0 when t > 0 and g′(t) = 2t
1+t2

when t < 0, and limt→0− g′(t) = limt→0−
2t

1+t2 = 0, thus g′(t) is continuous at t = 0.
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Theorem 3.3. Suppose x∗
k is a local minimum of F (x) and P (x, x∗

k) is a filled function at
x∗
k, then x∗

k is a strictly local maximum of P (x, x∗
k).

Proof. Suppose B∗
k is the basin corresponding to x∗

k. Since x∗
k is a local minimum of F (x),

then ∀x ∈ B∗
k , x ̸= x∗

k, we have F (x) > F (x∗
k).

So P (x, x∗
k) = −∥x − x∗

k∥2 < 0 = P (x∗
k, x

∗
k). Thus, x∗

k is a strictly local maximum of
P (x, x∗

k).

Theorem 3.4. For any x ∈ Ω1,∇P (x, x∗
k) ̸= 0, where Ω1 = {x ∈ Ω|F (x) ≥ F (x∗

k), x ̸= x∗
k}.

Proof. For any x ∈ Ω1 with x ̸= x∗
k, we have F (x) ≥ F (x∗

k), and
∇P (x, x∗

k) = −2(x− x∗
k) ̸= 0.

Theorem 3.5. Suppose that F (x) has a finite number of global minima. If Ω2 = {x ∈
Ω|F (x) < F (x∗

k)} is not empty, then there exists x′ ∈ Ω2 that fulfils ∇P (x′, x∗
k) = 0 and x′

is a local minimum of P (x, x∗
k).

Proof. Let Ω̄2 denote the closure of Ω2. Since F (x) is continuous, then Ω̄2 is a closed set.
Since F (x) has a finite number of global minima, thus the level set Ω̄2 of F (x) at x∗

k is
bounded (see theorem 4.3.1 in [8]). Therefore, Ω̄2 is a non-empty closed bounded set. Thus,
F (x) has the minimum on Ω̄2 . Since Ω2 is not empty, this minimum must be in Ω2.

Since P (x, x∗
k) is continuous differentiable on Rn, then it is continuous differentiable on

this closed bounded set Ω̄2. Thus it has a minimum x′ at this closed bounded set. Because
P (x, x∗

k) is differentiable at x′, then this minimum x′ must be a stationary point, that is,
∇P (x′, x∗

k) = 0.

Since Ω2 is not empty, then there exists a point z ∈ Ω2 such that P (z, x∗
k) < 0. Thus

P (x′, x∗
k) ≤ P (z, x∗

k) < 0 and x′ ̸= x∗
k. Also, it can be seen from Theorem 3.4 that x′ ̸∈ Ω1.

Therefore, x′ ∈ Ω2.

4 A New Filled Function Algorithm

In this section, a new search method with restarting mechanism is proposed and a new filled
function algorithm is designed.

4.1 A new search method with restarting mechanism

The new search method adopts the idea of evolutionary algorithm with restarting mecha-
nism. Our motivation is that the parallel searching mechanism of evolutionary algorithm
may accelerate the convergent speed. In the search method, a new crossover and mutation
operators are designed to generate new population within a neighbourhood of the current
best point with the radius = range = (UBound − LBound)/n ∗ 0.001, where UBound
and LBound refer to the upper and lower bounds respectively and n is the dimension
of the problem. Also, a restarting mechanism is designed to make the search method
more robust. When the search method fails to find a better point, the range is expanded
(range = range ∗ 5) to give the search more chances to escape from the local minimum.
The search method will stop when it fails for 3 successive times (for problems with no more
than 10 dimensions) or 5 successive times (for problems with more than 10 dimensions). In
this way, it is hoped that the global minimum can be found. The pseudo-code of the search
method is summarized in algorithm 4.1.
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4.2 A new filled function algorithm

Based on the preparation of the above mentioned filled function and search method, a new
filled function algorithm is designed as follows:

Step 1. (initialization). Use uniform population initialization method to distribute NP (we
use NP=10 in the algorithm) points in Ω, set ϵ = 1.0e−10 as the stopping criterion.
Set k=0 as the initial value of the iteration counter.

Step 2. Choose the best point best x from the population and its function value is recorded
as best f . Let x0 = best x.

Step 3. By minimizing F (x) from an initial point x0, we get a local minimum x∗
k and its

function value F (x∗
k). If F (x∗

k) > best f , go to step 4, otherwise, go to step 5.

Step 4. Use Algorithm 4.1 as the search method. If the best point obtained by the search
method is better than best x, update best x and let x0 = best x, and then go to
step 5, otherwise, go to step 6.

Step 5. If F (x∗
k)− best f < −ϵ, go to step 6, otherwise, set best f = F (x∗

k), and construct
the filled function:

P (x, x∗
k) = −∥x− x∗

k∥2g(F (x)− F (x∗
k))

g(t) =

{
1 t ≥ 0

ln(1 + t2) + 1 t < 0

Make a tiny disturbance on x∗
k and then minimize P (x, x∗

k) using the disturbed point

as the initial point. We get a local minimum x
′

k of P (x, x∗
k). Set x0 = x

′

k, k = k+1,
and go to step 3.

Step 6. (termination). Set x∗ = best x as the global minimum and the algorithm stops.
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Note that we always record the best point and its function value we have found so far in
each cycle and will update them if a better point appears. Also, the reason we use uniformly
distributed points other than randomly given points as in some literatures is that, for an
unknown problem, uniformly distributed points have more opportunities to get closer to the
local or even global minimum and have a better diversity which can help the algorithm to
obtain good results. For detailed information about uniform design, the readers can refer
to [25, 26].

Figure 1 shows the optimization process of filled function methods. When a local min-
imum x∗

1 of the objective function F (x) is found, the filled function P (x, x∗
1) will be con-

structed on x∗
1. Then we will minimize P (x, x∗

1) from the point x
′

1 = x∗
1 +0.01 (disturbance

of x∗
1), which is very easy because x∗

1 is a strictly maximum of P (x, x∗
1). The minimization

process of P (x, x∗
1) will lead the search to a lower basin of F (x) ensured by conditions 2 and

3 of the definition of the filled function. For example, the local minimum x
′

2 of P (x, x∗
1) is

in a lower basin of F (x) than that of F (x) near x∗
1. We then minimize F (x) from the initial

point x2 = x
′

2 and can get a better minimum x∗
2 of F (x). Repeat this process until a global

optimum is found or the termination criterion of the algorithm is met.

Figure 1: Illustration of optimization process of filled function algorithms

5 Numerical Experiments

In this section, to demonstrate the performance of the proposed algorithm, some experiments
are conducted using Matlab R2014b on the widely used benchmark problems 1-7 which are
taken from problems 1-7 in [17]. For details of these problems, please refer to paper [17].
The proposed algorithm is compared with a state-of-the-art algorithm [17] as well as Ge’s
method on these benchmark problems. Table 1 compares the overall results on all test
problems, and Tables 2 - 8 present the results in the optimization process on one random
run of the proposed algorithm. The meanings of the symbols are as follows:
No.: The problem number.
n: The dimension of the problem.
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K (iter): The iteration counter.
Ff : The total number of function evaluations of F (x) and P (x, x∗

k).
Fg: The total number of gradient evaluations of F (x) and P (x, x∗

k).
SR: The successful rate of ten repeated runs. A successful run means the algorithm finds a
solution with an accuracy of ϵ = 1e− 8 before termination.
- : The results not available.

It can be seen from Table 1 that for problems with dimensions no more than 10, all
the three algorithms can successfully find the global minima (or with high successful rates).
As the dimension of the problem increases, more function evaluations are needed. This
is because when the dimension increases, the search space increases exponentially. Thus
the better exploring ability is required for an algorithm to explore a larger search space
effectively.

Table 1: The overall comparisons

From Table 1 we can also see that the proposed algorithm uses much fewer function
and gradient evaluations than Ge’s. From the aspect of using fewer function and gradient
evaluations, the proposed algorithm outperforms the algorithm in [17] on 14 problems out
of all 17 problems while for problems 1, 2 (with c=0.5) and 7 (with n=2), the proposed
algorithm uses more function evaluations. So we can get the conclusion that the proposed

Table 2: Results of Problem 1, 3 and 4

Table 3: Results of Problem 2

Table 4: results of Problem5, 6 and 7(with n=2)
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Table 5: results of Problem 7( with n = 3 and n=5).

Table 6: results of Problem 7 with n = 7.

Table 7: results of Problem 7 with n = 10.

Table 8: results of Problem 7 with n = 10.

algorithm generally uses fewer function evaluations than that in [17]. Moreover, as the
dimension increases, the difference becomes more significant. It can be seen from Table 1
that when the dimensions are more than 5, the proposed algorithm uses much fewer function
evaluations than that in [17]. When the dimension reaches 50, algorithm in [17] needs at
least 107 function evaluations. By contrast, the proposed algorithm uses much fewer function
evaluations (only 228478 for dimension 50 and 258125 for dimension 100 respectively) with
the successful rates of 10/10 and 6/10 respectively. So we can get the conclusion that
the proposed algorithm performs better than the algorithm in [17] on higher dimensional
problems.

It can be seen from Tables 2-8 that the solution obtained for each problem is improved
obviously at each iteration. This demonstrates the proposed algorithm converges fast and
is effective.

It should be noted that Tables 7 and 8 show the results of two typical runs of the
proposed algorithm on problem 7 with dimension 10. Table 7 shows the best results and
Table 8 shows the results using the restarting mechanism of the algorithm. Note that
although the properties of filled function ensure that the filled function method can find a
better solution at each iteration in theory, a filled function method often can not realize
this goal in practice. For example, when a better basin is so narrow that the search method
can not easily focus the search on that narrow region, the search method may make a great
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effort (use much more function evaluations), but it finally terminates outside that better
basin. This will results in the inefficiency of the filled function methods. However, the
restarting mechanism can help the algorithm to avoid this situation and save the function
evaluations. By restarting, the algorithm has more chances to find a global minimum within
reasonable cost. In fact, although the algorithm in [17] uses very few iterations, e.g., it
only uses 3 iterations on problem 7 with dimension 30, it uses as much as 376885 function
evaluations while the proposed algorithm with the restarting mechanism uses much fewer
function evaluations (only 41214 function evaluations). Also, when the dimension increases,
although the proposed algorithm uses more iterations than the algorithm in [17], it uses much
fewer function evaluations than that in [17]. This indicates that the restarting mechanism
can help an algorithm to focus its search on better basin and save the computation cost.

Overall, we can see that the proposed filled function algorithm is more efficient and
has better exploring ability than the compared ones. Also, from Table 1 we can see that,
the filled function methods are efficient for solving small scale problems (with dimension
smaller than 100). However, for large scale problems (with dimension more than 1000),
to the best of our knowledge, there is not any experimental result reported for the filled
function algorithms. In fact, the existing filled function methods become inefficient for
large scale problems. It is very necessary to develop new methods for large scale problems.
One possible and reasonable way is to decompose the whole problem into some small scale
(low dimensional) sub-problems (e.g., use random grouping, differential grouping to make
the decomposition), and then get the optimal solution by solving these sub-problems and
integrating the solutions of these sub-problems.

6 Conclusions and Future Work

In this paper, a continuous differentiable filled function without any parameter is proposed.
The new filled function mainly has three advantages: Firstly, since it is continuous differen-
tiable, a wide range of efficient optimization algorithms such as quasi-Newton method can be
chosen as the local search method. Secondly, optimizing a continuous differentiable function
is much easier than optimizing a non-continuous differentiable function. Thirdly, the new
filled function has no parameter to tune. Based on the new filled function, a filled function
algorithm is proposed, and a new search method with a restarting mechanism is designed to
make the algorithm more effective. Numerical experiments are carried out on some widely
used benchmark functions. Comparisons with a state-of-the-art algorithm and the first filled
function method are made and the results show that the proposed algorithm is more effective
and efficient. The numerical results also indicate that filled function methods are not able to
handle very high dimensional problems effectively and the optimization of high dimensional
problems remains an open problem. For the very high dimensional problems, one possible
way is to use divide and conquer strategy to decompose the high dimensional problem into
several low dimensional problems, or use the hybridization of different algorithms. So how
to design decomposition strategy and effectively integrate the filled function method with
other techniques for very high dimensional problems are our future work.
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