
2018

622 S. REZAEE AND S. BABAIE–KAFAKI

where gk = ∇f(xk), Bk is an approximation of the Hessian ∇2f(xk), ∆k > 0 is the TR
radius and ||.|| stands for the Euclidean norm.

To the best of our knowledge, TR methods are much influenced by the local agreement
between f(xk + s) and mk(s). In order to measure consistency between the exact and the
approximate models, the following basic ratio is defined:

ρBk =
f(xk)− f(xk + sk)

mk(0)−mk(sk)
. (1.4)

If ρBk is close to 1, then the quadratic model (1.3) reasonably approximates the objective
function in the current region. So, it is better to increase ∆k for the next iteration. However,
if ρBk is close to zero or negative, then the approximate model (1.3) is far from the exact
model. In such situation, ∆k should be decreased and consequently, the subproblem (1.3)
should be resolved. As the final case, if 0 ≪ ρBk ≪ 1, then, although the trial step sk is
acceptable, the radius ∆k should not changed.

As known, successive reduction of the objective function value generated by the monotone
iterative methods in the form of (1.2) may slow down the convergence speed, especially in
the presence of narrow curved valleys which appear in the strongly nonlinear problems
[21]. To overcome this defect, nonmonotone TR methods have been developed based on the
nonmonotone line search approaches [10]. As a successful attempt, Toint [22] proposed a
TR method with the following nonmonotone version of the ratio (1.4):

ρNB
k =

fl(k) − f(xk + sk)

mk(0)−mk(sk)
,

in which
fl(k) = max

0≤j≤q(k)
{fk−j}, (1.5)

where fi = f(xi), q(0) = 0, and for all k ≥ 1, 0 ≤ q(k) ≤ min{q(k − 1) + 1, N}, for
some N ∈ N. Then, based on the fact that the best convergence behavior of the iterative
method (1.2) is obtained by employing stronger nonmonotone strategy far from the solution
and weaker one near the solution [24], Ahookhoosh et al. [2] proposed a nonmonotone TR
method with the following ratio:

ρ̂NB
k =

Rk − f(xk + sk)

mk(0)−mk(sk)
, (1.6)

where
Rk = ϵkfl(k) + (1− ϵk)fk, (1.7)

in which ϵk ∈ [ϵmin, ϵmax], with ϵmin ∈ [0, 1) and ϵmax ∈ [ϵmin, 1]. The interested reader can
find further information about several other nonmonotone TR methods in [1, 5, 8].

It can be seen that in the classical TR method the radius is updated by considering how
well the approximate model at xk predicts the objective function value at xk+1. To employ
more available information at xk+1 in order to find a more appropriate region for predicting
the objective function values, after the step sk was accepted based on the value of ρBk , Bastin
et al. [4] applied the following retrospective ratio to update the TR radius:

ρRk+1 =
f(xk)− f(xk + sk)

mk+1(0)−mk+1(sk)
. (1.8)

If ρRk+1 is negative or a small positive number near to zero, then ∆k+1 is decreased; otherwise,
it is increased or left unchanged. Also, Ataee Tarzanagh et al. [20] proposed a nonmonotone

AN ADAPTIVE RETROSPECTIVE TRUST REGION METHOD 623

adaptive retrospective TR method based on the following nonmonotone versions of the
standard and the retrospective ratios:

ρ̃NB
k =

(1 + ϕk)Rk − f(xk + sk)

mk(0)−mk(sk)
,

ρ̃NR
k+1 =

(1 + ϕk)Rk − f(xk + sk)

mk+1(0)−mk+1(sk)
, (1.9)

where Rk is defined by (1.7), and ϕk is given by

ϕk =

 ηk, Rk ≥ 0,

0, Rk < 0,

in which {ηk}∞k=0 is a positive sequence satisfying

∞∑
k=0

ηk < ∞.

Here, we propose another adaptive TR method by hybridizing monotone and nonmono-
tone approaches in a retrospective scheme. This work is organized as follows. In Section 2,
we suggest an adaptive choice for the TR radius using the scaled memoryless DFP updating
formula. Then, we deal with an adaptive TR algorithm together with its global and super-
linear convergence properties in Section 3. Comparative numerical results are reported in
Section 4 and conclusions are drawn in Section 5.

2 An Adaptive Formula for the Trust Region Radius

As seen in (1.4), the gradient or the Hessian information is not explicitly employed to
compute the radius ∆k in the classical TR method. To overcome this defect, using the
steepest descent direction, Fan and Yuan [7] proposed the following adaptive TR radius:

∆k = υk||gk||,

in which υk is a positive parameter computed according to the magnitude of the ratio ρBk .
Using the quasi–Newton search direction [19], Zhang et al. [25] employed both of the first
and the second order information of the objective function to suggest another adaptive choice
for the TR radius as follows:

∆k = tp||B̂−1
k ||.||gk||, (2.1)

where t ∈ (0, 1) is a constant, p is a nonnegative integer and B̂k = Bk + iI, with some
i ∈ N∪{0}, is a positive definite matrix approximation of the Hessian. Despite effectiveness
of the approach of [25], computing ∆k by (2.1) may require a matrix inverse estimation
which causes extra computational cost. In order to overcome this possible drawback, Shi
and Wang [18] dealt with the following updating formula for the TR radius:

∆k = tp
||gk||3

gTk B̂kgk
, (2.2)

624 S. REZAEE AND S. BABAIE–KAFAKI

with t, p and B̂k are defined as above. In another effort, Shi and Guo [17] proposed an
extension of (2.2) as follows:

∆k = −tp
gTk qk

qTk B̂kqk
||qk||, (2.3)

with t, p and B̂k as defined for (2.1), and the vector parameter qk ∈ Rn satisfying the angle
condition [19], i.e.

− gTk qk
||gk||.||qk||

≥ τ, (2.4)

for some constant τ ∈ (0, 1]. Also, recently Peyghami and Ataee Tarzanagh [15] suggested
a truncated version of (2.3) given by

∆k = min

{
−υk

gTk qk

qTk B̂kqk
||qk||,∆max

}
,

in which ∆max is a positive constant and υk is computed based on the magnitude of the TR
ratio.

Here, conducting an eigenvalue analysis on the scaled memoryless DFP updating formula,
we suggest another adaptive TR radius. In this context, the following preliminaries are
needed.

As a class of line search–based techniques, quasi–Newton methods are of particular per-
formance for solving (1.1) since they do not require explicit expressions of the second deriva-
tives and are often globally and locally superlinearly convergent [19]. Iterative formula of
the methods is given by

x0 ∈ Rn, xk = xk−1 + αk−1dk−1, k = 1, 2, ...,

where αk−1 is a step length to be computed by a line search strategy and dk−1 is the search
direction to be calculated by

dk−1 = −Hk−1gk−1,

in which Hk−1 ∈ Rn×n is an approximation of the inverse Hessian; more precisely, Hk−1 ≈
∇2f(xk−1)

−1. The methods are characterized by the fact that Hk−1 is effectively updated to
achieve a new matrix Hk as an approximation of ∇2f(xk)

−1 satisfying the secant equation
[19], i.e.

Hkyk−1 = sk−1, (2.5)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1.
Among the well–known and effective quasi–Newton updating formulas there is the DFP

formula [19] given by

HDFP
k = Hk−1 +

sk−1s
T
k−1

sTk−1yk−1
−

Hk−1yk−1y
T
k−1Hk−1

yTk−1Hk−1yk−1
. (2.6)

It can be seen that if Hk−1 is a positive definite matrix and the line search ensures that
sTk−1yk−1 > 0, as guaranteed by the popular Wolfe conditions [23], then Hk is also a positive
definite matrix [19] and consequently, the search direction dk = −Hkgk is a descent direction.
Also, under convexity assumption on the objective function, the DFP method has been
shown to be globally and locally superlinearly convergent [19].

In order to achieve an ideal distribution of the eigenvalues of the DFP updating formula,
improving the condition number of successive approximations of the inverse Hessian and

AN ADAPTIVE RETROSPECTIVE TRUST REGION METHOD 625

consequently, increasing numerical stability of the method, the scaled DFP update has been
developed [19], replacing Hk−1 by θk−1Hk−1 in (2.6) as follows:

HSDFP
k = θk−1Hk−1 +

sk−1s
T
k−1

sTk−1yk−1
− θk−1

Hk−1yk−1y
T
k−1Hk−1

yTk−1Hk−1yk−1
, (2.7)

in which θk−1 > 0 is called the scaling parameter, can be computed by the Oren–Spedicato
formula [14], i.e.

θk−1 =
sTk−1yk−1

yTk−1Hk−1yk−1
. (2.8)

Although the scaled DFP method is numerically efficient [14], as an important defect
the method needs to save the matrix Hk−1 ∈ Rn×n in each iteration, being improper for
solving large–scale problems. Hence, replacing Hk−1 by the identity matrix in (2.7), scaled
memoryless DFP updating formula has been proposed as follows:

Hθ
k = θk−1I +

sk−1s
T
k−1

sTk−1yk−1
− θk−1

yk−1y
T
k−1

yTk−1yk−1
,

with the following memoryless version of the scaling parameter (2.8):

θk−1 =
sTk−1yk−1

||yk−1||2
. (2.9)

As shown in [3], eigenvalues of Hθ
k are θk−1 with multiplicity n−2, and two other scalars

λ−
k−1 and λ+

k−1. Also, when sTk−1yk−1 > 0, it can be seen that

λ−
k−1 + λ+

k−1 = θk−1 +
||sk−1||2

sTk−1yk−1
> θk−1.

So,

||Hθ
k || = max{θk−1, λ

−
k−1, λ

+
k−1} ≤ θk−1 +

||sk−1||2

sTk−1yk−1
.

Now, when θk−1 is computed by (2.9), we get

||Hθ
k || ≤

sTk−1yk−1

||yk−1||2
+

||sk−1||2

sTk−1yk−1
.

Hence, based on the approach of [25] which leads to (2.1), here we suggest the following
adaptive choice for the TR radius:

∆̌k = νk||gk||

(
sTk−1yk−1

||yk−1||2
+

||sk−1||2

sTk−1yk−1

)
, (2.10)

where νk is computed based on the magnitude of the TR ratio.
Note that inequality sTk−1yk−1 > 0 may not always hold in the TR methods. So, to

ensure positiveness of the TR radius (2.10), here we replace sTk−1yk−1 by its absolute value.
Also, the formula (2.10) is not well–defined for k = 0. Hence, the following modified version
of (2.10) is now immediate:

∆k = νkδk,

626 S. REZAEE AND S. BABAIE–KAFAKI

where

δk = ||gk||

1, k = 0,

|sTk−1yk−1|
||yk−1||2

+
||sk−1||2

|sTk−1yk−1|
, k > 0.

(2.11)

3 A Hybrid Adaptive Trust Region Algorithm

Here, using the adaptive TR radius (2.11), we describe structure of our adaptive retrospective
TR algorithm as a modified version of the TR algorithm proposed in [20].

As the main scheme of the algorithm, we use the nonmonotone ratio ρ̂NB
k given by

(1.6) to decide whether the trial step sk is acceptable or not, while we employ a convex
combination of ρ̂NB

k and the retrospective monotone ratio ρRk+1 given by (1.8) to update the
TR radius. So, as an inheritance of the nonmonotone TR methods, a good move from xk

to xk+1 is possible. Also, the retrospective monotone ratio ρRk+1 provides more reasonable
information about the relationship between the exact and the approximate models at xk+1.
Moreover, since local information are more useful to measure consistency between the exact
and the approximate models, it is more reasonable to use available information from the
current iteration in contrast to using the information available from more than one previous
step. Hence, we give a chance to the monotone ratio ρRk+1 to play a role in computing the
TR radius.

To describe with more details, at the kth iteration of the algorithm we assume that the
current point xk, the parameter νk and the radius ∆k are available. So, we solve the TR
subproblem (1.3) to find the trial step sk and then, we compute the ratio ρ̂NB

k by (1.6) to
accept or reject the trial step. If ρ̂NB

k is negative or a small positive number, then we set
xk+1 = xk and shrink the radius as ∆k+1 = min{γ0||sk||, νk+1δk+1}, where γ0 ∈ (0, 1) is a
prespecified constant, δk+1 is computed by (2.11) and νk+1 = σ0νk, with a given constant
σ0 ∈ (0, 1). In such situation, the TR subproblem should be solved again. Otherwise, we
set xk+1 = xk + sk, compute ρRk+1 by (1.8) and based on the approach of [20], we define the

following ratio, being a convex combination of ρ̂NB
k and ρRk+1:

ρCk+1 = λρ̂NB
k + (1− λ)ρRk+1, (3.1)

where λ ∈ [0, 1] is a constant. Then, we update the radius by ∆k+1 = min{∆̃k+1,∆max} in
which ∆̃k+1 is computed as follows:

∆̃k+1 =

νk+1δk+1, ρCk+1 ≥ µ1,

min{γ0||sk||, νk+1δk+1}, ρCk+1 < µ1,
(3.2)

with γ0 and δk+1 are defined as above, the constant µ1 ∈ (0, 1) and the parameter νk+1

updated by

νk+1 =

min{σ1νk, νmax}, ρCk+1 > µ2,

νk, µ1 ≤ ρCk+1 ≤ µ2,

σ0νk, ρCk+1 < µ1,

(3.3)

in which σ1 > 1 and µ2 ∈ (µ1, 1) are prespecified constants and σ0 is defined as above.
Considering these preliminaries, now we are in a position to describe our algorithm in details.

AN ADAPTIVE RETROSPECTIVE TRUST REGION METHOD 627

Algorithm 3.1. An adaptive retrospective trust region method based on a hybridization
of the monotone and nonmonotone aspects (ARMNMTR)

Step 0 {Initialization} Choose an initial point x0 ∈ Rn, a symmetric matrix B0 ∈ Rn×n,
and the constants 0 < µ1 < µ2 < 1, 0 < σ0 < 1 < σ1, 0 < ϵmin < ϵmax < 1,
0 < γ0 < 1, ν0 > 0, νmax > 0, ∆max > 0, N > 0, and ε > 0. Compute f0 and set
k = 0.

Step 1 {Radius update} If k = 0, then set ∆k = min{νkδk,∆max} and goto Step 2.
If ρ̂NB

k−1 < µ1, then set νk = σ0νk−1 and ∆k = min{γ0||sk−1||, νkδk}; else compute

ρRk and ρCk respectively by (1.8) and (3.1), update νk using (3.3), and set ∆k =

min{∆̃k,∆max} where ∆̃k is given by (3.2).

Step 2 {Stopping criterion} If ||gk|| < ε, then stop.

Step 3 Solve the subproblem (1.3) to find the trial step sk and compute ρ̂NB
k by (1.6).

Step 4 If ρ̂NB
k ≥ µ1, then set xk+1 = xk + sk; else set xk+1 = xk.

Step 5 Compute the new Hessian approximation Bk+1 using a quasi–Newton updating
formula, set k = k + 1 and goto Step 1.

Now, we discuss well–definiteness as well as convergence of Algorithm 3.1. In this context,
the following standard assumptions are needed.

Assumption 3.1.

H1 The objective function f is bounded below, the level set L(x0) = {x ∈ Rn|f(x) ≤ f0}
is bounded, and ∇f is uniformly continuous on a compact convex set Ω that contains
the level set L(x0).

H2 The matrix Bk is uniformly bounded, i.e. there exists a positive constant M1 such that
||Bk|| ≤ M1, ∀k ∈ N ∪ {0}.

H3 There exists a positive constant m such that sTBks ≥ m||s||2, ∀s ∈ Rn, ∀k ∈ N ∪ {0}.

If f is a twice continuously differentiable function, then H1 implies that ||∇2f || is uni-
formly continuous and bounded on Ω. Hence, there exists a positive constant L such that
||∇2f(x)|| ≤ L, ∀x ∈ Ω. So, from the mean value theorem, we have

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ Ω,

which ensures that ∇f is Lipschitz continuous on Ω.
To simplify the discussion, we define the following two index sets:

I1 = {k|ρ̂NB
k ≥ µ1}, I2 = {k|ρ̂NB

k < µ1}.

The following results are now immediate, showing well–definiteness of the steps of Algorithm
3.1.

Lemma 3.2. If sk is a solution of (1.3), then

mk(0)−mk(sk) ≥ θ||gk||min

{
∆k,

||gk||
||Bk||

}
, ∀k ≥ 0,

where θ ∈ (0, 1) is a constant.

628 S. REZAEE AND S. BABAIE–KAFAKI

Proof. The proof is similar to the proof of Theorem 4.4 of [12] and here is omitted.

Lemma 3.3. Suppose that Assumptions 3.1 hold. For the sequence {xk}k≥0 generated by
Algorithm 3.1, assume that there exists a constant ε ∈ (0, 1) such that

||gk|| ≥ ε, ∀k ≥ 0. (3.4)

For each k, there exists a nonnegative integer p such that xk+p+1 is a successful iteration
point in the sense that k + p ∈ I1.

Proof. At the contrary, suppose that there exists an iteration k so that for all nonnegative
integers p ≥ 0, xk+p+1 is an unsuccessful iteration point, i.e.

ρ̂NB
k+p < µ1.

Now, from Step 1 of Algorithm 3.1, Assumptions 3.1, and since the quasi–Newton updates
(used in Step 5 of Algorithm 3.1) satisfy the secant equation (2.5), we have

∆k+p+1 ≤ σp+1
0 νk||gk||

(
||sk−1||2

|sTk−1yk−1|
+

|sTk−1yk−1|
||yk−1||2

)

≤ σp+1
0 νk||gk||

(
||sk−1||2

|sTk−1Bksk−1|
+

|sTk−1Bksk−1|
||Bksk−1||2

)

≤ σp+1
0 νk||gk||

(
||sk−1||2

m||sk−1||2
+

||sk−1||2|sTk−1Bksk−1|
|sTk−1Bksk−1|2

)

≤ σp+1
0 νk||gk||

(
1

m
+

||sk−1||2

m||sk−1||2

)
≤ σp+1

0 νk||gk||
(

1

m
+

1

m

)
≤ 2σp+1

0 νmax

m
||gk||.

Setting ϕk = 0 in (1.9), the remainder of the proof is similar to the proof of Lemma 4.2 of
[20] and here is omitted.

Remark 3.4. As a consequence of Lemma 3.3, one can realize that whenever Algorithm
3.1 does not stop in finite number of iterations, then the index set I1 is infinite. In this
situation, there exists a bijection between I1 and {L̄N + r|L̄ ∈ N

∪
{0}, 1 ≤ r ≤ N}, with

the same positive integer N as in (1.5). Thus, without loss of generality we can assume that
I1 = {L̄N + r|L̄ ∈ N

∪
{0}, 1 ≤ r ≤ N}.

In what follows, we present some results which are necessary to establish convergence of
Algorithm 3.1.

Lemma 3.5. Assume that {xk}k≥0 generated by Algorithm 3.1 is an infinite sequence and
N is the same integer constant as in (1.5). Then, for every L̄N + r ∈ I1, 1 ≤ r ≤ N , we
have

fL̄N+r ≤ |f0| −
L̄∑

i=0

ωs(i), L̄ = 0, 1, ...,

AN ADAPTIVE RETROSPECTIVE TRUST REGION METHOD 629

where
ωs(i) = min

iN≤j≤(i+1)N−1
ωj , (3.5)

in which ωj = θµ1||gj ||min

{
∆j ,

||gj ||
||Bj ||

}
.

Proof. Setting ϕk = 0 in (1.9), the proof is similar to the proof of Lemma 4.6 of [20] and
here is omitted.

Theorem 3.6. If Assumptions 3.1 hold, then Algorithm 3.1 either stops at a stationary
point of (1.1) or generates an infinite sequence {xk}k≥0 such that

lim inf
k→∞

||gk|| = 0. (3.6)

Proof. The proof is similar to the proof of Theorem 4.1 of [20] and here is omitted.

Theorem 3.7. Suppose that Assumptions 3.1 hold and Algorithm 3.1 generates an infinite
sequence {xk}k≥0 which converges to the optimal solution x∗. Consider an arbitrary function

H̃ : Rn → Rn×n which is Lipschitz continuous in a neighborhood of x∗ such that H̃(x∗) is a
positive definite matrix. If

lim
k→∞

||gk + H̃(x∗)sk||
||sk||

= 0,

then the convergence rate of {xk}k≥0 is superlinear, i.e. ||xk+1 − x∗|| = o(||xk − x∗||).
Proof. The proof is similar to the proof of Theorem 4.1 of [5] and here is omitted.

4 Numerical Experiments

Here, we present some numerical results obtained by applying MATLAB 7.14.0.739 (R2012a)
implementations of the ARMNMTRmethod (Algorithm 3.1), a version of ARMNMTR using
the adaptive radius proposed in [16] instead of the radius (2.11), here called ARMNMTR–V2,
the adaptive retrospective nonmonotone TR algorithm proposed in [20], here called ARN-
MTR, and a modified version of ARNMTR (based on our hybridization approach) in which
the nonmonotone ratio (1.9) is replaced by the monotone ratio (1.8), here called MARN-
MTR. The runs were performed on a set of 68 unconstrained optimization test problems of
the CUTEr collection [9] with the minimum dimension being equal to 100, as specified in
Table 1, using a computer Intel(R) Core(TM) 2 Duo CPU 2.00 GHz with 1.50 GB of RAM.

The ARNMTR method has been run with the same parameter values as specified in
[20]. Also, adopting suggestions of [20], for ARMNMTR, ARMNMTR-V2 and MARNMTR
we set µ1 = 0.05, µ2 = 0.9, σ0 = 0.2, σ1 = 5, λ = 0.5, γ0 = 0.25, ν0 = 0.1, νmax = 2,

ηk =
10

(k + 1)2
, ∆max = 100, N = 2n if n < 5, and N = 10, otherwise. Moreover, starting

from ϵ0 = 0.85, we set

ϵk =

 ϵ0/2, k = 1,

(ϵk−1 + ϵk−2)/2, k ≥ 2.

Among the wide scope of the choices of qk satisfying (2.4), for ARNMTR and MARN-
MTR we set qk = −B−1gk. In all the algorithms, we used the following scaled memoryless
DFP approximation of the Hessian [19]:

Bk+1 = θBk I +
yky

T
k

sTk yk
− θBk

sks
T
k

sTk sk
,

630 S. REZAEE AND S. BABAIE–KAFAKI

Table 1: Test problems data

Function n Function n Function n
ARGLINA 200 DIXMAANH 3000 MSQRTBLS 1024
ARGLINB 200 DIXMAANI 3000 NCB20 5010
ARWHEAD 5000 DIXMAANJ 3000 NCB20B 5000
BDEXP 5000 DIXMAANK 3000 NONCVXU2 5000
BDQRTIC 5000 DIXMAANL 3000 NONDIA 5000
BIGGSB1 5000 DIXON3DQ 10000 NONDQUAR 5000
BOX 10000 DQDRTIC 5000 PENALTY1 1000
BROWNAL 200 DQRTIC 5000 PENALTY2 200
BROYDN7D 5000 EDENSCH 2000 POWELLSG 5000
BRYBND 5000 EG2 1000 POWER 10000
CHAINWOO 4000 ENGVAL1 5000 QUARTC 5000
COSINE 10000 EXTROSNB 1000 SCHMVETT 5000
CRAGGLVY 5000 FLETCBV2 5000 SENSORS 100
CURLY10 10000 FLETCHCR 1000 SINQUAD 5000
CURLY20 10000 FMINSRF2 5625 SPARSQUR 10000
CURLY30 10000 FMINSURF 5625 SPMSRTLS 4999
DIXMAANA 3000 FREUROTH 5000 SROSENBR 5000
DIXMAANB 3000 GENHUMPS 5000 TOINTGSS 5000
DIXMAANC 3000 GENROSE 500 TQUARTIC 5000
DIXMAAND 3000 LIARWHD 5000 TRIDIA 5000
DIXMAANE 3000 MANCINO 100 VARDIM 200
DIXMAANF 3000 MOREBV 5000 WOODS 4000
DIXMAANG 3000 MSQRTALS 1024

where θBk =
sTk yk
||sk||2

(see also [3, 13, 14]). Note that we set Bk+1 = Bk whenever the curvature

condition (i.e. sTk yk > 0) does not hold. Considering relationship between the DFP and the
BFGS updates [19], the inverse of Bk+1 can be written as

Hk+1 = θHk I − θHk
sky

T
k + yks

T
k

sTk yk
+ (1 + θHk

||yk||2

sTk yk
)
sks

T
k

sTk yk
,

with θHk =
sTk yk
||yk||2

. All attempts for finding an approximation of the solution were terminated

by reaching maximum of 20000 iterations or achieving a solution with ||gk||∞ < 10−6(1 +
|f(xk)|).

Efficiency comparisons were drawn using the Dolan–Moré performance profile [6] on
the running time and the total number of function and gradient evaluations being equal
to Nf + 3Ng, where Nf and Ng respectively denote the number of function and gradient
evaluations [11]. Performance profile gives, for every ω ≥ 1, the proportion p(ω) of the test
problems that each considered algorithmic variant has a performance within a factor of ω
of the best.

Figures 1 and 2 demonstrate the results of comparisons. As the figures show, although the
algorithms are approximately competitive with respect to the total number of function and

AN ADAPTIVE RETROSPECTIVE TRUST REGION METHOD 631

Figure 1: Total number of function and gradient evaluations performance profiles

gradient evaluations, ARMNMTR outperforms ARMNMTR–V2, ARNMTR and MARN-
MTR with respect to the running time. This seems reasonable since computing the TR
radius in ARMNMTR is low–cost in contrast to the radius computation of the other three
algorithms. Also, the figures show that MARNMTR is preferable to ARNMTR, demon-
strating effectiveness of our hybridization of the monotone and nonmonotone strategies.

Figure 2: CPU time performance profiles

5 Conclusions

Hybridizing monotone and nomonotone strategies, a retrospective trust region algorithm
has been proposed. An eigenvalue analysis which has been carried out on the scaled memo-
ryless DFP updating formula plays an important role in computing the trust region radius
adaptively, in a reasonable computational cost. The method has been briefly shown to

632 S. REZAEE AND S. BABAIE–KAFAKI

be globally and locally superlinearly convergent. Numerical experiments showed that our
hybridization scheme is practically effective. Also, they showed efficiency of the propose
algorithm, especially with respect to the running time.

Acknowledgements

The authors thank the Research Council of Semnan University for its support. They are
also grateful to the anonymous referees for their valuable comments and suggestions helped
to improve the quality of this work.

References

[1] M. Ahookhoos and K. Amini, An efficient nonmonotone trust region method for un-
constrained optimization, Numerical Algorithms 59 (2012) 523–540.

[2] M. Ahookhoosh, K. Amini and M. Peyghami, A nonmonotone trust region line search
method for large–scale unconstrained optimization, Appl. Math. Model. 36 (2012) 478–
487.

[3] S. Babaie-Kafaki, On optimality of the parameters of self–scaling memoryless quasi–
Newton updating formulae, J. Optim. Theory Appl. 167 (2015) 91–101.

[4] F. Bastin,V. Malmedy, M. Mouffe, Ph. L. Toint and D. Tomanos, A retrospective trust
region method for unconstrained optimization, Math. Program. 123 (2010) 395–418.

[5] Z. Cui and B. Wu, A new modified nonmonotone adaptive trust region method for
unconstrained optimization, Comput. Optim. Appl. 53 (2012) 795–806.

[6] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance pro-
files, Math. Program. 91 (2002) 201–213.

[7] J.Y. Fan and Y.X. Yuan, A new trust region algorithm with trust region radius con-
verging to zero, in Proceedings of the 5th International Conference on Optimization:
Techniques and Applications, D. Li di (ed.), Hong Kong, 2001, pp. 786–794.

[8] J.H. Fu and W.Y. Sun, Nonmonotone adaptive trust region method for unconstrained
optimization problems, Appl. Math. Comput. 163 (2005) 489–504.

[9] N.I.M. Gould, D. Orban and Ph. L. Toint, CUTEr: a constrained and unconstrained
testing environment, revisited, ACM Trans. Math. Softw. 29 (2003) 373–394.

[10] L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for
Newton’s method, SIAM J. Numer. Anal. 23 (1986) 707–716.

[11] W.W.Hager and H. Zhang, Algorithm 851: CG−Descent, a conjugate gradient method
with guaranteed descent, ACM Trans. Math. Softw. 32 (2006) 113–137.

[12] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 2006.

[13] S.S Oren and D.G. Luenberger, Self–scaling variable metric (SSVM) algorithms. I.
Criteria and sufficient conditions for scaling a class of algorithms, Management Sci. 20
(1974) 845–862.

AN ADAPTIVE RETROSPECTIVE TRUST REGION METHOD 633

[14] S.S. Oren and E.J. Spedicato, Optimal conditioning of self–scaling variable metric al-
gorithms, Math. Program. 10 (1976) 70–90,

[15] M.R. Peyghami and D. Ataee Tarzanagh, A relaxed nonmonotone adaptive trust region
method for solving unconstrained optimization problems, �Comput. Optim. Appl. 61
(2015) 321–341.

[16] Z. Sang and O. Sun, A self-adaptive trust region method with line search based on a
simple subproblem model, J. Comput. Appl. Math. 232 (2009) 514–522.

[17] Z.J. Shi and J.H. Guo, A new trust region method for unconstrained optimization, J.
Comput. Appl. Math. 213 (2008) 509–520.

[18] Z.J. Shi and H.Q. Wang, A new self–adaptive trust region method for unconstrained
optimization, Technical Report, College of Operations Research and Management, Qufu
Normal University, 2004.

[19] W. Sun and Y.X. Yuan, Optimization Theory and Methods: Nonlinear Programming,
Springer, New York, 2006.

[20] D. Ataee Tarzanagh, M. Peyghami and F. Bastin, A new nonmonotone adaptive ret-
rospective trust region method for unconstrained optimization problems, J. Optim.
Theory Appl.167 (2015)676–692.

[21] Ph. L. Toint, An assessment of nonmonotone line search techniques for unconstrained
Optimization, SIAM J. Sci. Comput. 17 (1996) 725–739.

[22] Ph. L. Toint, Nonmonotone trust region algorithms for nonlinear optimization subject
to convex constraints, SIAM J. Sci. Comput. 17 (1996) 725–739.

[23] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969) 226–235.

[24] H. Zhang and W.W. Hager, A nonmonotone line search technique and its application
to unconstrained optimization, SIAM J. Optim. 14 (2004) 1043–1056.

[25] X.S. Zhang, J.L. Zhang and L.Z. Liao, An adaptive trust region method and its con-
vergence, Sci. China Ser. A Math. 45 (2002) 620–631.

Manuscript received 8 December 2016
revised 10 May 2017

accepted for publication 1 June 2017

Saeed Rezaee
Department of Mathematics, Faculty of Mathematics
Statistics and Computer Science
Semnan University, P.O. Box: 35195–363, Semnan, Iran
E-mail address: s.rezaee@semnan.ac.ir

Saman Babaie–Kafaki
Department of Mathematics, Faculty of Mathematics
Statistics and Computer Science
Semnan University, P.O. Box: 35195–363, Semnan, Iran
E-mail address: sbk@semnan.ac.ir

