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In the last few years, various solution methods have been developed for solving the SCCP
(e.g. [7–9,11–14,17,19,23,27,29]), in which the smoothing Newton algorithm is one kind of
the most effective algorithms (e.g., [7–9,12–14,17,19,23]). This class of algorithms usually
reformulates the SCCP as a system of smoothing equations and then solves the equations
approximately by using Newton’s method. One example of this kind of smoothing equations
is  h(µ)

F (x)− y
ϕ(µ, x, y)

 = 0, (1.2)

in which h(µ) = µ or h(µ) = eµ − 1, and ϕ : R× J × J → J is a smoothing function for
the SCCP. Recall that a function ϕ : R×J × J → J is called a smoothing function if

(i) ϕ(0, ·, ·) is non-differentiable on J × J ;
(ii) ϕ is continuously differentiable at any (µ, x, y) ∈ R++ × J × J ;
(iii) ϕ(0, x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, ⟨x, y⟩ = 0.

It is worth pointing out that smoothing Newton algorithms in [7–9,12–14,17,19,23] are
all designed for solving the SCCP in which the mapping F is monotone, that is,

⟨x− y, F (x)− F (y)⟩ ≥ 0, ∀(x, y) ∈ J × J . (1.3)

Lately, Lu and Huang [15] extended a smoothing Newton method to solve a non-monotone
symmetric cone linear complementarity problem (SCLCP), the Cartesian P0-SCLCP, and
proved that the algorithm is globally and locally quadratically convergent.

In this paper, we consider the P0-NCP over symmetric cones (P0-SCNCP), which is to
find a vector (x, y) ∈ J × J such that

x ∈ K, y ∈ K, y = F (x), ⟨x, y⟩ = 0, (1.4)

where
J = J n1 × · · · × J nm , K = Kn1 × · · · × Knm (1.5)

with m,n1, ..., nm ≥ 1 and n =
∑m

i=1 ni, in which J ni is a simple Euclidean Jordan algebra
(see Sect. 2 for the definition), Kni is a symmetric cone, and F : J → J is a continuously
differentiable mapping which has the Cartesian P0-property. A mapping F = (F1, ..., Fm)
with Fi : Rn → Rni is said to have the Cartesian P0-property if for any x = (x1, ..., xm) ∈
Rn, y = (y1, ..., ym) ∈ Rn and x ̸= y, there is an index v ∈ {1, ...,m} such that

xv ̸= yv and ⟨xv − yv, Fv(x)− Fv(y)⟩ ≥ 0. (1.6)

When m = 1, the Cartesian P0-property of F becomes the monotonicity of F , and the P0-
SCNCP becomes the monotone SCCP. In addition, if F (x) = Lx+ q, where L : J → J is a
linear transformation and q ∈ J , then the P0-SCNCP becomes the P0-SCLCP investigated
by Lu and Huang [15].

Recently, Li and Wei [14] proved that smoothing Newton algorithms for solving the
SCCP have global and local quadratical convergence if h(µ) in (1.2) is a regulation function.

Definition 1.1 ([14, Definition 3.1]). The function h : R+ → R is called a regulation
function if it satisfies the following conditions:

(a) h(µ) is continuously differentiable;
(b) h(µ) ≥ 0 and h(µ) = 0 if and only if µ = 0;
(c) h(µ) → ∞ as µ→ ∞;
(d) h(µ) ≤ µh′(µ) for any µ > 0;
(e) there exist real numbers a > 0, b > 0 such that h′(µ) ≤ ah(µ) + b.
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Obviously, µ and eµ − 1 are regulation functions. More properties and examples of the
regulation function can be found in [14]. A crucial question in this respect is whether we
can find a non-regulation function which can give rise to an efficient smoothing algorithm
for solving the P0-SCNCP. Moreover, we also ask whether the corresponding algorithm has
encouraging convergent properties and numerical results like existing smoothing algorithms
designed by the regulation function.

Motivated by these questions, in this paper we first introduce a new smoothing func-
tion which is a regularized version of the well-known Chen-Harker-Kanzow-Smale (CHKS)
smoothing function. Based on this function, we then design a smoothing algorithm for solv-
ing the P0-SCNCP. Our algorithm solves the smoothing equation (1.2) with h(µ) = ln(1+µ).
Since (1+µ) ln(1+µ) > µ for any µ > 0 (see Lemma 4.3 below), we have h(µ) > µh′(µ) for
any µ > 0. This shows h(µ) = ln(1 + µ) does not satisfy the condition (d) in Definition 1.1
and it is not a regulation function. Since h(µ) = ln(1 + µ) is a non-regulation function, our
algorithm uses different Newton equation and line search rule to obtain the search direction
and step size. Under mild assumptions, we prove that our algorithm has global and local
quadratical convergence properties. We also report some numerical results which demon-
strate that our algorithm is very effective. In addition, like some non-monotone smoothing
algorithms (e.g., [6,7,10,18,20,24–26,32]), our algorithm adopts a non-monotone line search
scheme which contains the usual monotone line search rule used in [8,12–15,17,23] and the
non-monotone line search rules studied in [10,24] as special cases.

The paper is organized as follows. In Sect. 2, we briefly give some basic results of
Euclidean Jordan algebras. In Sect. 3, we introduce a new smoothing function and give
its properties. In Sect. 4, we present a smoothing algorithm for solving the P0-SCNCP.
The global and local quadratic convergence of the algorithm are investigated in Sect. 5.
Preliminary numerical results are reported in Sect. 6. Some conclusions are given in Sect.
7.

In our notations, ∥ ·∥ denotes the Euclidean norm. For any x, y ∈ J , x ⪰ y (respectively,
x ≻ y) denotes x − y ∈ K (respectively, x − y ∈ intK). We write x = o(α)(or O(α)) if
∥x∥/|α| tends to zero (or uniformly bounded) as α → 0. Let E : J → J be a mapping. If
there exists a linear operator DE(x) which satisfies

lim
∥h∥→0

∥E(x+ h)− E(x)−DE(x)h∥
∥h∥

→ 0,

then E is said to be Fréchet differentiable at x and DE(x) is the Fréchet derivative of E at
x.

2 Some Preliminaries

In this section, we briefly give some results of Euclidean Jordan algebras, which is a basic
tool extensively used in this paper. Details on Euclidean Jordan algebras can be found in
[2,22].

A Euclidean Jordan algebra (EJA) is a triple (J , ⟨·, ·⟩, ◦), where (J , ⟨·, ·⟩) is a real n-
dimensional inner product space and (x, y) → x ◦ y : J × J → J is a bilinear mapping
which satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J , where x2 := x ◦ x;
(iii) ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x, y, z ∈ J .

We call x◦y the Jordan product of x and y. If for some element e ∈ J , x◦e = e◦x = x for all
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x ∈ J , then e is called a unit element. The unit element, if it exists, is unique. A Euclidean
Jordan algebra is called simple if it is not the direct sum of two Euclidean Jordan algebras.
Every Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean Jordan
algebras (see, [2, Proposition III.4.4]).

Given a Euclidean Jordan algebra (J , ⟨·, ·⟩, ◦), we denote the set of squares as

K := {x2|x ∈ J }.

Then, by [2, Theorem III.2.1], we know that K is the symmetric cone.
For any x ∈ J , we define m(x) := min{k : {e, x, x2, ..., xk} are linearly dependent}. Then

m(x) is said to be the degree of x. The rank of (J , ⟨·, ·⟩, ◦) is defined as r := max{m(x) : x ∈
J }. An element c ∈ J is said to be idempotent if c2 = c. A complete system of orthogonal
idempotents is a finite set {c1, ..., cr} where

c2j = cj , ci ◦ cj = 0, ∀i ̸= j, i, j = 1, ..., r, and

r∑
i=1

ci = e.

An idempotent is said to be primitive if it is nonzero and cannot be written as the sum of two
other nonzero idempotents. We call a complete system of orthogonal primitive idempotents
a Jordan frame. Then, we have the following important spectral decomposition theorem.

Theorem 2.1 ([2, Theorem III.1.2]). Let (J , ⟨·, ·⟩, ◦) be a Euclidean Jordan algebra with
rank r. Then, for any x ∈ J , there exist a Jordan frame {c1, ..., cr} and real numbers
λ1(x), ..., λr(x) such that

x =

r∑
i=1

λi(x)ci.

The numbers λi(x)(i = 1, ..., r) (counting multiplicities), which are uniquely determined by
x, are called the eigenvalues, and

∑r
i=1 λi(x)ci the spectral decomposition of x.

Let x ∈ J and λ1(x), ..., λr(x) be its eigenvalues. Define

Tr(x) :=

r∑
i=1

λi(x), Det(x) :=

r∏
i=1

λi(x),

where Tr(x) is the trace of x and Det(x) is the determinant of x. For the identity element
e, Tr(e) = r and Det(x) = 1.

Suppose that x ∈ J has the spectral decomposition x =
∑r

i=1 λi(x)ci. Let f : R → R
be a real-valued function. It is natural to define a vector valued function associated with
the Euclidean Jordan algebra (J , ⟨·, ·⟩, ◦) by

f(x) :=

r∑
i=1

f(λi(x))ci.

The function f is also called a Löwner operator and shown to inherit many properties from
f . In particular, by letting t+ := max{0, t}, t− := min{0, t} and noting |t| = t+−t−(t ∈ R),
respectively, we define

x+ :=

r∑
i=1

λi(x)+ci, x− :=

r∑
i=1

λi(x)−ci, and |x| :=
r∑

i=1

|λi(x)|ci.



AN IMPROVED SMOOTHING ALGORITHM FOR THE P0-SCNCP 639

It is easy to verify that x+ ∈ K, x = x+ + x− and |x| = x+ − x−. Since x ∈ K if and only if
λi(x) ≥ 0, i = 1, ..., r, by letting f(t) :=

√
t for t ∈ R+, we define

√
x :=

r∑
i=1

√
λi(x)ci, ∀ x ∈ K.

For a given x ∈ J , we define a linear operator Lx : J → J by

Lxy := x ◦ y, ∀ y ∈ J .

We call Lx the corresponding Lyapunov transformation of x. From the product structure of
J in (1.5) and the linearity of Lyapunov transformations, for any x ∈ J , we can immediately
give the following matrix representation of Lx,

Lx :=

 Lx1

. . .

Lxm

 .

Moreover, for any x = (x1, ..., xm) ∈ J , y = (y1, ..., ym) ∈ J , it follows that

x ◦ y = (x1 ◦ y1, ..., xm ◦ ym), and ⟨x, y⟩ =
m∑
i=1

⟨xi, yi⟩.

The following lemma gives some properties of Lyapunov transformations, whose proof can
be found in [16, Lemma 2.3].

Lemma 2.2. For any x, y ∈ J , let Lx and Ly be the corresponding Lyapunov transforma-
tions. Then the following results hold.
(i) Lxi is self-adjoint for any i ∈ {1, ...,m}, i.e., ⟨Lxiyi, zi⟩ = ⟨yi, Lxizi⟩ for all yi, zi ∈ J nm .
(ii) Lx =

∑r
i=1 λi(x)Lci , where x =

∑r
i=1 λi(x)ci is the spectral decomposition of x;

(iii) if the inverse operator L−1
x exists, then L−1

x := diag(L−1
x1
, ..., L−1

xm
);

(iv) for any α, β ∈ R, it holds that αLx + βLy := diag(αLx1
+ βLy1

, ..., αLxm
+ βLym

).

At the end of this section, we give the definition of the Cartesian P0-property for a matrix
M ∈ Rn×n.

Definition 2.3. A matrix M ∈ Rn×n is said to have the Cartesian P0-property if for any
0 ̸= x = (x1, ..., xm) ∈ Rn with xi ∈ Rni , there exists an index v ∈ {1, ...,m} such that
xv ̸= 0 and ⟨xv, (Mx)v⟩ ≥ 0.

As is well-known, if a continuously differentiable mapping F : Rn → Rn has the Carte-
sian P0-property, then its Jacobian matrix F ′(x) at any x ∈ Rn enjoys the Cartesian P0-
property.

3 A New Smoothing Function

As is well-known, smoothing functions play important roles in designing smoothing algo-
rithms. Up to now, many smoothing functions have been proposed. Among them, the Chen-
Harker-Kanzow-Smale (CHKS) smoothing function is one of the most prominent smoothing
functions, which is defined by

φ(µ, a, b) = a+ b−
√
(a− b)2 + 4µ2e, ∀(µ, a, b) ∈ R+ × J n × J n.
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Recently, Huang and Ni [8] proposed a regularized version of the CHKS smoothing function
defined by

ψHN(µ, a, b) = (1 + µ)(a+ b)−
√
(1− µ)2(a− b)2 + 4µ2e, ∀(µ, a, b) ∈ R+ × J n × J n.

Based on ψ, Huang and Ni [8] extended two generic frameworks of smoothing algorithms to
solve the SCCP, and Lu and Huang [15] extended a smoothing Newton algorithm to solve
the Cartesian P0-SCLCP.

In this paper, we introduce a new smoothing function as follows:

ϕ(µ, a, b) = a+ b−
√

(1− 2µ)2(a− b)2 + 4µ2e, ∀(µ, a, b) ∈ R+ × J n × J n. (3.1)

As been shown later, this new function has following favorable properties analogous to what
the regularized CHKS function ψHN has.

(i) ϕ is continuously differentiable on R++ × J n × J n and satisfies

ϕ(0, a, b) = 0 ⇐⇒ a ⪰ 0, b ⪰ 0, ⟨a, b⟩ = 0.

Thus, we can use ϕ to reformulate the SCCP or P0-SCNCP as a family of parameterized
smooth equations and then solve the smooth equations approximately by using Newton’s
method.

(ii) ϕ is coercive under suitable assumptions. This property insures the merit function has
coerciveness, which plays an important rule in proving the global convergence of smoothing
algorithms.

(iii) ϕ is strongly semi-smooth, which is key to prove the local quadratic convergence of
smoothing algorithms.

First, we show that the function ϕ is continuously differentiable on R++ × J n × J n.

Lemma 3.1. Let a, b, u, v ∈ J n, µ > 0, θ ∈ R and ϕ(µ, a, b) be defined by (3.1).
(i) Suppose that the spectral decomposition of (a− b)2 is given by

(a− b)2 =

r∑
i=1

λici, (3.2)

where {c1, ..., cr} is a Jordan frame and the numbers λ1, ..., λr (with multiplicities) are
uniquely determined by (a− b)2. Then

Dµϕ(µ, a, b)θ =

r∑
i=1

[(2− 4µ)λi − 4µ]θ√
(1− 2µ)2λi + 4µ2

ci, (3.3)

and Dµϕ(·, ·, ·) is continuous on R++ × J n × J n.

(ii) Denote c :=
√

(1− 2µ)2(a− b)2 + 4µ2e. Then

Daϕ(µ, a, b)u = u− L−1
c [(1− 2µ)2(a− b) ◦ u], (3.4)

Dbϕ(µ, a, b)v = v − L−1
c [(1− 2µ)2(a− b) ◦ (−v)], (3.5)

and Daϕ(·, ·, ·) and Dbϕ(·, ·, ·) are continuous on R++ × J n × J n.

Proof. By the definition of ϕ, we have

ϕ(µ+ tθ, a, b)− ϕ(µ, a, b)
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=
√
(1− 2µ)2(a− b)2 + 4µ2e−

√
(1− 2(µ+ tθ))2(a− b)2 + 4(µ+ tθ)2e.

From (3.2) and the fact that
∑r

i=1 ci = e, we have

(1− 2µ)2(a− b)2 + 4µ2e =

r∑
i=1

[(1− 2µ)2λi + 4µ2]ci, (3.6)

(1− 2(µ+ tθ))2(a− b)2 + 4(µ+ tθ)2e =

r∑
i=1

[(1− 2(µ+ tθ))2λi + 4(µ+ tθ)2]ci. (3.7)

Since (a−b)2 ⪰ 0, we have λi ≥ 0 for all i = 1, ..., r. Also notice that c2i = ci for all i = 1, ..., r
since ci is idempotent. Using these results, we can obtain from (3.6) and (3.7) that

√
(1− 2µ)2(a− b)2 + 4µ2e =

r∑
i=1

√
(1− 2µ)2λi + 4µ2ci,

√
(1− 2(µ+ tθ))2(a− b)2 + 4(µ+ tθ)2e =

r∑
i=1

√
(1− 2(µ+ tθ))2λi + 4(µ+ tθ)2ci.

Therefore,

lim
t→0

ϕ(µ+ tθ, a, b)− ϕ(µ, a, b)

t

= lim
t→0

√
(1− 2µ)2(a− b)2 + 4µ2e−

√
(1− 2(µ+ tθ))2(a− b)2 + 4(µ+ tθ)2e

t

=

r∑
i=1

lim
t→0

√
(1− 2µ)2λi + 4µ2 −

√
(1− 2(µ+ tθ))2λi + 4(µ+ tθ)2

t
ci

=

r∑
i=1

lim
t→0

[(1− 2µ)2λi + 4µ2]− [(1− 2(µ+ tθ))2λi + 4(µ+ tθ)2]

t[
√
(1− 2µ)2λi + 4µ2 +

√
(1− 2(µ+ tθ))2λi + 4(µ+ tθ)2]

ci

=

r∑
i=1

lim
t→0

[4(1− 2µ)θ − 4tθ2]λi − 4(2µθ + tθ2)]

[
√

(1− 2µ)2λi + 4µ2 +
√
(1− 2(µ+ tθ))2λi + 4(µ+ tθ)2]

ci

=
r∑

i=1

[(2− 4µ)λi − 4µ]θ√
(1− 2µ)2λi + 4µ2

ci,

which indicates that ϕ(µ, a, b) is differentiable in µ and

Dµϕ(µ, a, b)θ =

r∑
i=1

[(2− 4µ)λi − 4µ]θ√
(1− 2µ)2λi + 4µ2

ci.

Moreover, from the above equality, it is easy to see that Dµϕ(·, ·, ·) is continuous on R++ ×
J n × J n. This completes the proof of the result (i). Now, we prove the result (ii). Since
c ≻ 0, Lc has inverse operator L−1

c . Let

d :=
√

(1− 2µ)2(a+ u− b)2 + 4µ2e,

then we have
d2 − c2 = 2(1− 2µ)2(a− b) ◦ u+ (1− 2µ)2u2.
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Also notice that d2 − c2 = 2(d− c) ◦ c+ (d− c)2. Hence, we have

2(d− c) + L−1
c ((d− c)2) = L−1

c (d2 − c2) = L−1
c (2(1− 2µ)2(a− b) ◦ u) + L−1

c ((1− 2µ)2u2).

Since L−1
c is continuous, the above equality implies that d− c = O(∥u∥). Therefore,

d− c = L−1
c ((1− 2µ)2(a− b) ◦ u) +O(∥u∥2).

So that we have

ϕ(µ, a+ u, b)− ϕ(µ, a, b) = a+ u+ b− (a+ b)− (d− c)

= u− L−1
c ((1− 2µ)2(a− b) ◦ u) +O(∥u∥2),

and hence Daϕ(µ, a, b)u = u − L−1
c ((1 − 2µ)2(a − b) ◦ u). Since c ≻ 0 and L−1

c (w) is
continuous at any (w, c) ∈ J n × intK, we further obtain that Daϕ(µ, a, b) is continuous on
R++ × J n × J n. By a similar way, we can prove (3.5) and Dbϕ(µ, a, b) is continuous on
R++ × J n × J n. The proof is completed.

The following lemma establishes the relations between the P0-SCNCP and the smoothing
function ϕ given in (3.1).

Lemma 3.2. Let ϕ be defined by (3.1). Then
(i) a ⪰ 0, b ⪰ 0 and a ◦ b = 0 if and only if a ⪰ 0, b ⪰ 0 and ⟨a, b⟩ = 0.
(ii) ϕ(0, a, b) = 0 if and only if a ⪰ 0, b ⪰ 0, a ◦ b = 0.
(iii) ϕ(µ, a, b) = 0 if and only if (1− µ)a+ µb ≻ 0, µa+ (1− µ)b ≻ 0, and [(1− µ)a+ µb] ◦
[µa+ (1− µ)b] = µ2e.

Proof. The results (i) and (ii) hold from [8, Lemma 3.2 (i) and (ii)]. In addition, from [8,
Lemma 3.2 (iii)], we get that for any (µ, s, t) ∈ R× J n × J n

s+ t−
√

(s− t)2 + 4µ2e = 0 ⇐⇒ s ≻ 0, t ≻ 0 and s ◦ t = µ2e.

By noticing that the definition of ϕ can be rewritten as

ϕ(µ, a, b) = [(1− µ)a+ µb] + [µa+ (1− µ)b]

−
√
[((1− µ)a+ µb)− (µa+ (1− µ)b)]2 + 4µ2e,

we can immediately obtain the result (iii).

Now we give the coerciveness and strong semi-smoothness of the function ϕ, respectively.

Lemma 3.3. Let ϕ be defined by (3.1), and ξ, ζ ∈ R++ with ξ < ζ. Suppose that
{(µk, a

k, bk)} ⊂ R++ × J n × J n is a sequence satisfying
(c1) µk ∈ [ξ, ζ], {(ak, bk)} is unbounded; and
(c2) there exists a bounded sequence {(uk, vk)} such that {⟨ak − uk, bk − vk⟩} is bounded

below.
Then, ∥ϕ(µk, a

k, bk)∥ → ∞ as k → ∞.

Proof. Notice that the definition of ϕ can be rewritten as

ϕ(µ, a, b) = [(1− µ)a+ µb] + [µa+ (1− µ)b]

−
√
[((1− µ)a+ µb)− (µa+ (1− µ)b)]2 + 4µ2e.

Using this fact, we can prove the result similarly as [8, Theorem 4.1]. We omit it here.
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Lemma 3.4. The function ϕ in (3.1) is strongly semi-smooth at any (0, a, b) ∈ R×J n×J n.

Proof. By [22, Proposition 3.4], we know that the function f(µ, x) :=
√
x2 + µ2e is strongly

semi-smooth at any (0, x) ∈ R×J n. By the definition of ϕ and the fact that the composition
of strongly semi-smooth functions is strongly semi-smooth, we can obtain the result.

4 The Algorithm

By letting z := (µ, x, y) ∈ R+×J ×J , we define the function H : R+×J ×J → R+×J ×J
as

H(z) :=

(
ln(1 + µ)
Φ(z)

)
with Φ(z) :=


F (x)− y
ϕ(µ, x1, y1)

...
ϕ(µ, xm, ym)

 , (4.1)

where ϕ(·, ·, ·) is defined by (3.1). Then it is easy to see that

H(z) = 0 ⇐⇒ µ = 0 and (x, y) is the solution of the P0-SCNCP.

Moreover, we denote the merit function Ψ : R+ × J × J → R+ by

Ψ(z) := ∥H(z)∥2. (4.2)

Now we give a formal description of our algorithm.

Algorithm 4.1 (A smoothing algorithm for the P0-SCNCP). Step 0: Choose constants
σ ∈ (0, 1/2), δ ∈ (0, 1) and 0 < µ0 < 1. Choose constants θ ∈ (0, 1] and τ ∈ (0, 1] such
that and τ ≤ θ. Choose a constant γ ∈ (0, 1) such that γ ≤ µ0 and µ0γ < 1/2. Choose a
sufficiently small number c > 0. Take h := (µ0, 0, 0) ∈ R×J ×J . Let (x0, y0) ∈ J ×J be
an arbitrary initial point. Let z0 := (µ0, x

0, y0) and C0 := Ψ(z0). Choose a constant ϵ0 ≥ 0.
Set k := 0.

Step 1: If ∥H(zk)∥ = 0, then stop. Else, compute

βk :=

{
γmin{1,Ψ(zk)}, if k = 0,
γmin{1,Ψ(zk), βk−1}, if k ≥ 1.

(4.3)

Step 2: Compute ∆zk := (∆µk,∆x
k,∆yk) ∈ R× J × J by

DH(zk)∆zk = −H(zk) +
2βk

1 + µk
h, (4.4)

where DH(zk) denotes the Jacobian of H at zk.
Step 3: Let αk be the maximum of the values 1, δ, δ2, ... such that

Ψ(zk + αk∆z
k) ≤

[
1− 2σ

(
1− 2µ0γ

1 + µk

)
αk

]
(Ck + ϵk) (4.5)

and
(1 + αk)µk < 1. (4.6)

Step 4: Set zk+1 := zk + αk∆z
k. Set k := k + 1.

Step 5: If Ψ(zk) < c, then set

Ck := Ψ(zk), ϵk := 0. (4.7)
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Otherwise, set

Ck := (1− θ)Ck−1 + θΨ(zk), ϵk = (1− τ)ϵk−1. (4.8)

Go to Step 1.

Remark 4.2. (i) Based on a regulation function h(µ), existing smoothing algorithms (e.g.,
[8,12–15,17,18,23]) obtain the search direction ∆zk by solving the following Newton equation

DH(zk)∆zk = −H(zk) + h′(µk)βkh.

Since the function h(µ) = ln(1+ µ) is not a regulation function, to ensure Algorithm 4.1 be
well-defined, we require the search direction ∆zk satisfy

DH(zk)∆zk = −H(zk) + 2h′(µk)βkh.

(ii) Zhang and Hager [30] proposed a non-monotone line search scheme for the unconstrained
optimization problem. They let Q0 := 1 and choose ηmin and ηmax such that 0 ≤ ηmin <
ηmax < 1, and choose ηk ∈ [ηmin, ηmax], and then set

Qk+1 := ηkQk + 1,

Ck+1 :=
ηkQkCk +Ψ(zk+1)

Qk+1
.

Many smoothing algorithms based on the Zhang and Hager’s non-monotone line search
scheme [30] have been studied for solving various optimization problems, such as the SCCP
[7], the NCP [18,32], the support vector machine [20], the system of equalities and inequalities
[31], and so on. Other smoothing algorithms based on different non-monotone line search
scheme have also been proposed by many authors (e.g., [6,10,24,25]). Motivated by the ideas
in these papers, our algorithm adopts a new non-monotone line search in Step 3. Notice
that

• if we choose θ = 1, τ = 1 and ϵ0 = 0, then by (4.8) we have Ck = Ψ(zk) and ϵk = 0
for all k ≥ 0 and hence (4.5) becomes

Ψ(zk + αk∆z
k) ≤

[
1− 2σ

(
1− 2µ0γ

1 + µk

)
αk

]
Ψ(zk).

In this case, Step 3 of Algorithm 4.1 is the usual monotone line search which has been used
extensively in smoothing algorithms;

• if we choose 0 < θ < 1, τ = 1 and ϵ0 = 0, then Ck = (1− θ)Ck−1 + θΨ(zk) and ϵk = 0
and hence (4.5) becomes

Ψ(zk + αk∆z
k) ≤

[
1− 2σ

(
1− 2µ0γ

1 + µk

)
αk

]
Ck.

In this case, Step 3 of Algorithm 4.1 is a convex combination-type non-monotone line search
which has been studied in [24,26];

• if we choose θ = 1, 0 < τ < 1 and ϵ0 > 0, then Ck = Ψ(zk) and ϵk = (1− τ)ϵk−1 and
hence (4.5) becomes

Ψ(zk + αk∆z
k) ≤

[
1− 2σ

(
1− 2µ0γ

1 + µk

)
αk

]
[Ψ(zk) + ϵk].
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In this case, Step 3 of Algorithm 4.1 is the standard non-monotone line search (e.g., [10]).
(iii) Since smoothing algorithms using the monotone line search possess locally fast conver-
gence, following the idea in [6], we let the algorithm perform the monotone line search in
Step 3 when Ψ(zk) < c with a sufficiently small positive number c.
(iv) In Step 3, we need αk not only satisfy the Armijo line search (4.5) but also satisfy
the condition (4.6). As be seen later, the condition (4.6) can insure that the sequence {µk}
generated by Algorithm 4.1 satisfies 0 < µk < 1 for all k ≥ 0. Notice that if 0 < µk < 1,
then (4.6) holds when αk is sufficiently small.

Lemma 4.3. For any 0 < µ < 1, one has

µ < (1 + µ) ln(1 + µ) < 2µ. (4.9)

Proof. On one hand, let ψ(µ) := (1 + µ) ln(1 + µ)− µ. Then ψ′(µ) = ln(1 + µ) > 0 for any
µ > 0. This shows that ψ(µ) is monotonically increasing and hence ψ(µ) > ψ(0) = 0, i.e.,
(1 + µ) ln(1 + µ) > µ for any µ > 0. On the other hand, by defining φ(µ) := µ− ln(1 + µ),
we have φ′(µ) = 1− 1

1+µ > 0 for any µ > 0 and hence φ(µ) > φ(0) = 0, i.e., µ > ln(1 + µ)

for any µ > 0. Also notice that 2 > 1 + µ for any 0 < µ < 1. So, 2µ > (1 + µ) ln(1 + µ)
holds for any 0 < µ < 1. We have the desired result.

Lemma 4.4. Let H(z) be defined by (4.1). If F has the Cartesian P0-property, then the
Jacobian of H in Step 2 of Algorithm 4.1 is invertible for any 0 < µ < 1.

Proof. For any 0 < µ < 1, let z̃ := (µ̃, x̃, ỹ) ∈ R × J × J be a vector in the null space of
DH, where x̃ = (x̃1, ..., x̃m), y = (ỹ1, ..., ỹm) with x̃i, ỹi ∈ J ni , it suffices to show that z̃ = 0.
By the definition of H in (4.1), we can obtain from DH(z)z̃ = 0 that

µ̃ = 0, (4.10)

DF (x)x̃− ỹ = 0, (4.11)

Dϕ(µ, xi, yi)(µ̃, x̃i, ỹi) = 0, i = 1, ...,m. (4.12)

Now we assume that x̃ ̸= 0. Since F has the Cartesian P0-property, DF has the Cartesian
P0-property. Hence, there exists an index v ∈ {1, ...,m} such that

x̃v ̸= 0, ⟨x̃v, (DF (x)x̃)v⟩ ≥ 0. (4.13)

Since µ̃ = 0, it follows from Lemma 3.1 that

Dϕ(µ, xv, yv)(µ̃, x̃v, ỹv) = x̃v + ỹv − L−1
cv [(1− 2µ)2(xv − yv) ◦ (x̃v − ỹv)],

where cv :=
√
(1− 2µ)2(xv − yv)2 + 4µ2ev. Then (4.12) becomes x̃v+ỹv−L−1

cv [(1−2µ)2(xv−
yv) ◦ (x̃v − ỹv)] = 0, i.e.,

Lcv (x̃v + ỹv)− [(1− 2µ)2(xv − yv) ◦ (x̃v − ỹv)] = 0. (4.14)

Since x̃v + ỹv = [(1− µ)x̃v + µỹv] + [µx̃v + (1− µ)ỹv], by (4.14) we have

[cv−(1−2µ)(xv−yv)]◦[(1−µ)x̃v+µỹv]+[cv+(1−2µ)(xv−yv)]◦[µx̃v+(1−µ)ỹv] = 0. (4.15)

From (4.11) and (4.13), we can obtain that ⟨x̃v, ỹv⟩ ≥ 0, which implies that for any 0 < µ < 1

⟨(1−µ)x̃v+µỹv, µx̃v+(1−µ)ỹv⟩ = (1−µ)µ(∥x̃v∥2+∥ỹv∥2)+((1−µ)2+µ2)⟨x̃v, ỹv⟩ ≥ 0. (4.16)
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Since c2v − (1− 2µ)2(xv − yv)
2 = 4µ2ev ≻ 0, it follows from [4, Proposition 8] that

cv − (1− 2µ)(xv − yv) ≻ 0 and c+ (1− 2µ)(xv − yv) ≻ 0. (4.17)

In addition,

[cv−(1−2µ)(xv−yv)]◦ [cv+(1−2µ)(xv−yv)] = c2v−(1−2µ)2(xv−yv)2 = 4µ2e ≻ 0 (4.18)

Thus, using (4.15)–(4.18), it follows from [28, Lemma 2.7 (vi)] that (1 − µ)x̃v + µỹv = 0
and µx̃v + (1 − µ)ỹv = 0, which, together with ⟨x̃v, ỹv⟩ ≥ 0 and 0 < µ < 1, yields that
x̃v = ỹv = 0. This contradicts with x̃v ̸= 0 in (4.13). So, x̃ = 0. Furthermore, by (4.11) we
have ỹ = 0. Thus, DH(z) is invertible. This completes the proof.

Lemma 4.5. Suppose that F has the Cartesian P0-property. If 0 < µk < 1 and µk ≥ µ0βk,
then zk+1 = (µk+1, x

k+1, yk+1) can be generated by Algorithm 4.1 with 0 < µk+1 < 1 and
µk+1 ≥ µ0βk+1.

Proof. Since 0 < µk < 1, it follows from Lemma 4.4 that DH(zk) is nonsingular. Hence,
the direction ∆zk = (∆µk,∆x

k,∆yk) can be obtained by Step 2. From the first equation
in (4.4) we have

∆µk

1 + µk
= − ln(1 + µk) +

2µ0βk
1 + µk

,

which gives
∆µk = −(1 + µk) ln(1 + µk) + 2µ0βk.

For any α ∈ (0, 1/2), it follows that

µk + α∆µk = µk − α(1 + µk) ln(1 + µk) + 2αµ0βk. (4.19)

Since 0 < µk < 1, by using the right inequality in (4.9), we have (1 + µk) ln(1 + µk) < 2µk.
So, for any α ∈ (0, 1/2), we can obtain from (4.19) that

µk + α∆µk ≥ (1− 2α)µk + 2αµ0βk > 0. (4.20)

For any α ∈ (0, 1/2), we denote

wk(α) := Ψ(zk + α∆zk)−Ψ(zk)− αDΨ(zk)∆zk,

then, by using (4.4), for any α ∈ (0, 1/2),

Ψ(zk + α∆zk) = Ψ(zk) + αDΨ(zk)∆zk + wk(α)

= Ψ(zk) + 2αH(zk)TDH(zk)∆zk + wk(α)

= Ψ(zk) + 2αH(zk)T
[
−H(zk) +

2βk
1 + µk

h

]
+ wk(α)

≤ (1− 2α)Ψ(zk) +
4αµ0

1 + µk
βk∥H(zk)∥+ wk(α)

≤ (1− 2α)Ψ(zk) +
4αµ0γ

1 + µk
Ψ(zk) + wk(α)

=

[
1− 2

(
1− 2µ0γ

1 + µk

)
α

]
Ψ(zk) + wk(α), (4.21)
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where the second inequality follows from βk ≤ γ∥H(zk)∥ since min{1, ξ2} ≤ ξ for all ξ ≥ 0.
Since the function Ψ is continuously differentiable for any z ∈ R++×J ×J , it follows from
the definition of the function wk(α) and the fact µk > 0 that wk(α) = o(α). This, together
with (4.21) and 0 < µ0γ < 1/2, implies that there exists a constant ᾱ ∈ (0, 1/2) such that

Ψ(zk + α∆zk) ≤
[
1− 2σ

(
1− 2µ0γ

1 + µk

)
α

]
Ψ(zk) (4.22)

holds for any α ∈ (0, ᾱ] and σ ∈ (0, 1/2). Now we prove Ψ(zk) ≤ Ck + ϵk. If k = 0, then
Ψ(z0) ≤ Ψ(z0) + ϵ0 = C0 + ϵ0. If k ≥ 1, then by (4.8) we have

Ck = (1− θ)Ck−1 + θΨ(zk)

≤ (1− θ)Ck−1 + θ(Ck−1 + ϵk−1)

= Ck−1 + θϵk−1, (4.23)

where the inequality holds since Ψ(zk) ≤ Ck−1 + ϵk−1 by (4.5). Hence, we have Ck−1 ≥
Ck − θϵk−1. Using this result, we can obtain from (4.8) that

Ψ(zk) =
Ck − (1− θ)Ck−1

θ

≤ Ck − (1− θ)(Ck − θϵk−1)

θ
= Ck + (1− θ)ϵk−1

≤ Ck + (1− τ)ϵk−1

= Ck + ϵk. (4.24)

Hence, from (4.22) and (4.24) we can obtain that

Ψ(zk + α∆zk) ≤
[
1− 2σ

(
1− 2µ0γ

1 + µk

)
α

]
(Ck + ϵk) (4.25)

holds for any α ∈ (0, ᾱ] and σ ∈ (0, 1/2). Let α̃ := min{ᾱ, 1−µk

µk
}. It is easy to see that

(4.25) and the inequality
(1 + α)µk < 1

hold for any α ∈ (0, α̃). This demonstrates that Step 3 is well-defined at the kth iteration.
Hence, zk+1 = (µk+1, x

k+1, yk+1) can be generated by Algorithm 4.1.
Now we prove 0 < µk+1 < 1 and µk+1 ≥ µ0βk+1. Since αk ∈ (0, 1/2), by (4.20) we know

that
µk+1 = µk + αk∆µk ≥ (1− 2αk)µk + 2αkµ0βk > 0.

Moreover, since 0 < µk < 1, by the left inequality in (4.9), we get µk < (1 + µk) ln(1 + µk).
Using this fact, we obtain from (4.19) that

µk+1 = µk − αk(1 + µk) ln(1 + µk) + 2αkµ0βk ≤ (1− αk)µk + 2αkµ0βk,

which, together with µk ≥ µ0βk and (4.6), yields that

µk+1 ≤ (1− αk)µk + 2αkµ0βk ≤ (1 + αk)µk < 1.

Since µk ≥ µ0βk, from (4.20) it follows that

µk+1 ≥ (1− 2αk)µk + 2αkµ0βk ≥ (1− 2αk)µ0βk + 2αkµ0βk = µ0βk ≥ µ0βk+1,

where the last inequality holds since {βk} is monotonically decreasing by its definition. The
proof is completed.
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Theorem 4.6. Suppose that F has the Cartesian P0-property. Then Algorithm 4.1 is well-
defined and generates an infinite sequence {zk = (µk, x

k, yk)} with 0 < µk < 1 and µk ≥
µ0βk for all k ≥ 0.

Proof. By Step 0 of Algorithm 4.1, we have 0 < µ0 < 1. Moreover, by (4.3) we get β0 =
γmin{1,Ψ(z0)} ≤ γ and hence µ0 ≥ µ0γ ≥ µ0β0. So, it follows from Lemma 4.5 that
z1 = (µ1, x

1, y1) can be generated by Algorithm 4.1 with 0 < µ1 < 1 and µ1 ≥ µ0β1.
Then, by repeatedly resorting to Lemma 4.5, we obtain the desired result. The proof is
completed.

5 Convergence Properties of Algorithm 4.1

In this section, we analyze the convergence properties of Algorithm 4.1. First, we establish
its global convergence. For this purpose, we need the coerciveness of the function H.

Lemma 5.1. Suppose that F has the Cartesian P0-property and that H is defined by (4.1).
Then H(µ, x, y) is coercive in (x, y) for each µ > 0, i.e.,

lim
∥(x,y)∥→∞

∥H(µ, x, y)∥ = ∞.

Proof. Suppose that the result of the lemma doesn’t hold. Then there exist µ ∈ [µ̃, µ̄] and
an unbounded sequence {(xk, yk)} such that {H(µ, xk, yk)} is bounded. Since

∥H(µ, xk, yk)∥2 = (ln(1 + µ))2 + ∥F (xk)− yk∥2 + ∥Φ(µ, xk, yk)∥2,

it follows that {F (xk)− yk} is bounded. Denote g(xk, yk) := yk − F (xk), then {g(xk, yk)}
is bounded and yk = F (xk) + g(xk, yk). First, we prove that {xk} is unbounded. In fact, if
{xk} is bounded, then {F (xk)} is bounded by the continuity of F, and {yk} is unbounded
since {(xk, yk)} is unbounded. Therefore, we obtain that {yk − F (xk)} is unbounded. A
contradiction is derived. Notice that xk = (xk1 , ..., x

k
m) with xki ∈ Kni for each k. Define the

index set
N := {i ∈ {1, ...,m}|{xki } is unbounded}.

Since {xk} is unbounded, the index set N is nonempty. Let {x̄k} be a bounded sequence
with x̄k = (x̄k1 , ..., x̄

k
m) and x̄ki ∈ Kni for each k, where {x̄ki } is defined as follows:

x̄ki =

{
0, if i ∈ N,

xki , otherwise.

Set ȳk := F (x̄k) + g(xk, yk). Then, {ȳk} is bounded since {g(xk, yk)} is bounded and
{F (x̄k)} is also bounded by the continuity of F . By the Cartesian P0-property of F, we
have v > 0 such that

0 ≤ max
i=1,...,m

⟨xki − x̄ki , Fi(x
k)− Fi(x̄

k)⟩

= max
i=1,...,m

⟨xki − x̄ki , y
k
i − ȳki ⟩

= ⟨xkv − x̄kv , y
k
v − ȳkv ⟩,

where v is an index from {1, ...,m} for which the maximum is attained. Clearly, v ∈ N ,
which means that {xkv} is unbounded and x̄kv = 0, and hence {(xkv , ykv )} is unbounded
and {(x̄kv , ȳkv )} is bounded. So, by Lemma 3.3 we have lim

k→∞
ϕ(µ, xkv , y

k
v ) = ∞ and hence

lim
k→∞

Φ(µ, xk, yk) = ∞. This contradicts the boundedness of {H(µ, xk, yk)}. So, we obtain

the desired result.
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Lemma 5.2. Suppose that the sequence {zk = (µk, x
k, yk)} is generated by Algorithm 4.1.

Then {Ck} and {Ψ(zk)} are bounded for all k ≥ 0.

Proof. On one hand, by (4.8) we have ϵk = (1− τ)ϵk−1 = (1− τ)kϵ0. This implies that the
sequence {ϵk} is bounded. On the other hand, by (4.23) we can conclude that

Ck ≤ Ck−1 + θϵk−1 ≤ Ck−2 + θϵk−2 + θϵk−1 ≤ · · · ≤ C0 + θΣk−1
i=0 ϵi.

Since Σk−1
i=0 ϵi = Σk−1

i=0 (1 − τ)iϵ0 < ∞, we get that {Ck} is bounded. From (4.24), we know
that Ψ(zk) ≤ Ck + ϵk for all k ≥ 0. Hence, {Ψ(zk)} is bounded. This completes the
proof.

Theorem 5.3. Suppose that F has the Cartesian P0-property and that {zk} is the iteration
sequence generated by Algorithm 4.1. Then the following results hold.
(i) {Ψ(zk)} converges to zero and hence any accumulation point of {zk} is a solution of
H(z) = 0.
(ii) If the solution set of the P0-SCNCP is nonempty and bounded, then {zk} is bounded.

Proof. Since {βk} is monotonically decreasing and bounded from below by zero, it is con-
vergent. Thus, there exists β∗ ≥ 0 such that limk→∞ βk = β∗. We now assume that β∗ > 0
and derive a contradiction. Since 0 < µk < 1 and µk ≥ µ0βk for all k ≥ 0 by Theorem 4.6,
we obtain that for all k ≥ 0

0 < µ0β
∗ ≤ µ0βk ≤ µk < 1

This implies that {zk} is bounded because otherwise {Ψ(zk)}must be unbounded by Lemma
5.1 which contradicts with Lemma 5.2. Hence, {zk} has at least one accumulation point
z∗ := (µ∗, x∗, y∗). Without loss of generality, we assume that lim

k→∞
zk = z∗. From Lemma

5.2, we know that the sequence {Ck} is bounded and hence it has a convergent subsequence,
denoted by {Ck}k∈I where I ⊂ {0, 1, 2, ...}. Then there exists C∗ ≥ 0 such that lim

I∋k→∞
Ck =

C∗. Thus, from (4.8) and the continuity of Ψ, we can obtain that

C∗ = lim
I∋k→∞

Ck − (1− θ)Ck−1

θ
= lim

I∋k→∞
Ψ(zk) = Ψ(z∗).

Since β∗ > 0, by the definition of βk in (4.3), we have C∗ = Ψ(z∗) > 0. Since µ0βk ≤ µk < 1
by Theorem 4.6, we have

0 < µ0β
∗ = lim

k→∞
µ0βk ≤ lim

k→∞
µk = µ∗ < 1.

Then, it follows from Lemma 4.4 that DH(z∗) exists and is invertible. Hence, there exists a
closed neighborhood N(z∗) of z∗ such that for any z ∈ N(z∗) we have 0 < µ < 1 and DH(z)
is invertible. Then, for all sufficiently large k ∈ I, we have zk ∈ N(z∗) since limk→∞ zk = z∗

and hence 0 < µk < 1 and DH(zk) is invertible. Let ∆zk be the unique solution to the
system of equations

DH(zk)∆zk = −H(zk) +
2βk

1 + µk
h, k ∈ I.

Similarly to the proof of Lemma 4.5, for all sufficiently large k ∈ I, there exists a nonnegative
integer l̄ such that δl̄ ∈ (0, α̃) and

Ψ(zk + δl̄∆zk) ≤
[
1− 2σ

(
1− 2µ0γ

1 + µk

)
δl̄
]
(Ck + ϵk), k ∈ I
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and
(1 + δl̄)µk < 1, k ∈ I.

For all sufficiently large k ∈ I, since αk ≥ δl̄, it follows from Steps 3 and 4 in Algorithm 4.1
that

Ψ(zk+1) ≤
[
1− 2σ

(
1− 2µ0γ

1 + µk

)
αk

]
Ψ(zk) ≤

[
1− 2σ

(
1− 2µ0γ

1 + µk

)
δl̄
]
(Ck + ϵk), k ∈ I.

Notice that lim
k→∞

ϵk = 0. Taking limits on both sides of the above inequality, we obtain that

Ψ(z∗) ≤
[
1− 2σ

(
1− 2µ0γ

1 + µ∗

)
δl̄
]
C∗,

which together with C∗ = Ψ(z∗) > 0 implies that 2σ

(
1 − 2µ0γ

1+µ∗

)
δl̄ ≤ 0. This contradicts

the fact that 0 < σ < 1/2 and 0 < µ0γ < 1/2. Hence, we have β∗ = 0. Furthermore, from
the definition of βk given in (4.3), it follows that there exists a subsequence {zkn} of {zk}
such that lim

kn→∞
Ψ(zkn) = 0. Since Algorithm 4.1 performs the monotone line search when

Ψ(zk) is sufficiently small, we have Ψ(zk+1) ≤ Ψ(zk) when k is sufficiently large. Thus, we
may obtain that lim

k→∞
Ψ(zk) = 0. Let z∗ be an arbitrary accumulation point of {zk}. Then,

there exists a subsequence {zkj} ⊆ {zk} such that {zkj} converges to z∗ as kj → ∞. Then,
it follows from the continuity of Ψ that Ψ(z∗) = lim

kj→∞
Ψ(zkj ) = 0 and hence H(z∗) = 0.

Next, we prove the result (ii). Since limk→∞ Ψ(zk) = 0, we have limk→∞ µk = 0 and
limk→∞ ∥Φ(zk)∥ = 0. Thus, by the famous mountain pass theorem (see, [21, Theorem 9.2.7])
and by following the similar proof lines of [25, Theorem 5.2], we can prove that {(xk, yk)}
is bounded and hence {zk} is bounded. So, we complete the proof.

Now we analyze the rate of convergence for Algorithm 4.1. For this purpose, we need
the strong semi-smoothness of the function H which can be obtained by Lemma 3.4.

Theorem 5.4. Suppose that F has the Cartesian P0-property and that DF is Lipschitz
continuous on J . Let z∗ be an accumulation point of the iteration sequence {zk} generated
by Algorithm 4.1. If all V ∈ ∂H(z∗) are nonsingular, then ∥zk+1 − z∗∥ = O(∥zk − z∗∥2).
Proof. The proof is similar to [25, Theorem 5.3]. For brevity, we omit the details here.

6 Numerical Experiments

In this section, we report some numerical results of Algorithm 4.1 for solving the following
second-order cone complementarity problem (SOCCP):

Find (x, y) ∈ Rn ×Rn such that x ∈ K, y ∈ K, y = F (x), ⟨x, y⟩ = 0, (6.1)

where K ⊂ Rn is the Cartesian product of second-order cones, i.e., K = Kn1 × · · · × Knm ,
and the ni-dimensional second-order cone (SOC) Kni ⊂ Rni is defined by

Kni := {(x1, xT2 )T ∈ R×Rni−1 : x1 ≥ ∥x2∥}.

All experiments are performed on a Intel(R) Core(TM) i7-4790 CPU 3.60GHz personal
computer with 8.00GB memory. The program codes are written in MATLAB and run
in MATLAB R2012b environment. The parameters used in Algorithm 4.1 are chosen as
µ0 = 10−2, σ = 0.2, δ = 0.8, γ = 10−4, c = 10−6. Moreover, we use ∥H(zk)∥ ≤ 10−8 as
the stopping criterion.
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6.1 Linear SOCCPs

Proposition 6.1. Consider the SOCCP (6.1), in which K = K2×K2 and y =Mx+ q with

M =


0 0 0 α
0 0 0 α
0 0 0 0
0 0 0 β

 with α, β > 0, and q =


10
1
2
3

 .

This problem was proposed by Lu and Huang [15]. From Proposition 2.1 in [15], we
know that Problem 6.1 is a class of P0-SCLCPs. We test several specific P0-SCLCPs by
choosing α, β as follows:

(P1) α = 5, β = 10; (P2) α = 10, β = 5; (P3) α = 10, β = 20; (P4) α = 20, β = 10;
(P5) α = 20, β = 25; (P6) α = 10, β = 50.
For our algorithm, we let θ = 0.8, τ = 0.5 and ϵ0 = 10, and choose x0 = (1, ..., 1)T , y0 =

Mx0+q as the starting point. Table 1 lists the results, in which P denotes the tested problem,
IT and CPU denote the value of the number of iterations and the CPU time in seconds,
and SOLU denotes the solution of the concerned problem obtained by our algorithm. From
Table 1, it can be seen that, for every case we tested, our algorithm may find a solution
of the concerned problem meeting the desired accuracy in very few iterations and in short
CPU time. Although the reported numerical results are preliminary, they demonstrate that
the new non-monotone smoothing algorithm is promising for solving the P0-SCLCPs.

Table 1 Numerical results for different cases of Problem 6.1 by Algorithm 4.1
P IT CPU SOLU
(P1) 3 0.008 x∗ = (0, 0, 0.1,−0.1)T , y∗ = (9.5, 0.5, 2, 2)T

(P2) 3 0.008 x∗ = (0, 0, 0.2,−0.2)T , y∗ = (8,−1, 2, 2)T

(P3) 3 0.010 x∗ = (0, 0, 0.05,−0.05)T , y∗ = (9.5, 0.5, 2, 2)T

(P4) 3 0.010 x∗ = (0, 0, 0.1,−0.1)T , y∗ = (8,−1, 2, 2)T

(P5) 3 0.012 x∗ = (0, 0, 0.04,−0.04)T , y∗ = (9.2, 0.2, 2, 2)T

(P6) 3 0.012 x∗ = (0, 0, 0.02,−0.02)T , y∗ = (9.8, 0.8, 2, 2)T

Proposition 6.2. Consider the SOCCP (6.1), in which K = Kn and y = Mx + q, where
q ∈ Rn and M ∈ Rn×n is a rank-deficient positive semi-definite matrix.

In the experiments, we let the rank l ofM be an integer randomly chosen from [0.5n, n−
1]. In order to obtain a positive semi-definite matrixM with l < n, we letM = nBBT /∥BBT ∥,
where B = rand(n, l). Furthermore, we let q := n1/2e −Me, where e = (1, 0, ..., 0)T is the
unit element in Kn. Then, Problem 6.2 has a solution since M is positive semi-definite and
there exist x̄ := e ∈ intKn and ȳ := n1/2e ∈ intKn such that ȳ =Mx̄+ q.

We generate 100 problem instances for each size of n = 200, 400, ..., 1200, and test these
problems by using the starting points: (1) x0 = y0 = e; (2) x0 = e, y0 = Mx0 + q. In the
following, we compare three algorithms:

(i) the new non-monotone algorithm, denoted by Non (i), corresponding to θ = 0.8,
τ = 0.5 and ϵ0 = 10 in Algorithm 4.1;

(ii) the non-monotone algorithm based on the non-monotone line search scheme introduce
by Zhang and Hager [30] with ηk = 0.8, denoted by Non (ii);

(iii) the monotone line search algorithm, denoted by Mon, corresponding to θ = 1, τ = 1
and ϵ0 = 0 in Algorithm 4.1.

Figure 1 shows the convergence behavior of Non (i) for one of the test problems with
n = 1000. From Figure 1, we may find that the sequence {∥H(zk)∥} is non-monotonically
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Fig.1: The logarithm of residual norm ∥H(z)∥ by iterations

decreasing and converges to zero. Table 2 lists the numerical results, in which SP denotes the
starting point, n denotes the size of the problem, AIT andACPU denote the average value of
the number of iterations and the CPU time in seconds when the algorithm terminates among
the 100 testing. From table 2, we may find that either of the non-monotone algorithms is
superior to the monotone algorithm.

Table 2 Numerical comparisons of algorithms for Problem 6.2
Non(i) Non (ii) Mon

SP n AIT ACPU AIT ACPU AIT ACPU
(1) 200 5.65 0.07 5.65 0.07 5.39 0.07

400 5.17 0.34 5.24 0.36 5.68 0.38
600 5.09 0.89 5.18 0.97 6.10 1.09
800 5.02 1.87 5.12 1.91 6.10 2.27
1000 4.99 3.35 5.08 3.36 6.20 4.02
1200 5.01 5.71 5.07 5.78 6.31 6.79

(2) 200 4.84 0.06 4.61 0.06 5.18 0.07
400 4.65 0.31 4.76 0.31 5.08 0.33
600 4.80 0.89 4.98 0.90 5.20 0.97
800 4.90 1.87 5.02 1.89 5.20 2.05
1000 5.01 3.11 5.07 3.32 5.25 3.64
1200 5.06 5.26 5.14 5.85 5.32 5.82

Proposition 6.3. Consider the SOCCP (6.1), in which K = Kn1 × · · · × Knm , x =
(x1, ..., xm) ∈ Rn with xi ∈ Rni and n =

∑m
i=1 ni, and y =Mx+ q.

The matrix M ∈ Rn×n and the vector q = (q1, ..., qm) ∈ Rn are generated by the
following procedure. We choose Ni = rand(ni, ni) for i = 1, ...,m and then let M be the
block diagonal matrix with NT

1 N1, ..., N
T
mNm as block diagonals, i.e., M = diag

{
NT

i Ni

}m

i=1
.

Moreover, by choosing qi = (qi1, q
T
i2)

T ∈ Rni with qi2 = rand(ni − 1, 1) and qi1 = ∥qi2∥+ 1,
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we let q = (q1, ..., qm) ∈ Rn. It is easy to verify that the function y =Mx+ q generated by
such way has the Cartesian P0-property.

In the experiments, we let m = 4 and ni = n
4 for any i = 1, ...,m. We use x0 = e

and y0 = e as the starting point. We generate 100 problem instances for each size of
n = 100, ..., 800. For comparison purposes, we apply Algorithm 4.1 (θ = 0.8, τ = 0.5 and
ϵ0 = 10) and the smoothing Newton algorithm studied by Lu and Huang [15] to solve these
tested problems, respectively. Table 3 lists the numerical results, in which AGAP denotes
the average value of |⟨xk, yk⟩| when the algorithm terminates among the 100 testing. From
Table 3, we may find that our algorithm has some advantages over the algorithm in [15].

Table 3 Numerical comparisons of algorithms for Problem 6.3
Algorithm 4.1 Algorithm in [15]

n AIT ACPU AGAP AIT ACPU AGAP
100 6.97 0.03 2.8488×10−11 8.08 0.03 2.0965×10−8

200 8.47 0.09 2.9975×10−11 9.76 0.09 9.6743×10−8

300 9.30 0.21 1.1793×10−10 11.08 0.24 9.0962×10−8

400 9.74 0.38 9.0609×10−11 12.11 0.52 9.2606×10−8

500 10.15 0.72 1.2751×10−10 12.80 0.93 8.7162×10−8

600 10.13 1.15 2.8607×10−10 13.55 1.52 6.9206×10−8

700 10.45 1.83 4.9905×10−10 14.40 2.41 5.8967×10−8

800 11.15 2.68 2.1310×10−10 15.01 3.52 5.1880×10−8

6.2 Nonlinear SOCCPs

Proposition 6.4. Consider the SOCCP (6.1), where K = K3 and F : R3 → R3 is given by

F (x) =

 0.07x31 − 4
0.04x32 − 3.93
0.03x33 − 5.72

 .

By Algorithm 4.1, we obtain one solution x∗ = (5, 3, 4)T . Since the Jacobian F ′(x) =
diag{0.21x21, 0.12x22, 0.09x23} is positive semidefinite, F is monotone. We test this problem by
using the starting point x0 = y0 : (1) (1, ..., 1)T ; (2) (−1, ...,−1)T ; (3) (10, ..., 10)T ; (4) (50, ..., 50)T ;
(5) (100, ..., 100)T ; (6) (200, ..., 200)T . Numerical results are listed in Table 4, where SP
denotes the starting point and GAP denotes the value of |⟨xk, yk⟩| when the algorithm
terminates.

Table 4 Numerical results of Problem 6.4 by Algorithm 4.1
SP IT CPU GAP
(1) 6 0.01 4.0461×10−13

(2) 6 0.01 1.3517×10−10

(3) 6 0.01 2.6098×10−11

(4) 10 0.02 2.7881×10−11

(5) 12 0.02 8.6730×10−10

(6) 14 0.02 1.0569×10−14
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Proposition 6.5. Consider the SOCCP (6.1), where K = K3 × K2 and F : R5 → R5 is
given by

F (x) =


24(2x1 − x2)

3 + exp(x1 − x3)− 4x4 + x5
−12(2x1 − x2)

3 + 3(3x2 + 5x3)/
√
1 + (3x2 + 5x3)2 − 6x4 − 7x5

−exp(x1 − x3) + 5(3x2 + 5x3)/
√
1 + (3x2 + 5x3)2 − 3x4 + 5x5

4x1 + 6x2 + 3x3 − 1
−x1 + 7x2 − 5x3 + 2

 .

From [5] we know that F is monotone. By Algorithm 4.1, we obtain one solution x∗ ≈
(0.2324,−0.0731, 0.2206, 0.5339,−0.5339)T . We test this problem by using the starting point
x0 = y0 : (1) (0, ..., 0)T ; (2) (1, ..., 1)T ; (3) (−1, ...,−1)T ; (4) (10, ..., 10)T ; (5) (−10, ...,−10)T ;
(6) (50, ..., 50)T . Numerical results are listed in Table 5.

Table 5 Numerical results of Problem 6.5 by Algorithm 4.1
SP IT CPU GAP
(1) 6 0.02 2.8403×10−10

(2) 6 0.02 2.1434×10−10

(3) 12 0.03 2.4774×10−15

(4) 17 0.03 3.9733×10−16

(5) 13 0.03 1.6440×10−10

(6) 14 0.03 1.9601×10−10

Proposition 6.6. Consider the SOCCP (6.1), where K = K4 and F : R4 → R4 is given by

F (x) =


ex1 + x21
ex2 + x22
ex3 + x23
ex4 + x24

 .

By Algorithm 4.1, we obtain one solution x∗ ≈ (0.3278,−0.1893,−0.1893,−0.1893)T .
We test this problem by using the starting point x0 = y0 : (1) (1, ..., 1)T ; (2) (−1, ...,−1)T ;
(3) (5, ..., 5)T ; (4) (−5, ...,−5)T ; (5) (10, ..., 10)T ; (6) (−10, ...,−10)T . Numerical results are
listed in Table 6.

Table 6 Numerical results of Problem 6.6 by Algorithm 4.1
SP IT CPU GAP
(1) 8 0.01 1.5701×10−16

(2) 10 0.01 3.9503×10−16

(3) 33 0.02 3.7616×10−16

(4) 11 0.01 7.7079×10−16

(5) 24 0.02 2.8401×10−16

(6) 11 0.01 4.7502×10−16

7 Conclusions

In this paper, based on the new smoothing function ϕ in (3.1) and the non-regulation function
h(µ) = ln(1 + µ), we study a non-monotone smoothing algorithm for the P0-SCNCP, which
includes the monotone SCCP as a special cases. Under wake conditions, we prove that
the algorithm is globally and locally quadratically convergent. The preliminary numerical



AN IMPROVED SMOOTHING ALGORITHM FOR THE P0-SCNCP 655

results demonstrate that our algorithm is promising for solving the P0-SCNCP. Although
h(µ) = ln(1 + µ) does not satisfy the property h(µ) ≤ µh′(µ) for any µ > 0, from Lemma
4.3 it satisfies

h(µ) ≤ 2µh′(µ) for any µ ∈ (0, 1).

Hence, it is worthy to analyze smoothing algorithms under a more generalized regulation
function h(µ), which satisfies properties (a)–(c) and (e) in Definition 1.1 and

(d’) there exist constants c1 > 0 and c2 > 0 such that h(µ) ≤ c1µh
′(µ) for all µ ∈ (0, c2).
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