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COMPLETELY POSITIVE CONES AS SUBCONES OF
DOUBLY NONNEGATIVE CONES

GUOLIN YU* AND QINGHONG ZHANG!

Abstract: The convex cone of n X n completely positive matrices and the convex cone of n X n copositive
matrices are dual to each other. They have attracted interest in mathematical optimization due to the
reformulations of some hard problems to copositive optimization problems. These two cones are closely
related to the convex cone of n x n doubly nonnegative matrices and the dual cone of the doubly nonnegative
cones. In this paper, we prove a duality result between the set of maximal faces of a proper cone and the set
of minimal exposed faces of its dual cone. We also initialize a discussion on which faces of doubly nonnegative
cones intersect completely positive cones for more than the origin. This approach is motivated by the idea:
using well-studied doubly nonnegative cones to study completely positive cones.
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Introduction

Like linear semidefinite optimization, copositive optimization is a conic optimization prob-
lem. Instead of the cone of semidefinite matrices used in linear semidefinite optimization,
copositive cone and its dual cone, namely completely positive cones, are used in the formu-
lation of the primal-dual pair of a copositive optimization problem. Although many hard
problems ([4] [7]) can be reformulated as copositive optimization problems, without knowing
the structure of the copositive and completely positive cones, the reformulations would not
provide much useful information. Studying the structure of the copositive and completely
positive cones thus becomes very critical not only in the study of the theory of copositive
optimization, but also in the design of algorithms to solve copositive optimization.

The copositive cones and completely positive cones have many other applications in
addition to those in optimization, and have been topics of research for many years (see [3]
[4]). However, due to their complicated structures, knowledge about the geometric aspects
of the copositive cones and completely positive cones are very limited. In [6], a way of
representing all the maximal faces of the copositive cones along with a simple equation
for the dimension of each one was given because of the known representations of exposed
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rays of the completely positive cones. Also in [6] some maximal faces (not all maximal
faces) of the completely positive cones and their dimensions were discussed. Those maximal
faces of the completely positive cones are determined by the representations of some known
exposed rays in the copositive cones. In [5], an algebraic approach was adapted to study
the difference between the 5 x 5 doubly nonnegative cone and 5 x 5 completely positive
cone, more specifically, a representation of extreme rays of the 5 x 5 doubly nonnegative
cone was given and was used to prove the result: if a matrix is doubly nonnegative but not
completely positive, then it can be decomposed as the sum of a completely positive matrix
and an extremely bad matrix, which is an extreme doubly nonnegative matrix, but not a
completely positive matrix, with rank 3.

In this paper, we will prove a duality result between maximal faces of a convex cone K and
minimal exposed faces of K*, the dual cone of K. This result extends a result in [6], where
the result that an exposed ray in K determines a maximal face in * was proved. To the
best of our knowledge, this nice duality result has not appeared in the related literature. In
this paper, we also provide a geometric interpretation of a result in [5] by using a different
approach other than the one in [5]. Some other geometric properties of the completely
positive cones are also presented in this paper.

The paper is organized as follows: in Section 2 we provide some basic definitions and
properties associated with a convex cone, for example, we give the definitions of cones,
faces, rays, maximal faces, minimal exposed faces, etc., then we prove a duality result
between maximal faces and minimal exposed faces in this section. In Section 3, we study the
relationship between maximal faces (minimal exposed faces) of a convex cone K and maximal
faces (minimal exposed faces) of a convex subcone of K. In Section 4, we specifically study
some geometric properties of the completely positive cones in terms of doubly nonnegative
cones. We will have a discussion on which faces of doubly nonnegative cones intersect
completely positive cones for more than the origin. A geometric interpretation of a result
in [5] is given in this section. Finally in Section 5, we provide some conclusion remarks.

Faces of Convex Cones

Throughout this paper, we use R” to denote the n-dimensional Euclidean space. R is the
set of all nonnegative real numbers. If x € R™ and y € R", then (z,y) or 2Ty is used to
represent the inner product of x and y. R™*™ is the set of all n x m matrices. For a set
LCR™ L, intL, relint L, and span L are the closure of £, the set of interior points of
L, the set of relative interior points of £, and the space spanned by L, respectively. The
reader is referred to [9] for the definitions of these terms.

Let K be a convex cone in R™. Then K can be used to define a partial order in R",
in other words, =, y if and only if x —y € K. A convex subcone F # {0"} of K is
called a face of K if x € F, x = y =, 0" implies y € F, where 0" represents the zero
vector in R™. A face F is exposed if it is the intersection of K and a nontrivial supporting
hyperplane, in other words, there exists a nonzero a € R™ such that (x,a) > 0 for all x € K
and F = {z € K | (x,a) = 0}. We follow the definition in [6] that # and K are not exposed
faces. For a given face F of K, the complementary (or conjugate) face of F is defined to be
Fe={z€K*|(z,z) =0for all z € F} = K*NF*, where £* is the dual cone of K, that is,
K*={y € R" | (x,y) >0 for all z € K}, and K+ = K£* N (—K*). The complementary face
of a face in K* is defined similarly. For a* € K*, we define F(K,a*) = {z € K | (a*,z) = 0}.
Similarly, we define F(K*,a) = {y* € K* | {a,y*) = 0} for a € K. If a face F is generated
by a nonzero vector, i.e. there exists a nonzero a € K such that F = {aa | @ € Ry}, then
we call F an extreme ray. If F is an extreme ray and it is also exposed, then we call F an
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exposed ray. We use Ext(K) and Exp(K) to represent the sets of extreme rays and exposed
rays of K. Similarly, we use Ext(X*) and Exp(K*) to represent the sets of extreme rays and
exposed rays of C*.

Next we list two lemmas that will be used in the proof of our duality theorem.

Lemma 2.1 ([10]). Let K be a proper convex cone (closed, pointed, and full dimensional)
and K* be the dual cone of K. Let F be a face of K and a € relint(F). Then F¢ = F(K*,a).

Lemma 2.2 ([1, Proposition 3.3]). Let K be a proper convex cone and K* the dual cone of
K. Let F be a face of K. Then F is an exposed face if and only if F = (F¢)¢, where (F€)¢
is the conjugate face of the face F€.

We now give definitions of maximal faces and minimal exposed faces of a proper convex
cone. The characterizations of these faces are very helpful in understanding geometric
features of a cone.

Definition 2.3. A face F; is a maximal face of a proper convex cone K if 77 # K and there
does not exist a face Fo # K such that F; C Fo.

Definition 2.4. Let £ # {0} be a subset of . A minimal exposed face of K containing £ is
an exposed face F; O L such that there does not exist an exposed face F» with F; D Fy O L.
An exposed face F; is a minimal exposed face of a proper convex cone K if F; # {0} and
there does not exist an exposed face F # {0} such that F; D Fo.

Remark 2.5. A maximal face and a minimal exposed face of K* can be defined similarly.
The following is the main result in this section.

Theorem 2.6. Let K be a proper convex cone and K* the dual cone of K. Let F be an
exposed face of K. Then F is a minimal exposed face of K if and only if F¢ is a mazximal

face of IC*.

Proof. Let F be a minimal exposed face of . We now prove that F¢ is a maximal face
in £*. Suppose that M is a maximal face such that ¢ C M. Since M is maximal, by
Theorem 2.17 in [6], we know there is an a € FExzt(K) such that M = F(K*,a) = {a* €
K* | {a,z*) = 0}. Therefore, M is an exposed face. Since F¢ C M and F is exposed, we
obtain that F = (F¢)¢ D M¢° by Lemma 2.2. Because F is a minimal exposed face, we must
have F = M¢. Therefore, F¢ = (M*)¢ = M, where the last equality is due to the fact that
M is exposed and Lemma 2.2. Hence, F€ is a maximal face in K*.

Next we prove that if F¢ is a maximal face in £*, then F is a minimal exposed face in K.
Suppose that A/ # {0} is an exposed face in K with A" C F. Then ¢ D F¢. The assumption
that F° is a maximal face gives that N¢ = F¢. Therefore, N' = (N¢)¢ = (F¢)¢ = F by
Lemma 2.2. So F is a minimal exposed face. O

Remark 2.7. The proof of Theorem 2.6 is easy. However, Theorem 2.6 gives a nice duality
result. It provides a one-to-one correspondence between the set of maximal faces (minimal
exposed faces) of K and the set of minimal exposed faces (maximal faces) of K*. Also the
result that the conjugate face of an exposed ray is maximal appearing in [6] becomes a
corollary of this theorem.
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Subcones

Let I be a proper cone in R™ and S a convex subcone of K. In this section, we study how
maximal faces (minimal exposed faces) of I and S are related. Like in [5], we would like
to characterize the completely positive cones and copositive cones using the knowledge of
some well studied cones, such as semidefinite cones, positive cones, and doubly nonnegative
cones. Among the list of these cones, some are convex subcones of the others. Therefore,
the results proved in this section can be applied to the next section, which is mainly on
completely positive cones.
It is easy to see that the following are true.

1. If a € S generates an extreme (exposed) ray of K, then a also generates an extreme
(exposed) ray of §. The converse statement may not be true.

2. If a € S generates an exposed ray of IC, then the conjugate faces of {Aa | A > 0} in
K and § are maximal in K* and §*, respectively. We denote them by My and M.
Then we have that My = M, N KC*.

3. If F is a minimal exposed face of I and F C S, then F is still an exposed face in S.
However, F may not be minimal exposed in S.

In general, we have the following theorem.

Theorem 3.1. Let Fj, and Fs be minimal exposed faces of K and S, respectively. Let
F§ be the conjugate face of Fi, in K* and F¢ be the conjugate face of Fy in S*, that is,
Fe=K*NFE and FE = 8* NF;. Then the following are equivalent.

(i) FrNFs #{0}
(ii) Fs C Fp,
(iii) Fg=FSnNK*.

Proof. Since Fj, and F; are minimal exposed faces of K and S, we know there exists k* € £*
and s* € §* such that Fj, = F(K,k*) and Fy = F(S, s*). So we have

Fu N Fy = FIK, ) N F(S, s%)
—{kek|(kk)=0yn{seS| (ss) =0}
— (keS| (kk)=0}N{seS|(ss) =0}
—{s€S8| (s,k* +5%) =0},

which shows that if F, N Fs # {0}, then Fj, N F; is also an exposed face in S due to the fact
that k* + s* € §*. The assumption that F, is a minimal exposed faces of S indicates that
Fr N Fs = F,. Therefore, (i) implies (ii). Hence, (i) is equivalent to (ii).

Now we show that (ii) and (iii) are equivalent. We first show that (ii) implies (iii). Since
Fs C F, we obtain that Ff = K*NFE C K*NFE = K*NS*NF; = FENK*. Because F¢ is
a face of §*, we know that F{NK* is a face of £*. By Theorem 2.6, we know F is a maximal
face, therefore, we obtain that Ff = F¢ NK*. We next show that (iii) implies (ii). This can
be done by Fi, = (F£)¢ = KN (FH)L =KN(FENKHL D KN(FHE 28N(FO)Lt =F,. O

A dual result of Theorem 3.1 by using Theorem 2.6 can be stated as follows. The proof
is straightforward, hence omitted.
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Theorem 3.2. Let Fj, and Fs be mazimal faces of K and S, respectively. Let Fy be the
conjugate face of Fy, in K* and F§ be the conjugate face of Fs in S*, that is, F, = K* ﬁ]:,g‘
and F¢ = S8* N FE. Then the following are equivalent.

(i) FxnFs # {0}
(il) Fg C F¢
(i) F, = Fx N S.

Because a maximal face Fj, of K should be on the boundary of /C, so if Theorem 3.2 (iii)
holds, then the maximal face F5 of S should also be on the boundary of K. This raises an
interesting question: can any maximal face of S on the boundary of K be written as the
intersection of a maximal face in I with S? In general, the answer is negative. However, if
we assume that S is proper, then we have the following result.

Proposition 3.3. Assume further that S is proper. Consider a face Fs of S. If Fs is on the
boundary of K and Fy is mazximal, then Fy can be written as the intersection of a maximal
face Fy, of K with S.

Proof. Let Fj, be the maximal face in K that contains Fs. Then Fr NS # S due to the
assumption that L and S are proper. Therefore, we have F NS D F,. Since Fs is a
maximal face of S and F NS is a face of S, we have Fp NS = Fy. O

Now let Fj and Fs be maximal faces of K and S as in Proposition 3.3, respectively.
By Theorem 2.6, we know that F; and F{ are minimal exposed faces of K* and &* . By
Theorem 3.2, if 7y = F;, NS, we have Ff C F¢. On the other hand, if F, is not on the
boundary of K, even though we assume that F; is maximal, we cannot write F; as the
intersection of a maximal face F; of K with S. Hence, in the case that F, is not on the
boundary of X, by Theorem 3.2, we know that the intersection of F¢ with any minimal
exposed faces in K* is {0}. Specifically, if F¢ intersects K* only at 0, then Fs is not on
the boundary of . An illustrative example will be given in the next section after various
matrix cones are introduced.

Let Ky and K2 be two proper cones in R™. Then K3 N Ky is a convex cone (may not be
proper). The next theorem, which is closely related to Proposition 2.1 in [11], characterizes

faces in K1 N Ky in terms of faces in K and faces in K.

Theorem 3.4. Any face in K1 N Ko must be either an intersection of a face in K1 with a
face in Ko, or an intersection of a face in Ky with Ko, or an intersection of K1 with a face
m ICQ.

Proof. Suppose that F is a face in K1 NKy. Then F C Ky and F C Kq. Let F, and Fyi, be
faces in K1 and Ko, respectively, which are smallest faces containing relint(F). We should
note here that if relint(F) C int(Ky), then Fy, = K. Similarly, if relint(F) C int(Ks),
then Fj, = Ko. It is easy to see that Fi, N Fy, 2 F.

Now we prove that Fj,, N Fy, C F. Let x € Fi, N Fy, and y € relint (F). Since we know
that F, is the smallest face in K; containing F, we know that y € relint(Fy,). Therefore,
Az + (1 — X))z =y for some 0 < A\ < 1 and 21 € Fy,. Similarly, y € relint(Fy,) implies
that Aoz + (1 —A2)ze = y for some 0 < Ay < 1 and z9 € Fy,. Since both z; and z5 are on the
line connecting x and y, we may simply set 21 = 22 = z. Hence, z € Fi, N Fr, C K1 N K.
Because F is a face in K1 N K3, we obtain that x € F due to gz 4+ (1 — A2)z = y € F.
Because z is arbitrarily chosen, we have that Fj, N Fy, = F. O
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A facially exposed cone is a cone with the property that all its faces are exposed. The next
corollary states that the intersection of two facially exposed cones is still facially exposed,
which is a well-known result. The proof is straightforward using Theorem 3.4.

Corollary 3.5. If K1 and Ko are facially exposed, then K1 N Ks is also facially exposed.
In particular, the doubly nonnegative cone is facially exposed, where the doubly nonnegative
cone is the intersection of the positive semidefinite cone and the cone of all nonnegative
matrices.

Completely Positive Cones, Copositive Cones, etc.

We first give the definitions of various matrix cones, which will be used in this section.

P"—the cone of all n x n positive semidefinite matrices.

N"—the cone of all n X n nonnegative symmetric matrices, that is, the cone of all sym-
metric matrices with nonnegative entries.

CP"—the cone of all n X n completely positive matrices. A completely positive matrix is
a positive semidefinite matrix, which can be written as X X7 with X being a nonnegative
matrix.

COP"the cone of all copositive matrices. A matrix A is copositive if 7 Az > 0 for all
x € R, the set of all nonnegative vectors.

P*NAN"™-doubly nonnegative cone consisting of all n x n matrices, which are nonnegative
and positive semidefinite.

The following proposition (see [4]) gives the duals of these cones.

Proposition 4.1. P" and N™ are self-dual. CP™ and COP" are dual to each other. P*NN™
and P™ + N™ are dual to each other.

In the proofs of various results in this paper, we need descriptions of faces for the cone
P" of semidefinite matrices and the cone N’ of nonnegative symmetric matrices. We list
them as lemmas below.

Lemma 4.2. Let A = (a;;) be a n x n nonnegative symmetric matriz. Then the minimal
face of N™ containing A can be represented by Fur(A) = {(bi;) € N™ | bij =0 for any 1 <
i,j <n, such that a;; = 0}.

Lemma 4.3. Let A be positive semidefinite and Ay > 0, 2 > 0,..., A > 0 be all positive

eigenvalues of A. Let @ be an orthogonal matriz such that A = Q (10) 8) QT, where
A0 ..o 0
0 X ... O

D= . . . Then the minimal face of P™ containing A can be represeted by
0 0 ... X

i ={e (g §)e"

Minimal Exposed Faces

There are many geometric properties including characterizations of extreme rays, exposed
rays, and maximal faces of these cones that have already been discussed in the literature.
But not many discussions on minimal exposed faces of these cones have been given. Because

BeP’“}.
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of Theorem 2.6, it is worth studying or characterizing minimal exposed faces of these cones.
In this section, we collect and prove some results about minimal exposed faces for P, N,
PrANT, P* + N™ and CP". The description of minimal exposed faces of COP"™ seems
impossible in the meantime since a complete description of all extreme rays of COP™ is not
available for n > 6.

The first result we would like to present is the following proposition.

Proposition 4.4. Facially exposed cones have no other minimal exposed faces except exposed
rays.

Proof. Suppose that F is a face of a facially exposed cone . Then F is the convex hull of
some extreme rays. Since an extreme ray is also a face, by the assumption that K is facially
exposed, we know the extreme rays contained in F must be exposed, which shows that F
must be an exposed ray. O

Since we know that P", N™ and P" N N™ are facially exposed, the minimal exposed
faces for these cones must be exposed rays. Because whether a completely positive cone is
facially exposed is still an open problem ([2]), we cannot apply Proposition 4.4 directly to the
completely positive cones. However, we know all extreme rays are exposed in the completely
positive cones [6], so we can apply the same argument as in the proof of Proposition 4.4
to show that no other minimal exposed faces exists in the completely positive cones except
exposed rays. Now we work with the cone P™ +N™. Note that since P™ +N™ is not facially
exposed (see [6, Figure 1]), we cannot apply Proposition 4.4 to this cone directly. However,
we still have the same result, which is stated as a proposition below.

Proposition 4.5. P" + N™ has no other minimal exposed face except exposed rays.

Proof. First, we can see that every extreme ray of P™ + A" should be either extreme in
P™ or extreme in N™. For extreme rays in P", we must have the form {azz? | o € Ry}
with z € R™. If z € R"\(R%} U (—R%)), then by Theorem 4.6 in [6] we know that za” is
exposed in the copositive cone, and hence, it is exposed in P" +N". If x € R’ with at least
two nonzero entries, then we can easily rewrite it as a sum of two nonnegative matrices.
Therefore, zz” with z € R’ having at least two nonzero entries does not give an extreme
ray in P" + N". If 2 € R’} with one nonzero entry, then we can prove in a similar manner
as in the proof of Theorem 4.4 in [6] that z2” with x € R? does not give an exposed ray,
only extreme ray.

For extreme rays in N™\P", it has the form (e;e] + eje]) with i # j, where e; is the
vector such that the i-th entry is 1 and the other entries are 0. By Theorem 4.6 in [6] again,
we know that (eiejT + ejeiT) with i # j is exposed in the copositive cone, and hence, it is
exposed in P™ + N™. Therefore, the only non-exposed extreme rays in P™ + N™ are of the
form {ae;el | o € Ry}

Now suppose there is an exposed minimal face F in P"™ + N™, which is not an exposed
ray. Then F should not contain an exposed ray. Therefore, F can only be written as the
convex hull of non-exposed extreme rays, which are of the form {ae;el | @ € Ry}. Without
loss of generality, we may assume

a1 0 0
0 as ... 0

F = <61 8) A=| . . Cl,a; >0, fori=1,2,....k ;. (4.1)
0 0 Qg
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Since we assume that F is exposed, we know there is a matrix M € (P" + N"™)* = PP NN™
such that F = {N € P* 4+ N™ | (M,N) = 0}. Because of (4.1) and that M is doubly
8 g), where Bis a (n—k) x (n—k)
double nonnegative matrix. Because (M,eiel + e ef) = 0, we know that F # {N €
P+ N™ | (M,N) = 0}. Therefore, we prove that F is not exposed showing that the only
minimal exposed faces of P™ + N™ are exposed rays. O

nonnegative, we know that M can be expressed as

Completely Positive Cones as Subcones of Doubly Nonnegative Cones

The cone of completely positive matrices is a convex subcone of the doubly nonnegative
cones, that is, P* N AN™ D CP". What is interesting is the fact that if A € CP", then
{aA | @ € Ry} € Ext (P" N AN™) if and only if A has rank 1 (Page 1374, [8]). However,
when A has rank 1, {eA | @ € R4} is also an extreme ray in CP". Actually, Ext(CP") C
Ext(P"NN™). Both CP™ and P*NN™ are full dimensional cones, that is, they have interior
points. At a first glance, it seems that CP" = P* N N™. However, some differences between
CP"™ and P" N N™ have already been discovered in [5, 8] for n > 5.

Of course, all the results proved in Section 3 can be applied to P™ N N™ and its sub-
cone CP™. We start this section by providing an example to illustrate Theorem 3.2 and
Proposition 3.3.

Example 4.6. The Horn matrix (see [5]) is in COP® but not in P> +AN®. The ray generated
by the Horn matrix is exposed in COP°. Therefore, this exposed ray gives a maximal face
in CP®°. Since the exposed ray generated by the Horn matrix intersects P + A only at
the origin, so by Proposition 3.3 and Theorem 3.2, we know the maximal face in CP° given
by the exposed ray of the Horn matrix is not an intersection of a maximal face in P> N A®
with CP®. This shows that the maximal face in CP®° given by the exposed ray of the Horn
matrix should pass through the interiors of P> N A/?.

Now we turn to the study of some faces of P™ N N™. Specifically, we are interested in
those faces of P N AN'™ whose intersection with the completely positive cone is more than
the origin. Since any face in P* N A" is either an intersection of a face in P™ with a face in
N™, or an intersection of a face in P™ with A/, or an intersection of P" with a face in N,
we consider various cases.

The first result along this line is for a face, which is an intersection of a face in N'™ with
P,

Theorem 4.7. Suppose that F is a face in P* ONN™, which is an intersection of a face Fpr
in N™ with P*. Then F NCP" # {0} and is a face of CP™.

Proof. It FNCP™ # {0}, then obviously we know F NCP" is a face of CP". Therefore, we
only need to show that F NCP"™ # {0}. In other words, F contains a completely positive
matrix.

Since F is a face in P" N N™, we know that F # {0}. This shows there is a matrix
A = (aij)nxn in F such that at least one entry on the main diagonal should be strictly
positive. We may assume that a;; > 0. We let Y = (1,0,...,0)7(1,0,...,0). Because
A € Fpn and a7 > 0, by Lemma 4.2 we obtain that Y € Far. It is also obvious that
Y € P™. We, therefore, obtain that Y € F. The fact that Y € CP" is directly from the
definition of Y. Therefore, 7 NCP" # {0} and is a face of CP". O

A similar result is also true for a face, which is an intersection of a face in P™ with N™.
We have the following theorem.
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Theorem 4.8. Suppose that F is a face in P NN™, which is an intersection of a face Fp
in P with N™. Then F NCP" # {0} and is a face of CP".

Proof. Let A € relint(F). Since A is positive semidefinite, there is an orthogonal matrix @ =
(x1,22,...,25) and A7 > 0,A2 > 0,..., Ay > 0 such that A = Q (lO) 8) QT, where D =
A0 .0
0 A ... O
. L , which is equivalent to say that Ax; = \;jz; for 1 <i < k and Ax; =0
0 0 ... X
. . B O T k
for i > k + 1. Because A € relint(F), we can also set Fp = < Q 0 0 Q" | BePr,.
Because A # 0, there exists a row of A whose entries are not all 0. Without loss of
generality, we assume the entries in the first row A; are not all zero. We let Y = AT A;.
Since A € N™, of course, we have Y € N™. Now we prove that Y € Fp. We know

QTYQ = QTATA1Q = (AQ)T(A1Q) = (Arzy, Avza, ..., Aay,) T (A1, Arza, ... Arzy).
However, Ax; =0 for i > k + 1 gives that Ajz; = 0 for ¢ > k + 1. Therefore,

QTYQ = (All‘l, Al.TQ, RN ,All‘k, 0... ,O)T(All‘l, All‘g, [N 714111,‘16, 0... 5 O)

_ ((A1$17A1562»-~~,Awk)T(AlCCl,Aﬁzw-.,Alxk) 0)
B 0 0/

(Alxla Alea cey Alxk)T(Alxla Alx27 DR Alxk)
0

Y € Fp, which implies that Y € F. Because Y is obviously in CP", we obtain that

FNCP™ # {0} and is a face of CP". O

Now we get Y = @ 8) QT showing that

We next consider a face, which is an intersection of a maximal face of N™ with a face in

P,

Theorem 4.9. Suppose that F is a face in P"NN™, which is an intersection of a mazimal
face of N™ with a face in P™. Then F NCP"™ # {0} and is a face of CP".

Proof. Let F = Fa NFp, where Fyr is a maximal face in N™ and Fp is a face in P™. Since
Fn is maximal in N, we can write

Fn = {(aij)nxn € 8" | a;; > 0, and for some fixed iy and jo, aiyj, = @joi, = 0}

Because Fp is a face in P, there is a 1 < k < n and an orthogonal matrix ¢ such that

fpz{cz(ff 8>QT

Since F is a face of Fnr N Fp, we can choose 0 # A € relint(F). Then A € Fy gives
Aiyjo = @joi, = 0. Because F = Fu N Fp, we know that there is B € P* such that
A= Q(? 8) QT. So we have AQ = Q (g 8) If we let Q = (z1,22,...,2,) with
z; € R" for ¢ = 1,2,...,n, then we have Az, = 0 for p = k+1,...,n. Now we let
Aiy = (Gig1, Qig2, - - - » Qign ), that is, the ip-th row of A. If A, is the 0 vector, then all the
entries in the ig-th row and 7p-th column of all the matrices in F must be zero. So we can
delete the ip-th row and ig-th column for all the matrices in F, and therefore, F can be

BEPk}.
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viewed as a face in P*~1 N A" 1 which is the intersection of N1 with a face in P~ L.
By Theorem 4.8, we know that the conclusion is true.

Now we assume that A;, is not the 0 vector. Then it is easy to see that Y = AL 4; € Fy.
Because

QTYQ =Q"Ar A,,Q
= (AiOZL'l, AZ‘OCL'Q, ey Aioxn)T(AiOxl, Aio.’EQ, e 7A1'0£L'n)
= (Ajow1, Ajga, ..o, Ajy i, 0, .., 0) T (A w1, Agy o,
ooy A2, 0,...,0)( because Az, =0forp=k+1,...,n)

1
_ (% 8) ( with B € P¥),

1
we have that Y = Q) [QTYQ] QT =qQ (% 8) QT with B" being a k x k positive semidef-

inite matrix, which implies that Y € Fp. Because we already know that Y = AZ) Aiy € Fav,
we hence obtain that Y € F. However, with the definition of Y, we know Y € CP™. So we
prove that F NCP"™ # {0}. O

The same conclusion can be made for a face, which is an intersection of a face in N
with a maximal face of P™. We have the following theorem.

Theorem 4.10. Suppose that F is a face in P" NN, which is an intersection of a face in
N™ with a mazimal face of P™. Then F NCP"™ # {0} and is a face of CP".

Proof. Suppose that F is the intersection of a face Fas in N™ with a maximal face Fp in
P™. Since Fp is a maximal face in P", there is an orthogonal matrix ) such that

m={e (" )

We assume Q = (z1,%2,...,%n), ©; ER™ for i =1,2,... n.
Since Fu is a face of N, without loss of generality, Fas can be written as follows:

Ay € 7?”‘1} )

]:/\/:{(sz)an GJ\/" | bij =0 for (Z,]) EIJ},

where I.J is a subset of {(i,7) | 1 < 4,5 < n} such that (i,4) ¢ IJ and if (¢,5) € I.J then
(4,4) € IJ. The reason we assume that (i,i) ¢ I.J for all 1 < i < mn is that if (¢,7) € I.J for
some 1 < ¢ < n, then b;; = 0, under which when we consider the intersection of the face Far
with a maximal face of Fp, we must have all the entries in the i-th row and i-th column for
all matrices in F being 0 due to the positive semidefinite requirement of matrices. Hence, we
can just delete the i-th row and i-th column and reduce the discussion to the case involving
(n—1) x (n—1) matrices. So the conclusion of the theorem can be proved by using Theorem
4.7.

Let A = (aij)nxn € relint(F). By the same argument as above, we can assume that
a;; > 0 for 1 <i<n. A€ Fp implies that Az,, = 0. Let z,, = (z},22,...,27)T. Since A is
not the 0 matrix and z,, is not the 0 vector, with the assumption that a;; > 0 for 1 <i < n,
we conclude that there is ig and jo with 1 < iy < n, 1 < jy < n, and ig # jo, such that
iyjo > 0 and z02J0 < 0. Indeed, z,, # 0 implies that there is 20 # 0 for some 1 < iy < n.
By the fact that Az, = 0, we obtain that Z?:l Qi Th = i, + Z?:Lj;éio aiy s, = 0.
Since a;y;, > 0, a;y; > 0for 1 < j < n, and xﬁf # 0, we know that there is jo with 1 < jp < n
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and jo # ig, such that 270 # 0, a;,;, > 0, and 292/ < 0. We now may assume that 220 > 0
and zJ° < 0. Define Y = (ym)nxn = :wsT where z is an n dimensional vector with the i-th
entry being —27° and jo-th entry being 2% and all other entries being 0. Y of course is an
element of CP"™. Now we prove Y is also an element of F. The conclusion that Y € Fys
follows from the fact that only nonzero entries of Y are ¥iyios Yjojor Yiojo a0d Yjoio, and
(i0,70) & IJ due to a;yi, > 0, ajyi, > 0, aiyj, > 0 and ajy;, > 0. To prove that Y € Fp, we
consider

Q'YQ=Q"zz"Q

T .. T
= (z1,22,...,2Tpn) xx" (T1,Z2,...,Ty)
T
l,lloxjo + I]O zo Illoxjo + I,JO ;0
—z xlo —|—x7° “’ —zxlo + xjo Yo
—z,° 19:70 + 2’ 719510 —z,0 qxlo 4 gl a0
0 0
(B 0
0 0/’
where
’L 'Z T
xl 1:]°+x v xl xjo—l—m o
.70 ZO ]D 7/0
—zdxlo + xl° —zalo 4+ xl° I
B= . . e P,
20 Jo io Jo
—X, 1T —|—a:n 1z —X, 1Ty, —|—In 1x

Therefore, Y = QQTYQQT = Q (LO3 8) QT € Fp. Hence, 0 #Y € FNCP"™ showing that

FNCP™ # {0} and is a face of CP". O

In [8], it was stated that there does not exist A € Ext(P" N N™) with rank(A) = 2.
This statement can be viewed as a corollary of the following theorem.

Theorem 4.11. Suppose F is a face of P" NN, which is an intersection of a face Fp
in P™ of the form {Q <A011 8) QT ‘ A € 732} with a face Fpnr in N™. Here Q is an
orthogonal matriz. Then F NCP"™ # {0} and is a face of CP".

Proof. Let B = (bij)nxn € relint(F). Then rank(B) < 2. If rank(B) = 1, then we know
that B € CP". Hence, the conclusion holds.

Now consider rank(B) = 2. If b;; > 0 for all 1 <4, j <n, then B is the intersection of a
cone in P" with N™. Hence, by Theorem 4.8 we know that the conclusion of the theorem
holds.

If for some b;; = 0, then by the symmetric property of B we know b;; = 0. If all nonzero
rows or columns have no zero entry, that is, a zero entry only occurs in a row or a column,
whose entries are all zero, then we can delete the rows and columns with all 0 entries and a
similar argument as in the previous case shows that the conclusion of the theorem holds.

Now we suppose that there is no row or column with all zero entries. Assume there is
a zero entry appearing in a nonzero row and a nonzero column, we assume that row to be
the io-th row, namely B, , and let J = {j € {1,2,...,n} | b;,; = 0}. Then J # 0. Since
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rank(B) = 2, there is another row which is linearly independent to B;,. We can choose any
j € J. The rows B;, and B; for a fixed j € J must be linearly independent due to the fact
that bioio > 0, bjj > 0, and bioj =0.

Next we will find where zero entries appear in B, so we can construct a nonnegative
matrix, which is in F and eventually will be proved to be a completely positive matrix.

For a fixed j € J, if by > 0 and b, > 0 for some 1 < k < n, then b, > 0 for all
1 <m < n due to the fact that aB;, + 8B; = By, and by, = abiyiy, bmy = Bbjj, hence,
a > 0 and 8 > 0. Therefore, when b;,;, > 0 and b;, > 0, entries in the k-th row and k-th
column are all nonzero. If b, > 0, b = 0, and by, = 0 for some p # j, because B;, and
Bj form a basis of the row space of B, we obtain that the p-th row is a multiple of j-th
row. Hence, p-th column of B is a multiple of j-th column of B because B is a symmetric
matrix. This shows that b;,, is a multiple of b;,;, which is zero. Hence, all zero entries of
B should be in the k-th row or k-th column with k € J. Therefore, by the assumption that
B € relint(F) we obtain BZ;BZ-0 € Fnr. However, by the same argument as the one in the
proof of the previous theorems, we know Bij(; B;, € Fp. The conclusion that Bij; B;, € CP"
is straightforward. Therefore, we prove F NCP" # {0} and is a face of CP". O

Corollary 4.12. Let A be a doubly nonnegative symmetric matriz with rank k. If the ray
generated by A is an extreme ray in N™ N'P", then k # 2.

Proof. We prove it by contradiction. Suppose that & = 2. Then there is a orthogonal

matrix @ such that A = Q (DOH 8) QT, where Dy, = (/})1 )\O) with Ay > 0 and Ay > 0.
2

Therefore, the ray generated by A can be viewed as an intersection of a face in P" of

the form {Q AOH 8 QT ‘ A € 732} and a face in N™. By Theorem 4.11, we know

FNCP" # {0} and is a face of CP™. This shows that A € CP". But a ray in CP" must be
generated by a matrix with rank 1, which contradicts the assumption that k£ = 2. O

In Theorem 4.11, we worked with a face, which roughly speaking is an intersection of
P? with a face in N™. Next theorem studies the face, which is an intersection of P with a
face in N'™.

Theorem 4.13. Suppose F is a face of P* N N™, which is an intersection of a face Fp
in P™ of the form {Q <A011 8) QT | Ay € PB} with a face Fpar in N™. Here Q is an

orthogonal matriz. If F NCP"™ = {0}, then F is a polyhedral cone.

Proof. Let B € relint(F). Then rank(B) < 3. If rank(B) = 1, then B € CP", if rank(B) =
2, then we know that F NCP™ # {0} by Theorem 4.11. So if FNCP" = {0}, we must have
rank(B) = 3. Actually for any C € F, rank(C) = 3. This can be proved by the following
argument. If rank(C) = 1, then C' € CP" contradicts the assumption that FNCP" = {0}. If
rank(C) = 2, then we have a face F¢ of P™ with C' in its relative interior. We have Fo C Fp
by a straightforward argument. F¢& should be of the form described as in Theorem 4.11. By
Theorem 4.11, we know that Fo N Fa NCP™ # {0}. Since F¢ C Fp and F = Fp N Fy,
we have F N CP™ # {0}. Therefore, rank(C) = 2 is impossible. Hence, rank(C) = 3 for
all C' € F. Therefore, F can be viewed as an intersection of Fas with the set of the form
A11 0 T
el o)

matrices.

Aq € ’Pi’_}, where Pi”_ represents the cone of 3 x 3 positive definite
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Because N™ has finitely many faces, the number of faces that is the intersection of a face

of N with the set of the form {Q (A(;l 8) QT ‘ Ay € ’Pi} must be finite. This shows
that there are finitely many subfaces of F showing that F is a polyhedral cone. O

When n = 5, we can prove that F in Theorem 4.13 becomes an extreme ray. We state
this result as a theorem.

Theorem 4.14. Suppose F is a face of P° NN, which is the intersection of a face Fp
in P> of the form {Q (AOH 8) QT | Ay € 733} with a face Fpr in N°. Here Q is an

orthogonal matriz. If F NCP® = {0}, then F is an extreme ray.

Proof. Since F can be written as the convex hull of extreme rays, we may assume that A
and B generate two extreme rays in F. By Theorem 4.13 we know the rank for both A and
B is 3. Since both A and B are in Fp, we can write A and B as follows:

A=Q <A011 8) QT for some Ay € Pi,

and

B=Q <Bél 8) QT for some By, € 773_.

Let Q = (vy,22,...,25), v; € R® for i = 1,2,...,5. Then Ax; = Bx; = 0 for i = 4,5.
Since @ is orthogonal, we know that x4 and x5 are linearly independent. Hence, the row
vectors of A and also the row vectors of B span the space (span(z4,5))". Since rank(A) =
rank(B) = 3, we know that three linearly independent row vectors of A form a basis of the
row space of A. Because we assumed that A and B are both extreme, by a theorem in [§]
we know that there are at least 5 zero entries in the upper triangular part of both A and
B and also the graphs associated with A and B must be cyclic. Without loss of generality,

ai1 a2 0 0 a5
a1 a2 as 0 0
we may assume that A= 0 a3z azz3 azgs 0 |. We see that the first three rows are
0 0 a43 aaqa ags
as1; 0 0 asy ass

linearly independent, and hence form a basis of the row space of A and also the row space
of B. From here, we can prove that B = AA for some A > 0. Therefore, all the extreme
matrix on the face F is a multiple of A showing that F is an extreme ray. O

The following theorem states that all faces in the 5 x 5 doubly nonnegative cone except
certain extreme rays must intersect the 5 x 5 completely positive cone at more than the
origin.

Theorem 4.15. Let F be a face of PPN, which is not an extreme ray in (P> NN®)\CP°.
Then F NCP® # {0} and is a face of CP°.

Proof. Since F is a face of PP NA®, F can be written as the intersection of a face Fps in N

with a face Fp in P5. Let Fp = {Q <AO“ 8) QT | Ay € Pk} with Q being orthogonal.

If £k = 1, we can easily see that F is an extremal ray in CP®°. For k = 2,3,4,5, we use
Theorem 4.11, 4.14, 4.10, and 4.7, respectively, to show that the conclusion holds. O
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Now, we conclude this section by providing an alternative proof of a theorem in [5].

Theorem 4.16. Every doubly nonnegative matriz A, which is not completely positive, can

be expressed as T + E with T € CP® and E € Ext(P®> N N®)\Ext(CP®).

Proof. Let F; be the minimal face in P° N A/® which contains A. If F; is an extreme ray
which is not in CP®, then we set T =0 and E = A.

If F) is not an extreme ray, then by Theorem 4.15 we know that F; N CP® # {0}. Let
{0} # T € FiNCPS. Since aA € relint(F) for any a > 0, the ray starting at T and passing
through aA for some « > 0 should intersect the boundary of F;, namely B. Otherwise, any
point on the ray starting at 7' and passing through awA must be in F; for any a > 0, which
implies that for any n € N, we have n x LA+ (1—n)T € Fy. Hence, 24+ (2 —1)T € Fy,
which shows —T' € F; contradicting the fact that the doubly nonnegative cone is pointed.
Since A is in the line segment with end points T and B, we can write A = AT+ (1 — A\)B
for some 0 < A < 1. Let 7} = AT and A; = (1 — A\)B. Then T} € CP® and A4, is on
the boundary of ;. Now we apply the same argument to Ay, we either have A; to be an
extreme ray, then we set 7' = T; and E = A;, or we continue to have a minimal face F»
which contains Ay, then a T € CP5 and A, on the boundary of 53 are obtained. Since the
length of the longest chain of faces must be finite, this process will stop in a finite number
of steps k. Sowecanset T =T +To+---+ T and E = Ay. O

Conclusions

In this paper, we have proved a duality result between maximal faces of a proper cone and
minimal exposed faces of its dual cone. We have also presented some geometric properties
of completely positive cones in terms of doubly nonnegative cones. As an application of
these results, we have provided an alternative proof of a theorem in [5] without using a
representation of extreme rays of 5 x 5 doubly nonnegative cone. We believe these results
are new and might be used as a tool to prove other interesting results.
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