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rays of the completely positive cones. Also in [6] some maximal faces (not all maximal
faces) of the completely positive cones and their dimensions were discussed. Those maximal
faces of the completely positive cones are determined by the representations of some known
exposed rays in the copositive cones. In [5], an algebraic approach was adapted to study
the difference between the 5 × 5 doubly nonnegative cone and 5 × 5 completely positive
cone, more specifically, a representation of extreme rays of the 5 × 5 doubly nonnegative
cone was given and was used to prove the result: if a matrix is doubly nonnegative but not
completely positive, then it can be decomposed as the sum of a completely positive matrix
and an extremely bad matrix, which is an extreme doubly nonnegative matrix, but not a
completely positive matrix, with rank 3.

In this paper, we will prove a duality result between maximal faces of a convex cone K and
minimal exposed faces of K∗, the dual cone of K. This result extends a result in [6], where
the result that an exposed ray in K determines a maximal face in K∗ was proved. To the
best of our knowledge, this nice duality result has not appeared in the related literature. In
this paper, we also provide a geometric interpretation of a result in [5] by using a different
approach other than the one in [5]. Some other geometric properties of the completely
positive cones are also presented in this paper.

The paper is organized as follows: in Section 2 we provide some basic definitions and
properties associated with a convex cone, for example, we give the definitions of cones,
faces, rays, maximal faces, minimal exposed faces, etc., then we prove a duality result
between maximal faces and minimal exposed faces in this section. In Section 3, we study the
relationship between maximal faces (minimal exposed faces) of a convex cone K and maximal
faces (minimal exposed faces) of a convex subcone of K. In Section 4, we specifically study
some geometric properties of the completely positive cones in terms of doubly nonnegative
cones. We will have a discussion on which faces of doubly nonnegative cones intersect
completely positive cones for more than the origin. A geometric interpretation of a result
in [5] is given in this section. Finally in Section 5, we provide some conclusion remarks.

2 Faces of Convex Cones

Throughout this paper, we use Rn to denote the n-dimensional Euclidean space. R+ is the
set of all nonnegative real numbers. If x ∈ Rn and y ∈ Rn, then ⟨x, y⟩ or xT y is used to
represent the inner product of x and y. Rn×m is the set of all n × m matrices. For a set
L ⊆ Rn, clL, intL, relintL, and spanL are the closure of L, the set of interior points of
L, the set of relative interior points of L, and the space spanned by L, respectively. The
reader is referred to [9] for the definitions of these terms.

Let K be a convex cone in Rn. Then K can be used to define a partial order in Rn,
in other words, x ⪰K y if and only if x − y ∈ K. A convex subcone F ̸= {0n} of K is
called a face of K if x ∈ F , x ⪰K y ⪰K 0n implies y ∈ F , where 0n represents the zero
vector in Rn. A face F is exposed if it is the intersection of K and a nontrivial supporting
hyperplane, in other words, there exists a nonzero a ∈ Rn such that ⟨x, a⟩ ≥ 0 for all x ∈ K
and F = {x ∈ K | ⟨x, a⟩ = 0}. We follow the definition in [6] that ∅ and K are not exposed
faces. For a given face F of K, the complementary (or conjugate) face of F is defined to be
Fc ≡ {z ∈ K∗ | ⟨z, x⟩ = 0 for all x ∈ F} = K∗∩F⊥, where K∗ is the dual cone of K, that is,
K∗ = {y ∈ Rn | ⟨x, y⟩ ≥ 0 for all x ∈ K}, and K⊥ = K∗ ∩ (−K∗). The complementary face
of a face in K∗ is defined similarly. For a∗ ∈ K∗, we define F(K, a∗) = {x ∈ K | ⟨a∗, x⟩ = 0}.
Similarly, we define F(K∗, a) = {y∗ ∈ K∗ | ⟨a, y∗⟩ = 0} for a ∈ K. If a face F is generated
by a nonzero vector, i.e. there exists a nonzero a ∈ K such that F = {αa | α ∈ R+}, then
we call F an extreme ray. If F is an extreme ray and it is also exposed, then we call F an
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exposed ray. We use Ext(K) and Exp(K) to represent the sets of extreme rays and exposed
rays of K. Similarly, we use Ext(K∗) and Exp(K∗) to represent the sets of extreme rays and
exposed rays of K∗.

Next we list two lemmas that will be used in the proof of our duality theorem.

Lemma 2.1 ([10]). Let K be a proper convex cone (closed, pointed, and full dimensional)
and K∗ be the dual cone of K. Let F be a face of K and a ∈ relint(F). Then Fc = F(K∗, a).

Lemma 2.2 ([1, Proposition 3.3]). Let K be a proper convex cone and K∗ the dual cone of
K. Let F be a face of K. Then F is an exposed face if and only if F = (Fc)c, where (Fc)c

is the conjugate face of the face Fc.

We now give definitions of maximal faces and minimal exposed faces of a proper convex
cone. The characterizations of these faces are very helpful in understanding geometric
features of a cone.

Definition 2.3. A face F1 is a maximal face of a proper convex cone K if F1 ̸= K and there
does not exist a face F2 ̸= K such that F1 ⊂ F2.

Definition 2.4. Let L ̸= {0} be a subset of K. A minimal exposed face of K containing L is
an exposed face F1 ⊇ L such that there does not exist an exposed face F2 with F1 ⊃ F2 ⊇ L.
An exposed face F1 is a minimal exposed face of a proper convex cone K if F1 ̸= {0} and
there does not exist an exposed face F2 ̸= {0} such that F1 ⊃ F2.

Remark 2.5. A maximal face and a minimal exposed face of K∗ can be defined similarly.

The following is the main result in this section.

Theorem 2.6. Let K be a proper convex cone and K∗ the dual cone of K. Let F be an
exposed face of K. Then F is a minimal exposed face of K if and only if Fc is a maximal
face of K∗.

Proof. Let F be a minimal exposed face of K. We now prove that Fc is a maximal face
in K∗. Suppose that M is a maximal face such that Fc ⊆ M. Since M is maximal, by
Theorem 2.17 in [6], we know there is an a ∈ Ext(K) such that M = F(K∗, a) = {x∗ ∈
K∗ | ⟨a, x∗⟩ = 0}. Therefore, M is an exposed face. Since Fc ⊆ M and F is exposed, we
obtain that F = (Fc)c ⊇ Mc by Lemma 2.2. Because F is a minimal exposed face, we must
have F = Mc. Therefore, Fc = (Mc)c = M, where the last equality is due to the fact that
M is exposed and Lemma 2.2. Hence, Fc is a maximal face in K∗.

Next we prove that if Fc is a maximal face in K∗, then F is a minimal exposed face in K.
Suppose thatN ̸= {0} is an exposed face in K withN ⊆ F . ThenN c ⊇ Fc. The assumption
that Fc is a maximal face gives that N c = Fc. Therefore, N = (N c)c = (Fc)c = F by
Lemma 2.2. So F is a minimal exposed face.

Remark 2.7. The proof of Theorem 2.6 is easy. However, Theorem 2.6 gives a nice duality
result. It provides a one-to-one correspondence between the set of maximal faces (minimal
exposed faces) of K and the set of minimal exposed faces (maximal faces) of K∗. Also the
result that the conjugate face of an exposed ray is maximal appearing in [6] becomes a
corollary of this theorem.
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3 Subcones

Let K be a proper cone in Rn and S a convex subcone of K. In this section, we study how
maximal faces (minimal exposed faces) of K and S are related. Like in [5], we would like
to characterize the completely positive cones and copositive cones using the knowledge of
some well studied cones, such as semidefinite cones, positive cones, and doubly nonnegative
cones. Among the list of these cones, some are convex subcones of the others. Therefore,
the results proved in this section can be applied to the next section, which is mainly on
completely positive cones.

It is easy to see that the following are true.

1. If a ∈ S generates an extreme (exposed) ray of K, then a also generates an extreme
(exposed) ray of S. The converse statement may not be true.

2. If a ∈ S generates an exposed ray of K, then the conjugate faces of {λa | λ ≥ 0} in
K and S are maximal in K∗ and S∗, respectively. We denote them by Mk and Ms.
Then we have that Mk = Ms ∩ K∗.

3. If F is a minimal exposed face of K and F ⊆ S, then F is still an exposed face in S.
However, F may not be minimal exposed in S.

In general, we have the following theorem.

Theorem 3.1. Let Fk and Fs be minimal exposed faces of K and S, respectively. Let
Fc

k be the conjugate face of Fk in K∗ and Fc
s be the conjugate face of Fs in S∗, that is,

Fc
k = K∗ ∩ F⊥

k and Fc
s = S∗ ∩ F⊥

s . Then the following are equivalent.

(i) Fk ∩ Fs ̸= {0}

(ii) Fs ⊆ Fk

(iii) Fc
k = Fc

s ∩ K∗.

Proof. Since Fk and Fs are minimal exposed faces of K and S, we know there exists k∗ ∈ K∗

and s∗ ∈ S∗ such that Fk = F(K, k∗) and Fs = F(S, s∗). So we have

Fk ∩ Fs = F(K, k∗) ∩ F(S, s∗)
= {k ∈ K | ⟨k, k∗⟩ = 0} ∩ {s ∈ S | ⟨s, s∗⟩ = 0}
= {k ∈ S | ⟨k, k∗⟩ = 0} ∩ {s ∈ S | ⟨s, s∗⟩ = 0}
= {s ∈ S | ⟨s, k∗ + s∗⟩ = 0},

which shows that if Fk ∩Fs ̸= {0}, then Fk ∩Fs is also an exposed face in S due to the fact
that k∗ + s∗ ∈ S∗. The assumption that Fs is a minimal exposed faces of S indicates that
Fk ∩ Fs = Fs. Therefore, (i) implies (ii). Hence, (i) is equivalent to (ii).

Now we show that (ii) and (iii) are equivalent. We first show that (ii) implies (iii). Since
Fs ⊆ Fk, we obtain that Fc

k = K∗∩F⊥
k ⊆ K∗∩F⊥

s = K∗∩S∗∩F⊥
s = Fc

s ∩K∗. Because Fc
s is

a face of S∗, we know that Fc
s∩K∗ is a face of K∗. By Theorem 2.6, we know Fc

k is a maximal
face, therefore, we obtain that Fc

k = Fc
s ∩K∗. We next show that (iii) implies (ii). This can

be done by Fk = (Fc
k)

c = K∩ (Fc
k)

⊥ = K∩ (Fc
s ∩K∗)⊥ ⊇ K∩ (Fc

s )
⊥ ⊇ S ∩ (Fc

s )
⊥ = Fs.

A dual result of Theorem 3.1 by using Theorem 2.6 can be stated as follows. The proof
is straightforward, hence omitted.
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Theorem 3.2. Let Fk and Fs be maximal faces of K and S, respectively. Let Fc
k be the

conjugate face of Fk in K∗ and Fc
s be the conjugate face of Fs in S∗, that is, Fc

k = K∗ ∩F⊥
k

and Fc
s = S∗ ∩ F⊥

s . Then the following are equivalent.

(i) Fc
k ∩ Fc

s ̸= {0}

(ii) Fc
k ⊆ Fc

s

(iii) Fs = Fk ∩ S.

Because a maximal face Fk of K should be on the boundary of K, so if Theorem 3.2 (iii)
holds, then the maximal face Fs of S should also be on the boundary of K. This raises an
interesting question: can any maximal face of S on the boundary of K be written as the
intersection of a maximal face in K with S? In general, the answer is negative. However, if
we assume that S is proper, then we have the following result.

Proposition 3.3. Assume further that S is proper. Consider a face Fs of S. If Fs is on the
boundary of K and Fs is maximal, then Fs can be written as the intersection of a maximal
face Fk of K with S.

Proof. Let Fk be the maximal face in K that contains Fs. Then Fk ∩ S ̸= S due to the
assumption that K and S are proper. Therefore, we have Fk ∩ S ⊃ Fs. Since Fs is a
maximal face of S and Fk ∩ S is a face of S, we have Fk ∩ S = Fs.

Now let Fk and Fs be maximal faces of K and S as in Proposition 3.3, respectively.
By Theorem 2.6, we know that Fc

k and Fc
s are minimal exposed faces of K∗ and S∗ . By

Theorem 3.2, if Fs = Fk ∩ S, we have Fc
k ⊆ Fc

s . On the other hand, if Fs is not on the
boundary of K, even though we assume that Fs is maximal, we cannot write Fs as the
intersection of a maximal face Fk of K with S. Hence, in the case that Fs is not on the
boundary of K, by Theorem 3.2, we know that the intersection of Fc

s with any minimal
exposed faces in K∗ is {0}. Specifically, if Fc

s intersects K∗ only at 0, then Fs is not on
the boundary of K. An illustrative example will be given in the next section after various
matrix cones are introduced.

Let K1 and K2 be two proper cones in Rn. Then K1 ∩ K2 is a convex cone (may not be
proper). The next theorem, which is closely related to Proposition 2.1 in [11], characterizes
faces in K1 ∩ K2 in terms of faces in K1 and faces in K2.

Theorem 3.4. Any face in K1 ∩ K2 must be either an intersection of a face in K1 with a
face in K2, or an intersection of a face in K1 with K2, or an intersection of K1 with a face
in K2.

Proof. Suppose that F is a face in K1∩K2. Then F ⊂ K1 and F ⊂ K2. Let Fk1
and Fk2

be
faces in K1 and K2, respectively, which are smallest faces containing relint(F). We should
note here that if relint(F) ⊆ int(K1), then Fk1

= K1. Similarly, if relint(F) ⊆ int(K2),
then Fk2 = K2. It is easy to see that Fk1 ∩ Fk2 ⊇ F .

Now we prove that Fk1 ∩Fk2 ⊆ F . Let x ∈ Fk1 ∩Fk2 and y ∈ relint (F). Since we know
that Fk1

is the smallest face in K1 containing F , we know that y ∈ relint(Fk1
). Therefore,

λ1x+ (1− λ1)z1 = y for some 0 < λ1 < 1 and z1 ∈ Fk1
. Similarly, y ∈ relint(Fk2

) implies
that λ2x+(1−λ2)z2 = y for some 0 < λ2 < 1 and z2 ∈ Fk2

. Since both z1 and z2 are on the
line connecting x and y, we may simply set z1 = z2 = z. Hence, z ∈ Fk1

∩ Fk2
⊆ K1 ∩ K2.

Because F is a face in K1 ∩ K2, we obtain that x ∈ F due to λ2x + (1 − λ2)z = y ∈ F .
Because x is arbitrarily chosen, we have that Fk1 ∩ Fk2 = F .
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A facially exposed cone is a cone with the property that all its faces are exposed. The next
corollary states that the intersection of two facially exposed cones is still facially exposed,
which is a well-known result. The proof is straightforward using Theorem 3.4.

Corollary 3.5. If K1 and K2 are facially exposed, then K1 ∩ K2 is also facially exposed.
In particular, the doubly nonnegative cone is facially exposed, where the doubly nonnegative
cone is the intersection of the positive semidefinite cone and the cone of all nonnegative
matrices.

4 Completely Positive Cones, Copositive Cones, etc.

We first give the definitions of various matrix cones, which will be used in this section.
Pn–the cone of all n× n positive semidefinite matrices.
Nn–the cone of all n× n nonnegative symmetric matrices, that is, the cone of all sym-

metric matrices with nonnegative entries.
CPn–the cone of all n× n completely positive matrices. A completely positive matrix is

a positive semidefinite matrix, which can be written as XXT with X being a nonnegative
matrix.

COPn–the cone of all copositive matrices. A matrix A is copositive if xTAx ≥ 0 for all
x ∈ Rn

+, the set of all nonnegative vectors.
Pn∩Nn–doubly nonnegative cone consisting of all n×n matrices, which are nonnegative

and positive semidefinite.
The following proposition (see [4]) gives the duals of these cones.

Proposition 4.1. Pn and Nn are self-dual. CPn and COPn are dual to each other. Pn∩Nn

and Pn +Nn are dual to each other.

In the proofs of various results in this paper, we need descriptions of faces for the cone
Pn of semidefinite matrices and the cone Nn of nonnegative symmetric matrices. We list
them as lemmas below.

Lemma 4.2. Let A = (aij) be a n × n nonnegative symmetric matrix. Then the minimal
face of Nn containing A can be represented by FN (A) = {(bij) ∈ Nn | bij = 0 for any 1 ≤
i, j ≤ n, such that aij = 0}.

Lemma 4.3. Let A be positive semidefinite and λ1 > 0, λ2 > 0, . . . , λk > 0 be all positive

eigenvalues of A. Let Q be an orthogonal matrix such that A = Q

(
D 0
0 0

)
QT , where

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

. Then the minimal face of Pn containing A can be represeted by

FP(A) =

{
Q

(
B 0
0 0

)
QT

∣∣∣∣ B ∈ Pk

}
.

4.1 Minimal Exposed Faces

There are many geometric properties including characterizations of extreme rays, exposed
rays, and maximal faces of these cones that have already been discussed in the literature.
But not many discussions on minimal exposed faces of these cones have been given. Because



COMPLETELY POSITIVE AND DOUBLY NONNEGATIVE CONES 665

of Theorem 2.6, it is worth studying or characterizing minimal exposed faces of these cones.
In this section, we collect and prove some results about minimal exposed faces for Pn, Nn,
Pn ∩ Nn, Pn + Nn, and CPn. The description of minimal exposed faces of COPn seems
impossible in the meantime since a complete description of all extreme rays of COPn is not
available for n ≥ 6.

The first result we would like to present is the following proposition.

Proposition 4.4. Facially exposed cones have no other minimal exposed faces except exposed
rays.

Proof. Suppose that F is a face of a facially exposed cone K. Then F is the convex hull of
some extreme rays. Since an extreme ray is also a face, by the assumption that K is facially
exposed, we know the extreme rays contained in F must be exposed, which shows that F
must be an exposed ray.

Since we know that Pn, Nn, and Pn ∩ Nn are facially exposed, the minimal exposed
faces for these cones must be exposed rays. Because whether a completely positive cone is
facially exposed is still an open problem ([2]), we cannot apply Proposition 4.4 directly to the
completely positive cones. However, we know all extreme rays are exposed in the completely
positive cones [6], so we can apply the same argument as in the proof of Proposition 4.4
to show that no other minimal exposed faces exists in the completely positive cones except
exposed rays. Now we work with the cone Pn+Nn. Note that since Pn+Nn is not facially
exposed (see [6, Figure 1]), we cannot apply Proposition 4.4 to this cone directly. However,
we still have the same result, which is stated as a proposition below.

Proposition 4.5. Pn +Nn has no other minimal exposed face except exposed rays.

Proof. First, we can see that every extreme ray of Pn + Nn should be either extreme in
Pn or extreme in Nn. For extreme rays in Pn, we must have the form {αxxT | α ∈ R+}
with x ∈ Rn. If x ∈ Rn\(Rn

+ ∪ (−Rn
+)), then by Theorem 4.6 in [6] we know that xxT is

exposed in the copositive cone, and hence, it is exposed in Pn+Nn. If x ∈ Rn
+ with at least

two nonzero entries, then we can easily rewrite it as a sum of two nonnegative matrices.
Therefore, xxT with x ∈ Rn

+ having at least two nonzero entries does not give an extreme
ray in Pn +Nn. If x ∈ Rn

+ with one nonzero entry, then we can prove in a similar manner
as in the proof of Theorem 4.4 in [6] that xxT with x ∈ Rn

+ does not give an exposed ray,
only extreme ray.

For extreme rays in Nn\Pn, it has the form (eie
T
j + eje

T
i ) with i ̸= j, where ei is the

vector such that the i-th entry is 1 and the other entries are 0. By Theorem 4.6 in [6] again,
we know that (eie

T
j + eje

T
i ) with i ̸= j is exposed in the copositive cone, and hence, it is

exposed in Pn +Nn. Therefore, the only non-exposed extreme rays in Pn +Nn are of the
form {αeieTi | α ∈ R+}.

Now suppose there is an exposed minimal face F in Pn +Nn, which is not an exposed
ray. Then F should not contain an exposed ray. Therefore, F can only be written as the
convex hull of non-exposed extreme rays, which are of the form {αeieTi | α ∈ R+}. Without
loss of generality, we may assume

F =


(
A 0
0 0

) ∣∣∣∣∣∣∣∣∣ A =


a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . ak

 , ai ≥ 0, for i = 1, 2, . . . , k

 . (4.1)
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Since we assume that F is exposed, we know there is a matrix M ∈ (Pn+Nn)∗ = Pn ∩Nn

such that F = {N ∈ Pn + Nn | ⟨M,N⟩ = 0}. Because of (4.1) and that M is doubly

nonnegative, we know that M can be expressed as

(
0 0
0 B

)
, where B is a (n− k)× (n− k)

double nonnegative matrix. Because ⟨M, e1e
T
n + ene

T
1 ⟩ = 0, we know that F ̸= {N ∈

Pn +Nn | ⟨M,N⟩ = 0}. Therefore, we prove that F is not exposed showing that the only
minimal exposed faces of Pn +Nn are exposed rays.

4.2 Completely Positive Cones as Subcones of Doubly Nonnegative Cones

The cone of completely positive matrices is a convex subcone of the doubly nonnegative
cones, that is, Pn ∩ Nn ⊇ CPn. What is interesting is the fact that if A ∈ CPn, then
{αA | α ∈ R+} ∈ Ext (Pn ∩ Nn) if and only if A has rank 1 (Page 1374, [8]). However,
when A has rank 1, {αA | α ∈ R+} is also an extreme ray in CPn. Actually, Ext(CPn) ⊆
Ext(Pn∩Nn). Both CPn and Pn∩Nn are full dimensional cones, that is, they have interior
points. At a first glance, it seems that CPn = Pn ∩Nn. However, some differences between
CPn and Pn ∩Nn have already been discovered in [5, 8] for n ≥ 5.

Of course, all the results proved in Section 3 can be applied to Pn ∩ Nn and its sub-
cone CPn. We start this section by providing an example to illustrate Theorem 3.2 and
Proposition 3.3.

Example 4.6. The Horn matrix (see [5]) is in COP5 but not in P5+N 5. The ray generated
by the Horn matrix is exposed in COP5. Therefore, this exposed ray gives a maximal face
in CP5. Since the exposed ray generated by the Horn matrix intersects P5 + N 5 only at
the origin, so by Proposition 3.3 and Theorem 3.2, we know the maximal face in CP5 given
by the exposed ray of the Horn matrix is not an intersection of a maximal face in P5 ∩N 5

with CP5. This shows that the maximal face in CP5 given by the exposed ray of the Horn
matrix should pass through the interiors of P5 ∩N 5.

Now we turn to the study of some faces of Pn ∩ Nn. Specifically, we are interested in
those faces of Pn ∩ Nn whose intersection with the completely positive cone is more than
the origin. Since any face in Pn ∩Nn is either an intersection of a face in Pn with a face in
Nn, or an intersection of a face in Pn with Nn, or an intersection of Pn with a face in Nn,
we consider various cases.

The first result along this line is for a face, which is an intersection of a face in Nn with
Pn.

Theorem 4.7. Suppose that F is a face in Pn ∩N n, which is an intersection of a face FN
in Nn with Pn. Then F ∩ CPn ̸= {0} and is a face of CPn.

Proof. If F ∩ CPn ̸= {0}, then obviously we know F ∩ CPn is a face of CPn. Therefore, we
only need to show that F ∩ CPn ̸= {0}. In other words, F contains a completely positive
matrix.

Since F is a face in Pn ∩ Nn, we know that F ̸= {0}. This shows there is a matrix
A = (aij)n×n in F such that at least one entry on the main diagonal should be strictly
positive. We may assume that a11 > 0. We let Y = (1, 0, . . . , 0)T (1, 0, . . . , 0). Because
A ∈ FN and a11 > 0, by Lemma 4.2 we obtain that Y ∈ FN . It is also obvious that
Y ∈ Pn. We, therefore, obtain that Y ∈ F . The fact that Y ∈ CPn is directly from the
definition of Y . Therefore, F ∩ CPn ̸= {0} and is a face of CPn.

A similar result is also true for a face, which is an intersection of a face in Pn with Nn.
We have the following theorem.
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Theorem 4.8. Suppose that F is a face in Pn ∩Nn, which is an intersection of a face FP
in Pn with Nn. Then F ∩ CPn ̸= {0} and is a face of CPn.

Proof. Let A ∈ relint(F). Since A is positive semidefinite, there is an orthogonal matrixQ =

(x1, x2, . . . , xn) and λ1 > 0, λ2 > 0, . . . , λk > 0 such that A = Q

(
D 0
0 0

)
QT , where D =

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λk

, which is equivalent to say that Axi = λixi for 1 ≤ i ≤ k and Axi = 0

for i ≥ k + 1. Because A ∈ relint(F), we can also set FP =

{
Q

(
B 0
0 0

)
QT

∣∣∣∣ B ∈ Pk

}
.

Because A ̸= 0, there exists a row of A whose entries are not all 0. Without loss of
generality, we assume the entries in the first row A1 are not all zero. We let Y = AT

1 A1.
Since A ∈ Nn, of course, we have Y ∈ Nn. Now we prove that Y ∈ FP . We know
QTY Q = QTAT

1 A1Q = (A1Q)T (A1Q) = (A1x1, A1x2, . . . , A1xn)
T (A1x1, A1x2, . . . , A1xn).

However, Axi = 0 for i ≥ k + 1 gives that A1xi = 0 for i ≥ k + 1. Therefore,

QTY Q = (A1x1, A1x2, . . . , A1xk, 0 . . . , 0)
T (A1x1, A1x2, . . . , A1xk, 0 . . . , 0)

=

(
(A1x1, A1x2, . . . , A1xk)

T (A1x1, A1x2, . . . , A1xk) 0
0 0

)
.

Now we get Y = Q

(
(A1x1, A1x2, . . . , A1xk)

T (A1x1, A1x2, . . . , A1xk) 0
0 0

)
QT showing that

Y ∈ FP , which implies that Y ∈ F . Because Y is obviously in CPn, we obtain that
F ∩ CPn ̸= {0} and is a face of CPn.

We next consider a face, which is an intersection of a maximal face of Nn with a face in
Pn.

Theorem 4.9. Suppose that F is a face in Pn ∩Nn, which is an intersection of a maximal
face of Nn with a face in Pn. Then F ∩ CPn ̸= {0} and is a face of CPn.

Proof. Let F = FN ∩FP , where FN is a maximal face in Nn and FP is a face in Pn. Since
FN is maximal in Nn, we can write

FN = {(aij)n×n ∈ Sn | aij ≥ 0, and for some fixed i0 and j0, ai0j0 = aj0i0 = 0}.

Because FP is a face in Pn, there is a 1 ≤ k < n and an orthogonal matrix Q such that

FP =

{
Q

(
B 0
0 0

)
QT

∣∣∣∣ B ∈ Pk

}
.

Since F is a face of FN ∩ FP , we can choose 0 ̸= A ∈ relint(F). Then A ∈ FN gives
ai0j0 = aj0i0 = 0. Because F = FN ∩ FP , we know that there is B ∈ Pk such that

A = Q

(
B 0
0 0

)
QT . So we have AQ = Q

(
B 0
0 0

)
. If we let Q = (x1, x2, . . . , xn) with

xi ∈ Rn for i = 1, 2, . . . , n, then we have Axp = 0 for p = k + 1, . . . , n. Now we let
Ai0 = (ai01, ai02, . . . , ai0n), that is, the i0-th row of A. If Ai0 is the 0 vector, then all the
entries in the i0-th row and i0-th column of all the matrices in F must be zero. So we can
delete the i0-th row and i0-th column for all the matrices in F , and therefore, F can be



668 G. YU AND Q. ZHANG

viewed as a face in Pn−1 ∩ Nn−1, which is the intersection of Nn−1 with a face in Pn−1.
By Theorem 4.8, we know that the conclusion is true.

Now we assume that Ai0 is not the 0 vector. Then it is easy to see that Y = AT
i0
Ai0 ∈ FN .

Because

QTY Q = QTAT
i0Ai0Q

= (Ai0x1, Ai0x2, . . . , Ai0xn)
T (Ai0x1, Ai0x2, . . . , Ai0xn)

= (Ai0x1, Ai0x2, . . . , Ai0xk, 0, . . . , 0)
T (Ai0x1, Ai0x2,

. . . , Ai0xk, 0, . . . , 0)( because Axp = 0 for p = k + 1, . . . , n)

=

(
B1 0
0 0

)
( with B1 ∈ Pk),

we have that Y = Q
[
QTY Q

]
QT = Q

(
B1 0
0 0

)
QT with B1 being a k× k positive semidef-

inite matrix, which implies that Y ∈ FP . Because we already know that Y = AT
i0
Ai0 ∈ FN ,

we hence obtain that Y ∈ F . However, with the definition of Y , we know Y ∈ CPn. So we
prove that F ∩ CPn ̸= {0}.

The same conclusion can be made for a face, which is an intersection of a face in Nn

with a maximal face of Pn. We have the following theorem.

Theorem 4.10. Suppose that F is a face in Pn ∩Nn, which is an intersection of a face in
Nn with a maximal face of Pn. Then F ∩ CPn ̸= {0} and is a face of CPn.

Proof. Suppose that F is the intersection of a face FN in Nn with a maximal face FP in
Pn. Since FP is a maximal face in Pn, there is an orthogonal matrix Q such that

FP =

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ Pn−1

}
.

We assume Q = (x1, x2, . . . , xn), xi ∈ Rn for i = 1, 2, . . . , n.
Since FN is a face of Nn, without loss of generality, FN can be written as follows:

FN = {(bij)n×n ∈ Nn | bij = 0 for (i, j) ∈ IJ},

where IJ is a subset of {(i, j) | 1 ≤ i, j ≤ n} such that (i, i) /∈ IJ and if (i, j) ∈ IJ then
(j, i) ∈ IJ . The reason we assume that (i, i) ̸∈ IJ for all 1 ≤ i ≤ n is that if (i, i) ∈ IJ for
some 1 ≤ i ≤ n, then bii = 0, under which when we consider the intersection of the face FN
with a maximal face of FP , we must have all the entries in the i-th row and i-th column for
all matrices in F being 0 due to the positive semidefinite requirement of matrices. Hence, we
can just delete the i-th row and i-th column and reduce the discussion to the case involving
(n−1)×(n−1) matrices. So the conclusion of the theorem can be proved by using Theorem
4.7.

Let A = (aij)n×n ∈ relint(F). By the same argument as above, we can assume that
aii > 0 for 1 ≤ i ≤ n. A ∈ FP implies that Axn = 0. Let xn = (x1

n, x
2
n, . . . , x

n
n)

T . Since A is
not the 0 matrix and xn is not the 0 vector, with the assumption that aii > 0 for 1 ≤ i ≤ n,
we conclude that there is i0 and j0 with 1 ≤ i0 ≤ n, 1 ≤ j0 ≤ n, and i0 ̸= j0, such that
ai0j0 > 0 and xi0

n xj0
n < 0. Indeed, xn ̸= 0 implies that there is xi0

n ̸= 0 for some 1 ≤ i0 ≤ n.
By the fact that Axn = 0, we obtain that

∑n
j=1 ai0jx

j
n = ai0i0x

i0
n +

∑n
j=1,j ̸=i0

ai0jx
j
n = 0.

Since ai0i0 > 0, ai0j ≥ 0 for 1 ≤ j ≤ n, and xi0
n ̸= 0, we know that there is j0 with 1 ≤ j0 ≤ n
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and j0 ̸= i0, such that xj0
n ̸= 0, ai0j0 > 0, and xi0

n xj0
n < 0. We now may assume that xi0

n > 0
and xj0

n < 0. Define Y = (yij)n×n = xxT , where x is an n dimensional vector with the i0-th
entry being −xj0

n and j0-th entry being xi0
n and all other entries being 0. Y of course is an

element of CPn. Now we prove Y is also an element of F . The conclusion that Y ∈ FN
follows from the fact that only nonzero entries of Y are yi0i0 , yj0j0 , yi0j0 and yj0i0 , and
(i0, j0) /∈ IJ due to ai0i0 > 0, aj0j0 > 0, ai0j0 > 0 and aj0i0 > 0. To prove that Y ∈ FP , we
consider

QTY Q = QTxxTQ

= (x1, x2, . . . , xn)
TxxT (x1, x2, . . . , xn)

=


−xi0

1 xj0
n + xj0

1 xi0
n

−xi0
2 xj0

n + xj0
2 xi0

n
...

−xi0
n−1x

j0
n + xj0

n−1x
i0
n

0




−xi0

1 xj0
n + xj0

1 xi0
n

−xi0
2 xj0

n + xj0
2 xi0

n
...

−xi0
n−1x

j0
n + xj0

n−1x
i0
n

0



T

=

(
B 0
0 0

)
,

where

B =


−xi0

1 xj0
n + xj0

1 xi0
n

−xi0
2 xj0

n + xj0
2 xi0

n
...

−xi0
n−1x

j0
n + xj0

n−1x
i0
n




−xi0
1 xj0

n + xj0
1 xi0

n

−xi0
2 xj0

n + xj0
2 xi0

n
...

−xi0
n−1x

j0
n + xj0

n−1x
i0
n


T

∈ Pn−1.

Therefore, Y = QQTY QQT = Q

(
B 0
0 0

)
QT ∈ FP . Hence, 0 ̸= Y ∈ F ∩CPn showing that

F ∩ CPn ̸= {0} and is a face of CPn.

In [8], it was stated that there does not exist A ∈ Ext(Pn ∩ Nn) with rank(A) = 2.
This statement can be viewed as a corollary of the following theorem.

Theorem 4.11. Suppose F is a face of Pn ∩ Nn, which is an intersection of a face FP

in Pn of the form

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ P2

}
with a face FN in Nn. Here Q is an

orthogonal matrix. Then F ∩ CPn ̸= {0} and is a face of CPn.

Proof. Let B = (bij)n×n ∈ relint(F). Then rank(B) ≤ 2. If rank(B) = 1, then we know
that B ∈ CPn. Hence, the conclusion holds.

Now consider rank(B) = 2. If bij > 0 for all 1 ≤ i, j ≤ n, then B is the intersection of a
cone in Pn with Nn. Hence, by Theorem 4.8 we know that the conclusion of the theorem
holds.

If for some bij = 0, then by the symmetric property of B we know bji = 0. If all nonzero
rows or columns have no zero entry, that is, a zero entry only occurs in a row or a column,
whose entries are all zero, then we can delete the rows and columns with all 0 entries and a
similar argument as in the previous case shows that the conclusion of the theorem holds.

Now we suppose that there is no row or column with all zero entries. Assume there is
a zero entry appearing in a nonzero row and a nonzero column, we assume that row to be
the i0-th row, namely Bi0 , and let J = {j ∈ {1, 2, . . . , n} | bi0j = 0}. Then J ̸= ∅. Since
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rank(B) = 2, there is another row which is linearly independent to Bi0 . We can choose any
j ∈ J . The rows Bi0 and Bj for a fixed j ∈ J must be linearly independent due to the fact
that bi0i0 > 0, bjj > 0, and bi0j = 0.

Next we will find where zero entries appear in B, so we can construct a nonnegative
matrix, which is in F and eventually will be proved to be a completely positive matrix.

For a fixed j ∈ J , if bi0k > 0 and bjk > 0 for some 1 ≤ k ≤ n, then bmk > 0 for all
1 ≤ m ≤ n due to the fact that αBi0 + βBj = Bm and bmi0 = αbi0i0 , bmj = βbjj , hence,
α ≥ 0 and β ≥ 0. Therefore, when bi0k > 0 and bjk > 0, entries in the k-th row and k-th
column are all nonzero. If bi0k > 0, bjk = 0, and bpk = 0 for some p ̸= j, because Bi0 and
Bj form a basis of the row space of B, we obtain that the p-th row is a multiple of j-th
row. Hence, p-th column of B is a multiple of j-th column of B because B is a symmetric
matrix. This shows that bi0p is a multiple of bi0j , which is zero. Hence, all zero entries of
B should be in the k-th row or k-th column with k ∈ J . Therefore, by the assumption that
B ∈ relint(F) we obtain BT

i0
Bi0 ∈ FN . However, by the same argument as the one in the

proof of the previous theorems, we know BT
i0
Bi0 ∈ FP . The conclusion that BT

i0
Bi0 ∈ CPn

is straightforward. Therefore, we prove F ∩ CPn ̸= {0} and is a face of CPn.

Corollary 4.12. Let A be a doubly nonnegative symmetric matrix with rank k. If the ray
generated by A is an extreme ray in Nn ∩ Pn, then k ̸= 2.

Proof. We prove it by contradiction. Suppose that k = 2. Then there is a orthogonal

matrix Q such that A = Q

(
D11 0
0 0

)
QT , where D11 =

(
λ1 0
0 λ2

)
with λ1 > 0 and λ2 > 0.

Therefore, the ray generated by A can be viewed as an intersection of a face in Pn of

the form

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ P2

}
and a face in Nn. By Theorem 4.11, we know

F ∩ CPn ̸= {0} and is a face of CPn. This shows that A ∈ CPn. But a ray in CPn must be
generated by a matrix with rank 1, which contradicts the assumption that k = 2.

In Theorem 4.11, we worked with a face, which roughly speaking is an intersection of
P2 with a face in Nn. Next theorem studies the face, which is an intersection of P3 with a
face in Nn.

Theorem 4.13. Suppose F is a face of Pn ∩ Nn, which is an intersection of a face FP

in Pn of the form

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ P3

}
with a face FN in Nn. Here Q is an

orthogonal matrix. If F ∩ CPn = {0}, then F is a polyhedral cone.

Proof. Let B ∈ relint(F). Then rank(B) ≤ 3. If rank(B) = 1, then B ∈ CPn, if rank(B) =
2, then we know that F ∩CPn ̸= {0} by Theorem 4.11. So if F ∩CPn = {0}, we must have
rank(B) = 3. Actually for any C ∈ F , rank(C) = 3. This can be proved by the following
argument. If rank(C) = 1, then C ∈ CPn contradicts the assumption that F∩CPn = {0}. If
rank(C) = 2, then we have a face FC of Pn with C in its relative interior. We have FC ⊂ FP
by a straightforward argument. FC should be of the form described as in Theorem 4.11. By
Theorem 4.11, we know that FC ∩ FN ∩ CPn ̸= {0}. Since FC ⊂ FP and F = FP ∩ FN ,
we have F ∩ CPn ̸= {0}. Therefore, rank(C) = 2 is impossible. Hence, rank(C) = 3 for
all C ∈ F . Therefore, F can be viewed as an intersection of FN with the set of the form{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ P3
+

}
, where P3

+ represents the cone of 3 × 3 positive definite

matrices.
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Because Nn has finitely many faces, the number of faces that is the intersection of a face

of Nn with the set of the form

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ P3
+

}
must be finite. This shows

that there are finitely many subfaces of F showing that F is a polyhedral cone.

When n = 5, we can prove that F in Theorem 4.13 becomes an extreme ray. We state
this result as a theorem.

Theorem 4.14. Suppose F is a face of P5 ∩ N 5, which is the intersection of a face FP

in P5 of the form

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ P3

}
with a face FN in N 5. Here Q is an

orthogonal matrix. If F ∩ CP5 = {0}, then F is an extreme ray.

Proof. Since F can be written as the convex hull of extreme rays, we may assume that A
and B generate two extreme rays in F . By Theorem 4.13 we know the rank for both A and
B is 3. Since both A and B are in FP , we can write A and B as follows:

A = Q

(
A11 0
0 0

)
QT for some A11 ∈ P3

+,

and

B = Q

(
B11 0
0 0

)
QT for some B11 ∈ P3

+.

Let Q = (x1, x2, . . . , x5), xi ∈ R5 for i = 1, 2, . . . , 5. Then Axi = Bxi = 0 for i = 4, 5.
Since Q is orthogonal, we know that x4 and x5 are linearly independent. Hence, the row
vectors of A and also the row vectors of B span the space (span(x4, x5))

⊥. Since rank(A) =
rank(B) = 3, we know that three linearly independent row vectors of A form a basis of the
row space of A. Because we assumed that A and B are both extreme, by a theorem in [8]
we know that there are at least 5 zero entries in the upper triangular part of both A and
B and also the graphs associated with A and B must be cyclic. Without loss of generality,

we may assume that A =


a11 a12 0 0 a15
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45
a51 0 0 a54 a55

. We see that the first three rows are

linearly independent, and hence form a basis of the row space of A and also the row space
of B. From here, we can prove that B = λA for some λ > 0. Therefore, all the extreme
matrix on the face F is a multiple of A showing that F is an extreme ray.

The following theorem states that all faces in the 5× 5 doubly nonnegative cone except
certain extreme rays must intersect the 5 × 5 completely positive cone at more than the
origin.

Theorem 4.15. Let F be a face of P5∩N 5, which is not an extreme ray in (P5∩N 5)\CP5.
Then F ∩ CP5 ̸= {0} and is a face of CP5.

Proof. Since F is a face of P5∩N 5, F can be written as the intersection of a face FN in N 5

with a face FP in P5. Let FP =

{
Q

(
A11 0
0 0

)
QT

∣∣∣∣ A11 ∈ Pk

}
with Q being orthogonal.

If k = 1, we can easily see that F is an extremal ray in CP5. For k = 2, 3, 4, 5, we use
Theorem 4.11, 4.14, 4.10, and 4.7, respectively, to show that the conclusion holds.
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Now, we conclude this section by providing an alternative proof of a theorem in [5].

Theorem 4.16. Every doubly nonnegative matrix A, which is not completely positive, can
be expressed as T + E with T ∈ CP5 and E ∈ Ext(P5 ∩N 5)\Ext(CP5).

Proof. Let F1 be the minimal face in P5 ∩ N 5 which contains A. If F1 is an extreme ray
which is not in CP5, then we set T = 0 and E = A.

If F1 is not an extreme ray, then by Theorem 4.15 we know that F1 ∩ CP5 ̸= {0}. Let
{0} ̸= T ∈ F1∩CP5. Since αA ∈ relint(F1) for any α > 0, the ray starting at T and passing
through αA for some α > 0 should intersect the boundary of F1, namely B. Otherwise, any
point on the ray starting at T and passing through αA must be in F1 for any α > 0, which
implies that for any n ∈ N, we have n× 1

nA+ (1− n)T ∈ F1. Hence, 1
nA+ ( 1n − 1)T ∈ F1,

which shows −T ∈ F1 contradicting the fact that the doubly nonnegative cone is pointed.
Since A is in the line segment with end points T and B, we can write A = λT + (1 − λ)B
for some 0 < λ < 1. Let T1 = λT and A1 = (1 − λ)B. Then T1 ∈ CP5 and A1 is on
the boundary of F1. Now we apply the same argument to A1, we either have A1 to be an
extreme ray, then we set T = T1 and E = A1, or we continue to have a minimal face F2

which contains A1, then a T2 ∈ CP5 and A2 on the boundary of F2 are obtained. Since the
length of the longest chain of faces must be finite, this process will stop in a finite number
of steps k. So we can set T = T1 + T2 + · · ·+ Tk−1 and E = Ak.

5 Conclusions

In this paper, we have proved a duality result between maximal faces of a proper cone and
minimal exposed faces of its dual cone. We have also presented some geometric properties
of completely positive cones in terms of doubly nonnegative cones. As an application of
these results, we have provided an alternative proof of a theorem in [5] without using a
representation of extreme rays of 5 × 5 doubly nonnegative cone. We believe these results
are new and might be used as a tool to prove other interesting results.
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