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games, economics and transportation analysis, nonlinear programming, etc., see[4, 5, 9, 13,
16, 22, 27, 32].

If int{dom(g)}∩S ̸= ∅, the problem GVIP(F, g, S) can be stated in terms of the function
g rather than its subdifferential mapping (see [24]), i.e. GVIP(F, g, S) can be written as the
problem of finding x ∈ S such that

⟨F (x), y − x⟩+ g(y)− g(x) ≥ 0, ∀y ∈ S.

In this paper, we consider such an equivalent variational inequality formulation, called mixed
variational inequality problem (denoted by MVIP(F, g, S)), which was originally studied by
Duvaut and Lions [8]. Since the function F may involve some random factors or uncertain-
ties in many practical problems, in this paper, we focus on the following stochastic MVIP
(SMVIP): Find x ∈ S such that

⟨f(x, ξ(ω)), y − x⟩+ g(y)− g(x) ≥ 0, ∀y ∈ S, a.e. ξ(ω) ∈ Ξ. (1.1)

or equivalently

P{ξ(ω) ∈ Ξ : ⟨f(x, ξ(ω)), y − x⟩+ g(y)− g(x) ≥ 0, ∀y ∈ S} = 1,

where f : Rn × Ξ → Rn is a real vector-valued mapping, ξ : Ω → Ξ ⊆ Rn is a random
vector defined on the probability space (Ω,F , P ) supported on closed set Ξ, and “a.e.” is
the abbreviation for “almost every”. To simplify the notations, we will use ξ to denote either
the random vector ξ(ω) or an element of Rn depending on the context. Due to the existence
of the randomness, problem (1.1) may not have a solution in general, which means that (1.1)
is not well-defined if we want to solve (1.1) before knowing the realization of ξ. Therefore,
our first step is to find a reasonable deterministic formulation for the above SMVIP.

The SMVIP (1.1) is obviously a generalization of the stochastic variational inequality
problem (SVIP) of finding x ∈ S such that

⟨f(x, ξ), y − x⟩ ≥ 0, ∀y ∈ S, a.e. ξ ∈ Ξ,

which has received much attention in the recently [3, 12, 17, 18, 19, 36]. One popular
deterministic formulation for SVIP is the so-called expected residual minimization (ERM)
formulation, which was firstly presented by Chen and Fukushima for the stochastic comple-
mentarity problems in [3] and then was extended by Luo and Lin to the general SVIP in
[18], by minimizing the expectation of some residual function. Motivated by these works on
SVIP, in this paper, we study the ERM formulation for the SMVIP (1.1).

The rest of the paper is organized as follows. The ERM formulation of SMVIP based
on a regularized gap function is presented in the next Section. In Section 3, we give the
approximation problem generated by quasi-Monte Carlo method for ERM formulation, and
we show the convergence results for the global optimal solutions and the stationary solutions
of the approximation problem under some moderate assumptions. In Section 4, we present
a uniform exponential convergence theorem for stationary solutions of sample average ap-
proximation problem when the sample size is sufficiently large.

In what follows, ∥ · ∥ denotes the Euclidean norm of a vector or the spectral norm of a
matrix, whereas ∥A∥F denotes the Frobenius norm. Moreover, we always assume that g(x)
is a lower semicontinuous, proper and convex function on S ⊆ dom g(x). In addition, we
suppose that the following assumptions hold throughout:

Assumption 1.1 (A1). The function f(x, ξ) is (Borel) measurable in ξ for every x ∈ Rn

and continuously differentiable in x for a.e. ξ ∈ Ξ;
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Assumption 1.2 (A2). The function f(x, ξ) is integrably bounded with respect to ξ, i.e.
the expected value function F (x) := E[f(x, ξ)] is well defined and finite valued, where E
denotes the expectation with respect to the random variable ξ ∈ Ξ.

2 ERM Reformulation for SMVIP

Consider the classical variational inequality problem (VIP): find z ∈ S such that

⟨F (z), y − z⟩ ≥ 0, ∀z ∈ S.

Recall that x ∈ S is a solution of the VIP if and only if

0 = x− PS(x− α−1F (x)),

where PS is the orthogonal projector onto S and α > 0 is a given scalar. The norm of the
right-hand side in the above equation can serve as a residual function for the VIP, which
is usually called the natural residual. In addition, Fukushima introduced the following
regularized gap function for the VIP in [11]:

Γα(x) := max
y∈S

{⟨F (x), x− y⟩ − α

2
∥x− y∥2}.

This function has a number of interesting properties, in particularly, it has better smoothness
properties comparing to the natural residual.

Now we introduce a mapping pαg : Rn → S, called the restricted proximal map, that is
given by

pαg (z) := argmin
y∈S

{g(y) + α

2
∥z − y∥2},

where α is a positive prox-parameter and the point z is called the prox-center. If S = Rn,
pαg (·) becomes the well-known proximal map, which was first introduced by Moreau in [21]
and became a fundamental tool in convex and nonconvex optimizations, see [28, 29] for
details. In [33], the author investigated the merit functions and error bounds for a class of
generalized variational inequalities by using the proximal map. In this paper, we use the
restricted proximal map to investigate the properties of SMVIP. Note that, since g(x) is
proper and convex, the objective function above is proper and strongly convex, hence pαg is
single-valued. It is not hard to show that the restricted proximal map is nonexpansive (i.e.
Lipschitz constant is 1, see [28, Section 31]).

In order to get a reasonable formulation for the SMVIP, we now consider the related
scenario-based mixed variational inequality problem. For a given ξ ∈ Ξ, the related scenario-
based MVIP, denoted by MVIP(f(·, ξ), g, S), is to find x ∈ S such that

⟨f(x, ξ), y − x⟩+ g(y)− g(x) ≥ 0, ∀y ∈ S.

Using the restricted proximal map pαg , we can define a function h : Rn × Ξ → Rn by

hα(x, ξ) := x− pαg (x− α−1f(x, ξ)).

The following lemma shows that ∥hα(·, ξ)∥ plays the similar role for the MVIP(f(·, ξ), g, S)
as the natural residual for the classic VIP.

Lemma 2.1. For a given ξ ∈ Ξ and any α > 0, the vector x ∈ S solves MVIP(f(·, ξ), g, S)
if and only if hα(x, ξ) = 0.
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Proof. It is obvious that hα(x, ξ) = 0 is equivalent to

x = argmin
y∈S

{g(y) + α

2
∥y − (x− α−1f(x, ξ))∥2},

which is equivalent to

0 ∈ ∂g(x) + α(x− (x− α−1f(x, ξ)) +NS(x) = ∂g(x) + f(x, ξ) +NS(x),

or
−f(x, ξ)− τ ∈ ∂g(x) for some τ ∈ NS(x).

By the definition of the subgradient of g, we have that, for any y ∈ S,

g(y) ≥ g(x)− ⟨f(x, ξ) + τ, y − x⟩ ≥ g(x)− ⟨f(x, ξ), y − x⟩,

where the last inequality follows from the normal cone NS(x) at x ∈ S. This means that x
solves MVIP(f(·, ξ), g, S).

On the other hand, if x ∈ S solves MVIP(f(·, ξ), g, S), it is equivalent to that x is a
solution of the convex programming problem

min
y∈S

⟨f(x, ξ), y⟩+ g(y)

for the fixed ξ ∈ Ξ. We can get from its optimality conditions that

0 ∈ ∂g(x) + f(x, ξ) +NS(x),

which means that hα(x, ξ) = 0 holds.

On account of the restricted proximal map pαg , we can also define a regularized gap
function r : Rn × Ξ → [0,∞] by

rα(x, ξ) := max
y∈S

{⟨f(x, ξ), x− y⟩+ g(x)− g(y)− α

2
∥x− y∥2}, (2.1)

where α is a positive parameter. Then for any x ∈ Rn and ξ ∈ Ξ, we have

rα(x, ξ) = ⟨f(x, ξ), x− pαg (x− α−1f(x, ξ))⟩+ g(x)− g
(
pαg (x− α−1f(x, ξ))

)
− α

2
∥x− pαg (x− α−1f(x, ξ))∥2. (2.2)

In fact, since pαg (y) ∈ dom g for any y ∈ S, (2.2) is obvious if x /∈ dom g. If x ∈ dom g,
we may suppose that y is the unique solution of the right side of (2.1) because of the strong
concavity. It follows that

0 ∈ f(x, ξ) + ∂g(y) + α(y − x) +NS(y),

which implies that y uniquely characterizes the solution of the problem

min
y∈S

{g(y) + α

2
∥y − (x− α−1f(x, ξ))∥2}.

So we have y = pαg (x− α−1f(x, ξ)) by the definition of pαg , from which we obtain (2.2).
From (2.2), we see that, for each x ∈ S ⊆ dom g and ξ ∈ Ξ, rα(x, ξ) is finite valued and

continuous in x under the assumptions (A1) and (A2). The following theorem shows that
rα(x, ξ) can also serve as a merit function for MVIP(f(·, ξ), g, S).
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Theorem 2.2. For a given ξ ∈ Ξ and any α > 0, the vector x ∈ S solves MVIP(f(·, ξ), g, S)
if and only if rα(x, ξ) = 0.

Proof. First, we show that, for any x ∈ S and fixed ξ ∈ Ξ,

rα(x, ξ) ≥
α

2
∥hα(x, ξ)∥2. (2.3)

In fact, from the definition of pαg , p
α
g (x− α−1f(x, ξ)) satisfies the optimality condition

0 ∈ ∂g
(
pαg (x−α−1f(x, ξ))

)
+α

(
pαg (x−α−1f(x, ξ)

)
−(x−α−1f(x, ξ))+NS

(
pαg (x−α−1f(x, ξ))

)
.

This implies

−f(x, ξ)− α
(
pαg (x− α−1f(x, ξ))− x

)
− τ ∈ ∂g

(
pαg (x− α−1f(x, ξ))

)
, (2.4)

where τ ∈ NS(p
α
g (x− α−1f(x, ξ))). It follows from (2.4) that, for any y ∈ S,

g(y)−g
(
pαg (x−α−1f(x, ξ))

)
+⟨f(x, ξ)+α

(
pαg (x−α−1f(x, ξ))−x

)
, y−pαg

(
x−α−1f(x, ξ)

)
⟩ ≥ 0,

Picking y = x, we have

g(x)− g(pαg (x− α−1f(x, ξ))) + ⟨f(x, ξ), hα(x, ξ)⟩ ≥ α∥hα(x, ξ)∥2,

which implies (2.3) together with (2.2).
As a result, for fixed ξ, if x ∈ S satisfies rα(x, ξ) = 0 , we have hα(x, ξ) = 0 and

hence, from Lemma 2.1, x solves MVIP(f(·, ξ), g, S). On the other hand, if x ∈ S solves
MVIP(f(·, ξ), g, S), then hα(x, ξ) = 0 holds, which implies x = pαg (x− α−1f(x, ξ)). Due to
(2.2), rα(x, ξ) = 0 holds.

Based on the previous theorem and motivated by the work of Chen and Fukushima [3],
we suggest the following ERM formulation for problem (1.1):

min
x∈S

θ(x) := E[rα(x, ξ)] =

∫
Ξ

rα(x, ξ)ρ(ξ)dξ (2.5)

where ρ is the probability density function of the random variable ξ and is supposed to be
continuous on Ξ throughout. It is obvious that, if ρ is known and the objective function θ
can be integrated out explicitly, we do not require any discretization procedure in dealing
with the above ERM problem. Unfortunately, θ generally can not be calculated in a closed
form or is difficult to evaluate exactly, so we have to approximate it by means of some
discretization techniques.

We discuss some properties of the ERM problem (2.5) below and study approximation
methods for solving (2.5) in the next section. First, we let S0 and S∗ be the solution set of
problem (1.1) and the optimal solution set of problem (2.5), respectively.

Definition 2.3 ([15]). A bivariate function f(x, ξ) is monotone on S at x̄ uniformly in Ξ, if

⟨f(x̄, ξ)− f(x, ξ), x̄− x⟩ ≥ 0, ∀x ∈ S, a.e. ξ ∈ Ξ;

f(x, ξ) is strictly monotone on S at x̄ uniformly in Ξ, if

⟨f(x̄, ξ)− f(x, ξ), x̄− x⟩ > 0, ∀x ∈ S, x ̸= x̄, a.e. ξ ∈ Ξ;

f(x, ξ) is strongly monotone on S at x̄ uniformly in Ξ with modulus σ > 0, if

⟨f(x̄, ξ)− f(x, ξ), x̄− x⟩ ≥ σ∥x̄− x∥2, ∀x ∈ S, a.e. ξ ∈ Ξ.
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To simplify the notation, we say f(x, ξ) is uniformly (strictly, strongly) monotone on
S if it is (strictly, strongly) monotone at every point of S uniformly in Ξ. Obviously, the
uniform strong monotonicity implies the uniform strict monotonicity, which implies the
uniform monotonicity.

Theorem 2.4. Assume that for a.e. ξ ∈ Ξ, x̄ is a solution of the related scenario-based
MVIPs, or x̄ is an optimal solution of problem (2.5) with zero optimal value, then x̄ is a
solution of problem (1.1). Furthermore, if f(x, ξ) is strictly monotone on S at x̄ uniformly
in Π with Π ⊆ Ξ and P (Π) be any positive scalar, then x̄ is the unique solution of problem
(1.1).

Proof. By assumptions, we have 0 = θ(x̄) = E[rα(x̄, ξ)]. Noticing that rα(x, ξ) ≥ 0 always
holds, we have rα(x̄, ξ) = 0 for any x̄ ∈ S and a.e. ξ ∈ Ξ. By Theorem 2.2, x̄ is a solution
of problem (1.1).

If problem (1.1) has another solution x̂, then we have

⟨f(x̄, ξ), x̂− x̄⟩+ g(x̂)− g(x̄) ≥ 0, a.e. ξ ∈ Ξ,

⟨f(x̂, ξ), x̄− x̂⟩+ g(x̄)− g(x̂) ≥ 0, a.e. ξ ∈ Ξ.

Adding the above two inequalities, we have

⟨f(x̄, ξ)− f(x̂, ξ), x̄− x̂⟩ ≤ 0, a.e. ξ ∈ Ξ,

which is a contradiction to the strictly monotonicity on S at x̄ uniformly in Π. As a result,
x̄ is the unique solution of problem (1.1).

Next we discuss the error bound conditions and the boundedness of the level set defined
by

LS
θ (c) := {x ∈ S | θ(x) ≤ c},

where c is any nonnegative number.

Proposition 2.5. Assume that S0 is nonempty and f(x, ξ) is monotone on S uniformly in
Ξ and strongly monotone on S uniformly in Θ with modulus σ > 0, where Θ is a subset of
Ξ with P (Θ) = m > 0. If α ∈ (0, 2mσ), then

d(x, S0) ≤
√

(m · σ − α

2
)−1 θ(x), ∀x ∈ S. (2.6)

Moreover, the level set LS
θ (c) is bounded for any c ≥ 0.

Proof. Let x̄ be a solution of problems (1.1), we have from the definition of θ(x) that

θ(x) = E[rα(x, ξ)]

≥ max
y∈S

{⟨E[f(x, ξ)], x− y⟩+ g(x)− g(y)− α

2
∥x− y∥2}

≥ ⟨E[f(x, ξ)], x− x̄⟩+ g(x)− g(x̄)− α

2
∥x− x̄∥2

=

∫
Θ

[⟨f(x, ξ), x− x̄⟩+ g(x)− g(x̄)]dξ

+

∫
Ξ\Θ

[⟨f(x, ξ), x− x̄⟩+ g(x)− g(x̄)]dξ − α

2
∥x− x̄∥2
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≥
∫
Θ

[⟨f(x̄, ξ), x− x̄⟩+ g(x)− g(x̄)]dξ +m · σ∥x− x̄∥2

+

∫
Ξ\Θ

[⟨f(x̄, ξ), x− x̄⟩+ g(x)− g(x̄)]dξ − α

2
∥x− x̄∥2

≥
(
m · σ − α

2

)
∥x− x̄∥2

≥
(
m · σ − α

2

)
d2(x, S0),

where the inequalities above follow from the Jensen’s inequality, the strong monotonicity of
f uniformly in Θ, i.e.

⟨f(x, ξ)− f(x̄, ξ), x− x̄⟩ > 0, ∀ξ ∈ Ξ,

and the monotonicity uniformly in Ξ, i.e.

⟨f(x, ξ)− f(x̄, ξ), x− x̄⟩ ≥ σ∥x− x̄∥2, ∀ξ ∈ Θ.

It concludes that (2.6) is true. The second part follows from (2.6) immediately.

As mentioned in the introduction, problem (1.1) may not have a solution in general. So
we can’t apply Proposition 2.5 in very many situations to obtain the desired robust error
bound results, which is important in our theoretical feasibility of our proposed method.
Fortunately, we have the following error bound results by means of the related scenario-
based MVIP.

Theorem 2.6. Assume that Ξ is a finite set, and for each ξ ∈ Ξ, f(·, ξ) is strongly monotone
on S with modulus σ > 0. Let S0(ξ) be the solution set of MVIP(f(·, ξ), g, S), which is
supposed to be nonempty. Then

E[d(x, S0(ξ))] ≤
√

(σ − α

2
)−1 θ(x),

for any α ∈ (0, 2σ).

Proof. By the proof of Proposition 2.5, for each ξ ∈ Ξ, we have

rα(x, ξ) ≥
(
σ − α

2

)
d2(x, S0(ξ)).

Integrating on both sides of the above inequality at the same time, the conclusion is obtained
by Jensen’s inequality immediately.

Remark 2.7. Suppose x∗ is a solution of problem (2.5)(not necessarily zero valued). The-
orem 2.6 shows that

E[d(x∗, S0(ξ))] ≤
√
(σ − α

2
)−1 ·min

x∈S
θ(x), (2.7)

Unlike an error bound for the deterministic counterparts, the left-hand side of (2.7) is in
a high probability to be positive. If θ(x∗) equals to zero, then x∗ is a solution of problem
(1.1). Otherwise, the inequality (2.7) suggests that the expected distance to the solution
set S0(ξ) for the related scenario-based MVIP is also likely to be small at solutions of ERM
formulation (2.5). In other words, we may expect that a solution of ERM formulation (2.5)
has a minimum sensitivity with respect to random parameter variations in SMVIP. In this
sense, solutions of ERM formulation (2.5) can be regarded as robust solutions for SMVIP.
Thanks to the discretization of the expectation operator in next section, it’s rational to
require the finiteness of the support set Ξ.
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3 Quasi-Monte Carlo Method

In the rest of the paper, we suppose that Ξ is a nonempty closed set (not necessarily com-
pact), g(·) is twice continuously differentiable and Lipschitz continuous on S with Lipschitz
modulus L. And, besides the assumptions (A1) and (A2), we further suppose the following
assumption :

Assumption 3.1 (A3). ∥f(x, ξ)− f(y, ξ)∥ ≤ κ(ξ)∥x− y∥ for any x, y ∈ S with E[κ(ξ)] <
+∞.

Moreover, the probability density function ρ of the random variable ξ is supposed to be
known and subsequently, we apply the well-known quasi-Monte Carlo simulation techniques
to approximate the expectations involved in (2.5). That is, we first employ a quasi-Monte
Carlo method to generate a set of observations Ξk = {ξi|i = 1, 2, ..., Nk} ⊆ Ξ with Nk → ∞
when k → ∞, then treat the following problem as an approximation of (2.5):

min
x∈S

θk(x) :=
1

Nk

∑
ξi∈Ξk

rα(x, ξ
i)ρ(ξi) (3.1)

See [23] for more details about the quasi-Monte Carlo approximation techniques. The fol-
lowing results will be used later on.

Lemma 3.1 ([23]). If ψ(ξ) is integrably bounded over Ξ, then

lim
k→∞

1

Nk

∑
ξi∈Ξk

ψ(ξi)ρ(ξi) = E[ψ(ξ)].

Lemma 3.2. For any α > 0, the regularized gap function rα(x, ξ) and its gradient ∇xrα(x, ξ)
are measurable in ξ for every x ∈ Rn.

Proof. It follows from [30, Chapter 1, Theorem 19] under assumption (A1).

From Lemma 3.1 and Lemma 3.2, together with the integrability of rα(x, ·) on Ξ for each
x ∈ S under assumption (A2), it yields

θ(x) = lim
k→∞

θk(x). (3.2)

Theorem 3.3. For a.e. ξ ∈ Ξ, rα(x, ξ) is continuously differentiable with respect to x.
Moreover, for any x ∈ S, we have

∇θ(x) = E[∇xrα(x, ξ)]. (3.3)

Consequently, θ(x) is continuously differentiable, too.

Proof. Since for a.e. ξ ∈ Ξ, f(x, ξ) is continuously differentiable with respect to x and g(x)
is twice continuously differentiable, in a similar way to [11, Theorem 3.2], we can show that
for a.e. ξ ∈ Ξ, rα(x, ξ) is continuously differentiable with respect to x. Furthermore, we
have

∇xrα(x, ξ) = f(x, ξ) +∇g(x)− (∇xf(x, ξ)− αI)
(
pαg (x− α−1f(x, ξ))− x

)
(3.4)

for any x ∈ S, a.e. ξ ∈ Ξ. Since rα(x, ξ) ≥ 0 for any x ∈ S, it follows from (2.2) that

α

2
∥x− pαg (x− α−1f(x, ξ))∥2
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≤ ⟨f(x, ξ), x− pαg (x− α−1f(x, ξ))⟩+ g(x)− g(pαg (x− α−1f(x, ξ)))

≤ ∥x− pαg (x− α−1f(x, ξ))∥(∥f(x, ξ)∥+ L).

Then we have

∥x− pαg (x− α−1f(x))∥ ≤ 2

α
(∥f(x, ξ)∥+ L). (3.5)

From (3.4) and (3.5), we have

∥∇xrα(x, ξ)∥ ≤ ∥f(x, ξ)∥+ ∥∇g(x)∥+ (∥∇xf(x, ξ)∥+ α)∥x− pαg (x− α−1f(x, ξ))∥

≤ ∥f(x, ξ)∥+ L+
2

α
(∥
√
n · κ(ξ)∥+ α)(∥f(x, ξ)∥+ L). (3.6)

Therefore, θ is continuously differentiable and (3.3) holds from the Lebesgue’s control con-
vergence theorem under the assumptions (A1)–(A3).

However, there is no guarantee that such a solution is a global optimal solution of the
ERM problem (2.5). So, we establish the convexity of the regularized gap function and
show that the resulting ERM problem (2.5) is a convex problem. Now, we established
some sufficient conditions for the convexity of the regularized gap function when f is affine.
Suppose that f is in a special structure of f(x, ξ) = M(ξ)x + q(ξ), where M(ξ) ∈ Rn×n,
q(ξ) ∈ Rn for any ξ ∈ Ξ.

Definition 3.4. We call M(ξ) uniformly positive definite with modulus ϑ0 if there exists a
positive constant ϑ0 such that

inf
ξ∈Ξ,∥x∥=1

xTM(ξ) x ≥ ϑ0.

Theorem 3.5. Suppose that M(ξ) is uniformly positive definite with modulus ϑ0, then the
regularized gap function rα(x, ξ) is convex in x for all α ≥ 1

2ϑ0
, and strongly convex with

modulus ϑ for all α ≥ 1
2ϑ0

(1 + ϑ) with ϑ > 0.

Proof. The proof is similar to [2, Theorem 2.1], so we omit the details.

Since the sum of (strongly) convex functions is also (strongly) convex, as a consequence,
the (strongly) convexity of θ(x) is the same as rα(x, ξ). In what follows, we investigate
the limiting behavior of the approximation method mentioned above. We denote by S∗

k the
optimal solution sets of problems (3.1).

Theorem 3.6. Suppose that xk ∈ S∗
k for each k and x∗ is an accumulation point of the

sequence {xk}, then x∗ ∈ S∗.

Proof. Without loss of generality, we can assume that {xk} itself converges to x∗, which
belongs to S obviously. Let the sequence {xk} be contained in a compact convex set C ⊆ S.
By the mean-value theorem, for each xk and ξi, there exists zki = λkix

k + (1 − λki)x ∈ C
with λki ∈ [0, 1] such that

rα(x
k, ξi)− rα(x, ξ

i) = ∇xrα(z
ki, ξi)T (xk − x).

Since the functions ∇g(x), f(x, ξ) and ∇xf(x, ξ) are continuous with respect to x under the
assumptions (A1)–(A3), it then follows that

|θk(xk)− θk(x∗)| = | 1

Nk

∑
ξi∈Ξk

(rα(x
k, ξi)− rα(x

∗, ξi))ρ(ξi)|
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≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)|(rα(xk, ξi)− rα(x
∗, ξi))|

=
1

Nk

∑
ξi∈Ξk

ρ(ξi)|∇xrα(z
ki, ξi)T (xk − x∗)|

≤ ∥xk − x∗∥ · 1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xrα(z
ki, ξi)∥, (3.7)

which tends to zero as k → +∞ by (3.6) and the assumptions (A1)–(A3). Notice that

|θk(xk)− θ(x∗)| ≤ |θk(xk)− θk(x∗)|+ |θk(x∗)− θ(x∗)|,

we have from (3.2) and (3.7) that

θ(x∗) = lim
k→∞

θk(xk).

Since xk ∈ S∗
k for each k , it follows that

θk(xk) ≤ θk(x), ∀x ∈ S.

Letting k → +∞, we obtain

θ(x∗) ≤ θ(x), ∀x ∈ S,

that is, x∗ ∈ S∗.

Since problems (2.5) and (3.1) are generally nonconvex, next we consider the convergence
of stationary points. To this end, we suppose that

S := {x ∈ Rn | b(x) ≤ 0, c(x) = 0},

where b(x) = (b1(x), b2(x), . . . , bp(x)), c(x) = (c1(x), c2(x), . . . , cq(x)), bi : Rn → R (i =
1, 2, ..., p) are differentiable convex functions and cj : Rn → R (j = 1, 2, ..., q) are affine
functions. Denote I(x) := {i | bi(x) = 0, 1 ≤ i ≤ p}.

Definition 3.7. (1) xk is said to be stationary to (3.1) if there exist Lagrange multiplier
vectors ζk ∈ Rp and ηk ∈ Rq such that

∇θk(xk) +
p∑

i=1

ζki ∇bi(xk) +
q∑

j=1

ηkj∇cj(xk) = 0, (3.8)

0 ≤ ζk ⊥ b(xk) ≤ 0, c(xk) = 0. (3.9)

where u⊥v means uT v = 0.

(2) x∗ is said to be stationary to (2.5) if there exist Lagrange multiplier vectors ζ ∈ Rp

and η ∈ Rq such that

∇θ(x∗) +
p∑

i=1

ζi∇bi(x∗) +
q∑

j=1

ηj∇cj(x∗) = 0, (3.10)

0 ≤ ζ ⊥ b(x∗) ≤ 0, c(x∗) = 0. (3.11)
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Definition 3.8 ([35]). Let ϕ : Rn × Ξ → Rm be a real vector-valued mapping, X ⊆ Rn be
a closed subset and x ∈ X be fixed. ϕ is said to be calm at x with modulus γ(ξ) if ϕ(x, ξ) is
finite and there exist a measurable function γ : Ξ → R+ and a positive number δ such that

∥ϕ(x′, ξ)− ϕ(x, ξ)∥ ≤ γ(ξ)∥x′ − x∥

for all x′ ∈ X with ∥x′ − x∥ ≤ δ and ξ ∈ Ξ. ϕ is said to be calm on X if it is calm at every
point of X (the constants γ(ξ), δ may depend on the point x).

Lemma 3.9. For any {xk} ⊆ S with xk → x∗ as k → ∞, suppose that each ∇xfj(·, ξ)
(j = 1, . . . , n) is calm at x∗ with modulus γj(ξ) integrably bounded over Ξ. Then we have

∇θ(x∗) = lim
k→∞

∇θk(xk).

Proof. It follows from (2.2) and (3.4) that

|∇θk(xk)−∇θk(x∗)|

=| 1

Nk

∑
ξi∈Ξk

(∇xrα(x
k, ξi)−∇xrα(x

∗, ξi))ρ(ξi)|

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
∥f(xk, ξi)− f(x∗, ξi))∥+ ∥∇g(xk)−∇g(x∗)∥

+ ∥∇xf(x
k, ξi)pαg (x

k − α−1f(xk, ξi))−∇xf(x
∗, ξi))pαg (x

∗ − α−1f(x∗, ξi))∥
+ ∥∇xf(x

k, ξi)xk −∇xf(x
∗, ξi)x∗∥+ α∥xk − x∗∥

+ α∥pαg (xk − α−1f(xk, ξi))− pαg (x
∗ − α−1f(x∗, ξi))∥

)
.

It is easy to verify that

lim
k→∞

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥f(xk, ξi)− f(x∗, ξi))∥ = 0 (3.12)

by the assumption (A3) and Lemma 3.1. Moreover, by the mean-value theorem, for each
xk, there exists λ ∈ [0, 1] such that

∇g(xk)−∇g(x∗) =
∫ 1

0

∇2g(zk(λ))(xk − x∗) dλ,

where zk(λ) = λxk + (1 − λ)x∗. Notice that there must be a compact convex set U ⊆ S
containing the whole sequence {xk}. Due to the twice continuous differentiability of g, there
exists a positive constant M such that max{∥z∥, ∥∇2g(z)∥} ≤ M for any z ∈ U . Then we
have

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇g(xk)−∇g(x∗)∥ =
1

Nk

∑
ξi∈Ξk

ρ(ξi)∥
∫ 1

0

∇2g(zk(λ))(xk − x∗) dλ∥

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)

∫ 1

0

∥∇2g(zk(λ))∥ ∥xk − x∗∥ dλ

≤M

Nk

∑
ξi∈Ξk

ρ(ξi)

∫ 1

0

∥xk − x∗∥ dλ
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=∥xk − x∗∥ · M
Nk

∑
ξi∈Ξk

ρ(ξi).

It then follows that

lim
k→∞

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇g(xk)−∇g(x∗)∥ = 0. (3.13)

Now we prove

lim
k→∞

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)−∇xf(x

∗, ξi))∥ = 0. (3.14)

In fact, from the relation between the spectral norm and the corresponding Frobenius norm
of a matrix, we have

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)−∇xf(x

∗, ξi))∥

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)−∇xf(x

∗, ξi))∥F

≤
n∑

j=1

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xfj(x
k, ξi)−∇xfj(x

∗, ξi))∥.

By the calmness of ∇xfj(·, ξ) at x∗, we can get

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xfj(x
k, ξi)−∇xfj(x

∗, ξi))∥ ≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi) · γj(ξ)∥xk − x∗∥. (3.15)

letting k → ∞, we have (3.14) immediately from Lemma 3.1.
It follows from the nonexpansivity of pαg that

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥pαg (xk − α−1f(xk, ξi))− pαg (x
∗ − α−1f(x∗, ξi))∥

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)∥(xk − α−1f(xk, ξi))− (x∗ − α−1f(x∗, ξi))∥

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
∥xk − x∗∥+ α−1∥f(xk, ξi))− f(x∗, ξi)∥

)
≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi) · 1

Nk

∑
ξi∈Ξk

(
∥xk − x∗∥+ α−1∥f(xk, ξi))− f(x∗, ξi)∥

)
, (3.16)

which tends to zero as k → ∞ taking into account of (3.12). Notice that, from (3.5), we
have

∥pαg (x∗ − α−1f(x∗, ξi))∥ ≤ ∥x∗∥+ ∥x∗ − pαg (x
∗ − α−1f(x∗, ξi))∥

≤M +
2

α
(∥f(x∗, ξi)∥+ L).
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Then we have

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)pαg (x

k − α−1f(xk, ξi))−∇xf(x
∗, ξi))pαg (x

∗ − α−1f(x∗, ξi))∥

=
1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)

(
pαg (x

k − α−1f(xk, ξi))− pαg (x
∗ − α−1f(x∗, ξi))

)
+
(
∇xf(x

k, ξi)−∇xf(x
∗, ξi))

)
pαg (x

∗ − α−1f(x∗, ξi))∥

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
∥∇xf(x

k, ξi)∥ · ∥(pαg (xk − α−1f(xk, ξi))− pαg (x
∗ − α−1f(x∗, ξi))∥

+ ∥∇xf(x
k, ξi)−∇xf(x

∗, ξi))∥ · ∥pαg (x∗ − α−1f(x∗, ξi))∥
)

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
∥κ(ξi)∥ · ∥(pαg (xk − α−1f(xk, ξi))− pαg (x

∗ − α−1f(x∗, ξi))∥

+ ∥∇xf(x
k, ξi)−∇xf(x

∗, ξi))∥ ·
(
M +

2

α
(∥f(x∗, ξi)∥+ L)

))
≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)∥κ(ξi)∥ · 1

Nk

∑
ξi∈Ξk

ρ(ξi)∥(pαg (xk − α−1f(xk, ξi))− pαg (x
∗ − α−1f(x∗, ξi))∥

+
1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)−∇xf(x

∗, ξi))∥ · 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
M +

2

α
(∥f(x∗, ξi)∥+ L)

)
,

(3.17)

which tends to zero as k → ∞ by (3.14)–(3.16) and (A2)–(A3). In addition, we have from
(A3) and (3.14) that

1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)xk −∇xf(x

∗, ξi)x∗∥

=
1

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)(xk − x∗) + (∇xf(x

k, ξi)−∇xf(x
∗, ξi))x∗∥

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
∥∇xf(x

k, ξi)∥ · ∥xk − x∗∥+ ∥∇xf(x
∗, ξi)−∇xf(x

k, ξi)∥ · ∥x∗∥
)

≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)
(
∥κ(ξi)∥ · ∥xk − x∗∥+M · ∥∇xf(x

k, ξi)−∇xf(x
∗, ξi)∥

)
≤ 1

Nk

∑
ξi∈Ξk

ρ(ξi)∥κ(ξi)∥ · 1

Nk

∑
ξi∈Ξk

ρ(ξi) · ∥xk − x∗∥

+
M

Nk

∑
ξi∈Ξk

ρ(ξi)∥∇xf(x
k, ξi)−∇xf(x

∗, ξi)∥ (3.18)

which tends to zero as k → ∞.
Thus, it follows from (3.12)–(3.18) that

lim
k→∞

∇θk(xk) = ∇θk(x∗).

Since
|∇θk(xk)−∇θ(x∗)| ≤ |∇θk(xk)−∇θk(x∗)|+ |∇θk(x∗)−∇θ(x∗)|,
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due to Lemma 3.1 and Theorem 3.6, we obtain the conclusion.

Definition 3.10 ([25]). We say that a feasible point x∗ of problem (3.1) conforms to the
approximate KKT (AKKT) conditions if there exist a sequence {xk}, ζk ∈ Rp, ηk ∈ Rq

such that limk→∞ xk = x∗ and

lim
k→∞

∇θk(xk)) +
p∑

i=1

ζki ∇bi(xk) +
q∑

j=1

ηkj∇cj(xk) = 0,

lim
k→∞

min{ζki ,−bi(xk)} = 0, i = 1, · · · , p.

Given x ∈ S, we define

K(x) := {
∑

i∈I(x)

ζi∇bi(x) +
q∑

j=1

ηj∇cj(x) | ζi ∈ R+, ηj ∈ R}. (3.19)

Definition 3.11 ([1]). We say that x ∈ S satisfies the cone-continuity property (CCP) if
the set-valued mapping x⇒ K(x), defined in (3.19), is outer semicontinuous at x, that is,

lim sup
x′→x

K(x′) ⊆ K(x).

The CCP has been shown to be the weakest possible strict constraint qualification, under
which the AKKT implies the KKT. See [1] for details. Now we investigate the limiting
behavior of the stationary points obtained by the quasi-Monte Carlo method.

Theorem 3.12. Suppose xk be stationary to (3.1) for each k and x∗ be an accumulation
point of {xk}. If the CCP holds as a constraint qualification at x∗ and each ∇xfj(·, ξ)
(j = 1, . . . , n) is calm at x∗ with modulus γj(ξ) integrably bounded over Ξ, then x∗ is a
stationary point of problem (2.5).

Proof. Without loss of generality, we assume that {xk} itself converges to x∗. Since xk is
a stationary point to (3.1) for each k, then there exist Lagrange multiplier vectors ζk ∈ Rp

and ηk ∈ Rq satisfying (3.8) and (3.9). Let εk := ∇θ(xk) − ∇θk(xk). By virtue of Lemma
3.9 and the continuity of the gradient of θ, we have

lim
k→∞

εk = lim
k→∞

(
∇θ(xk)−∇θ(x∗) +∇θ(x∗)−∇θk(xk)

)
= 0.

It is easy to see that

εk = ∇θ(xk) +
p∑

i=1

ζki ∇bi(xk) +
q∑

j=1

ηkj∇cj(xk) → 0. (3.20)

Thus, we have

∑
i∈I(x∗)

ζi∇bi(xk) +
q∑

j=1

ηj∇cj(xk) ∈ K(xk) (3.21)

and

εk −∇θ(xk) =
∑

i∈I(x∗)

ζki ∇bi(xk) +
q∑

j=1

ηkj∇cj(xk). (3.22)
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Taking limit in (3.22), we have from the continuity of ∇θ(·), (3.20), and (3.21) that

−∇θ(x∗) = lim
k→∞

∑
i∈I(x∗)

ζki ∇bi(xk) +
q∑

j=1

ηkj∇cj(xk) ∈ lim sup
k→∞

K(xk).

Moreover, we know
lim sup
k→∞

K(xk) ⊆ lim sup
x′→x∗

K(x′) ⊆ K(x∗),

where the last inclusion follows from the CCP assumption. Therefore, we have

−∇θ(x∗) ∈ K(x∗),

which is equivalent to (3.10). Then, taking limit in (3.9), we obtain (3.11) immediately.
That is, x∗ is stationary to problem (2.5).

4 Exponential Convergence of Stationary Points

We proceed to discuss the rate of convergence of stationary points, that is, how fast xk

converges to x∗ in the sense of Definition 3.7. From the computational perspective, it is
important because it concerns the efficiency of the SAA method. One of the most impor-
tant issues concerning the convergence analysis is how to predetermine the sample size in
order to estimate an approximate solution within the prescribed precision and confidence.
It is a remarkable breakthrough that the classical Cramér¨ s large deviation theorem [7]
is found to deliver this. In some practical instances, it is difficult or computationally ex-
pensive to obtain an iid sample particularly when the sample size is large while Cramér¨ s
large deviation theorem requiring iid sampling. Indeed, the well-known quasi-Monte Carlo
method does not require iid sampling and yet it works remarkably well. See an extensive
discussion on the benefits of non-iid sampling by Homem-de-Mello [14]. As far as we are
concerned, Dai, Chen and Birge [6] seemed to be the first to investigate the convergence
of SAA estimators under general sampling (including iid and non-iid). They used the well-
known Gärther-Ellis theorem [7] to establish the exponential convergence. Homem-de-Mello
[14] presented a comprehensive study of this issue and derived the exponential convergence
of statistical estimators of optimal solutions in stochastic programming under non-iid sam-
pling. More recently, Xu [35] studied the uniform exponential convergence of SAA for a class
of random functions under general sampling and apply the established convergence results
to nonsmooth stochastic optimization, stochastic Nash equilibrium problems and stochas-
tic generalized equations; Sun and Xu[34] discussed the uniform exponential convergence
of sample average approximation of random functions in which they extended the similar
results to the discontinuous situations. By applying the result in [14] and [35], here we
investigate the exponential convergence of stationary points as those presented in Section 3.

In this section, the samples are generated by randomized quasi-Monte Carlo method[14].

Lemma 4.1. Let X be a compact subset of S. Suppose:

(i) ∇g(x) is calm on X with modulus L′;

(ii) each ∇xfj(·, ξ) (j = 1, . . . , n) is calm on X with modulus Ji(ξ) integrably bounded over
Ξ,

then ∇xrα(x, ξ) is calm on X, whose modulus is bounded by p(ξ) :=
√
n ·κ(ξ)(2−α−1κ(ξ))+

2κ(ξ) + 2M ′ ·
∑n

i=1 Ji(ξ) + 2α+ L′, and M ′ := maxx∈X ∥x∥.
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Proof. For any x, y ∈ X, we have from (3.4) that

∥∇xrα(x, ξ)−∇xrα(y, ξ)∥
≤∥

(
f(x, ξ)− f(y, ξ)

)
+
(
∇g(x)−∇g(y)

)
+
(
∇xf(x, ξ)x−∇xf(y, ξ)y

)
+ α

(
pαg (x− α−1f(x, ξ))− pαg (y − α−1f(y, ξ))

)
− α(x− y)

−
(
∇xf(x, ξ)p

α
g (x− α−1f(x, ξ))−∇xf(y, ξ)p

α
g (y − α−1f(y, ξ))

)
∥

≤∥f(x, ξ)− f(y, ξ)∥+ ∥∇g(x)−∇g(y)∥+ ∥∇xf(x, ξ)(x− y) +
(
∇xf(x, ξ)−∇xf(y, ξ)

)
y∥

+ α∥(x− y)− α−1(f(x, ξ)− f(y, ξ))∥+ α∥x− y∥
+ ∥∇xf(x, ξ)

(
pαg (x− α−1f(x, ξ))− pαg (y − α−1f(y, ξ))

)
+
(
∇xf(x, ξ)−∇xf(y, ξ)

)
pαg (y − α−1f(y, ξ))∥

Since X is a compact set, the conclusion can be drawn under the assumptions.

To establish the uniform exponential convergence, we need some assumptions on asymp-
totic behavior of the sample average of the modulus of the function. Let

MN
x (t) := E{et[∇θN (x)−∇θ(x)]}.

Lemma 4.2. For every x ∈ X and t ∈ R, the limit

Mx(t) := lim
N→+∞

MN
x (t)

exists as an extended real number and Mx(t) <∞ for t close to 0.

Proof. Consider the random function f(x, ξ), and let

MN
x,f (t) := E{et[f

N (x)−E[f(x,ξ)]]},

where fk(x) := 1
Nk

∑
ξi∈Ξk

f(x, ξi)ρ(ξi). First, we show that for every x ∈ X and t ∈ R,
the limit

Mx,f (t) := lim
N→+∞

MN
x,f (t)

exists as an extended real number and Mx,f (t) < ∞ for t close to 0. Indeed, it is satisfied
particularly in the case when the samplings {ξi|i = 1, 2, ..., Nk} are generated by randomized
quasi-Monte Carlo method, see detailed discussions about this issue by Homem-de-Mello
[14]. From the definitions of θ(x) and θN (x), the conclusion is obtained directly.

Assumption 4.1. Let pk := 1
Nk

∑
ξi∈Ξk

p(ξi)ρ(ξi). There exists a positive constant λ such
that

Prob{pk ≥ µ} ≤ e−kλ

for any µ ≥ E[p(ξ)].

A similar assumption is made in [35]. Assumption 4.1 means that probability distribution
of the random variable p(ξ) dies exponentially fast in the tails. In particular, it holds if this
random variable has a distribution supported on a bounded subset.
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Lemma 4.3 (Uniform exponential convergence of sample average ∇θk(x)). Let X be a
compact subset of S and Assumption 4.1 holds. Suppose that the moment generating function
E[ep(ξ)t] is finite valued for t close to 0. Then for any small positive number ϵ > 0, there

exist positive constants ĉ(ϵ) and β̂(ϵ), independent of k, such that for k sufficiently large,

Prob
{
sup
x∈X

∥∇θk(x)−∇θ(x)∥ ≥ ϵ
}
≤ ĉ(ϵ)e−kβ̂(ϵ).

Proof. we refer to Shapiro’s earlier result [31, Proposition 2.1] which states that if a random
function is continuously differentiable w.p.1 and is Lipschitz continuous with an integrably
bounded Lipschitz modulus, then the expected value of the function is continuously differen-
tiable. Under these assumptions, we are able to derive the uniform exponential convergence
by virtue of [35]. We omit the details of the proof.

Let T ∗ and T k be the sets of stationary points to (2.5) and (3.1), respectively. Assume
that both T ∗ and T k are nonempty.

Theorem 4.4 (Exponential convergence of stationary points). Suppose xk be a solution of
(3.1) and the sequence {xk} is contained in a compact subset X of S almost surely. Assume
the conditions of Lemma 4.3 to be hold, then for any small positive number ϵ > 0, there exist
positive constants c(ϵ) and β(ϵ), independent of k, such that

Prob
{
d(xk, T ∗) ≥ ϵ

}
≤ c(ϵ)e−kβ(ϵ).

Proof. We need to translate the uniform exponential convergence of ∇θk(x) to ∇θ(x) into
the exponential convergence of xk to T ∗. To this end, we need some sensitivity analysis
of generalized equations discussed in [35]. So, equivalently, we consider stationary points
satisfying the following generalized equation rather than those in Definition 3.7, that is,

0 ∈ ∇θ(x) +NS(x), (4.1)

and the perturbed equation

0 ∈ ∇θk(x) +NS(x). (4.2)

Then the conclusion follows from Theorem 3.3, Lemma 4.3 and [35, Lemma 4.2].

Remark 4.5. It is important to note that the constants c(ϵ) and β(ϵ) in Theorem 4.4
may be significantly different from their counterparts in Lemma 4.3. To establish a precise
relationship of these constants, we need more information about the sensitivity of the true
problem at the stationary points. One possibility is to look into the metric regularity
condition for the set-valued mapping G(x) := ∇θ(x) +NS(x). If there exists a constant Q
such that

d(x, T ∗) ≤ Q · d(0, G(x))

for x close to T ∗, then we can establish

d(xN , T ∗) ≤ Q · ∥∇θN (x)−∇θ(x)∥.

We refer interested readers to [20, 29] for recent discussions on metric regularity. Under this
circumstance, the constants c(ϵ) and β(ϵ) in Theorem 4.4 can be easily expressed in terms
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of their counterparts in Lemma 4.3. Similar to the discussions in [35], we may estimate the
sample size. To this end, we assume that there exists a constant ϱ such that for all x ∈ X

Mx(t) ≤ eϱ
2t2/2

for all t ∈ R. Then, following [35, Remark 3.2], we can obtain an estimation of the sample

size, that is, for β ∈ (0, 1), Prob
{
d(xN , T ∗) ≥ ϵ

}
≤ β when

N ≥ O(1)ϱ2

ϵ2

[
n ln

(O(1)DE[p(ξ)]

ϵ

)
+ ln(

1

β
)
]
,

where D := supx,x′∈X ∥x− x′∥ is the diameter of X and O(1) is a generic constant.
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[12] G. Gürkan, A. Y. Özge and S. M. Robinson, Sample-path solution of stochastic varia-
tional inequalities, Math. Program. 64 (1999) 313–333.

[13] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear
complementarity problems: A survey of theory, algorithms and applications, Math.
Program. 48 (1990) 161–220.

[14] T. Homem-de-Mello, On rates of convergence for stochastic optimization problems un-
der non-independent and identically distributed sampling, SIAM J. Optimiz. 19 (2008)
524–551.

[15] H. Y. Jiang and H. F. Xu, Stochastic Approximation Approaches to the Stochastic
Variational Inequality Problem, IEEE T. Automat. Contr. 53 (2008) 1462–1475.

[16] S. Karamardian, The nonlinear complementarity problem with applications, part 1, J.
Optimiz. Theory App. 4 (1969) 87–98.

[17] G. H. Lin, X. J. Chen and M. Fukushima, New restricted NCP function and their
applications to stochastic NCP and stochastic MPEC, Optimization 56 (2007) 641–753.

[18] M. J. Luo and G. H. Lin, Expected residual minimization method for stochastic varia-
tional inequality problems, J. Optimiz. Theory App. 140 (2009) 103–116.

[19] M. J. Luo and G. H. Lin, Convergence results of the ERM method for nonlinear stochas-
tic variational inequality problems, J. Optimiz. Theory App. 142 (2009) 569–581.

[20] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Appli-
cations, Grundlehren Math. Wiss. (Fundamental Principles of Mathematical Sciences),
vol. 331, Springer, 2006.

[21] J. J. Moreau, Porpriétés des applications “prox”, Comptes Rendus de l’Académie des
Sciences de Paris 256 (1963) 1069–1071.

[22] J. Nash, Non-cooperative games, Ann. Math. 54 (1951) 286–295.

[23] H. Niederreiter, Quasi-Monte Carlo Methods, Wiley Online Library, 2010.

[24] M. Patriksson, Nonlinear Programming and Variational Inequalities: A Unified Ap-
proach, Kluwer Academic Publishers, Dordrecht, 1998.

[25] L. Q. Qi and Z. Wei, On the constant positive linear dependence condition and its
application to SQP methods, SIAM J. Optimiz. 10 (2000) 963–981.

[26] S. M. Robinson, Generalized equations and their solutions, part II: Applications to
nonlinear programming, Math. Program. Study 19 (1982) 200–221.

[27] R. T. Rockafellar, Lagrange Multipliers and Variational Inequalities, in Variational
Inequalities and Complementarity Problems: Theory and Applications, John Wiley &
Sons, Chichester, 1980,

[28] R. T. Rockafellar, Convex Analysis, Princeton Univercity Press, Princeton, 1970.

[29] R. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.

[30] A. Ruszczynski and A. Shapiro, Stochastic Programming, Handbooks in Operations
Research and Management Science, Elsevier, Amsterdam, 2003.



722 L. CHEN, G. LIN AND X. YANG

[31] A. Shapiro, Asymptotic properties of statistical estimators in stochastic programming,
Ann. Statist. 17 (1989) 841–858.

[32] M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transport.
Sci. 13B (1979) 295–304.

[33] M. V. Solodov, Merit functions and error bounds for generalized variational inequalities,
J.Math.Anal.Appl. 287 (2003) 405–414.

[34] H. L. Sun and H. F. Xu, A note on uniform exponential convergence of sample average
approximation of random functions, J.Math.Anal.Appl. 385 (2012) 698–708.

[35] H. F. Xu, Uniform exponential convergence of sample average random functions under
general sampling with applications in stochastic programming, J.Math.Anal.Appl. 368
(2010) 692–710.

[36] C. Zhang and X. J. Chen, Stochastic nonlinear complementarity problem and appli-
cations to traffic equilibrium under uncertainty, J. Optimiz. Theory App. 137 (2008)
277–295.

Manuscript received 21 June 2016
revised 27 October 2016

accepted for publication 19 May 2017

Lin Chen
College of Mathematics, Sichuan University
Chengdu 610064, China
E-mail address: chinaallenchen@126.com

Guihua Lin
School of Management, Shanghai University
Shanghai 200444, China
E-mail address: guihualin@shu.edu.cn

Xinmin Yang
College of Mathematics Science, Chongqing Normal University
Chongqing 401331, China
E-mail address: xmyang@cqnu.edu.cn


