ON THE Q-LINEAR CONVERGENCE RATE OF A CLASS OF METHODS FOR MONOTONE NONLINEAR EQUATIONS* #### Weijun Zhou and Dong-Hui Li Abstract: Recently, Li and Li [IMA J. Numer. Anal., 31 (2011) 1625-1635] proposed a class of methods for solving large-scale systems of monotone equations which may be nonsmooth. Those methods have been proved to possess strong global convergence property in the sense that the whole iterative sequence converges to a solution of the equation. However, the convergence rate of the methods is not known. In this paper, we present a new line search and show that the class of methods with that line search still remain strong global convergence property. In addition, the sequence generated by any one of this class of methods converges Q-linearly to a solution of the monotone equation when the underlying function is Lipschitz continuous and all elements of its generalized Jacobian at the solution are nonsingular. Some numerical results are also reported. **Key words:** systems of monotone equations; Nonsmooth; Line search; Global convergence; Q-linear convergence Mathematics Subject Classification: 90C30, 65K05 ## 1 Introduction In this paper, we consider iterative methods for solving large-scale systems of monotone equations. Such equations arise in various practical situations [10, 12, 13]. The study of numerical methods for this kind of equations has received much attention. By exploiting the structure of monotonicity, Solodov and Svaiter [10] presented a Newton type method, which has the truly global convergence property that the iterative sequence converges to a solution of the equation. Zhou and Toh [13] extended this method to monotone equations with singular solutions and established its superlinear convergence under the local error bound condition, which is weaker than the nonsingularity condition. Zhou and Li [14] introduced a globally convergent quasi-Newton method for monotone equations. Recently, Li and Li [7] introduced a class of iterative methods for solving large-scale systems of monotone equations. These methods converge globally. However, no local convergence properties of the methods has been studied. In this paper, we will propose a new line search and show that the class of methods, with the proposed line search, are globally and Q-linearly convergent even if the equation is not differentiable. Here the Q stands for quotient. $^{^*}$ This work was supported by the NSF (11371073, 11371154 and 11461015) of China, the NSF (14JJ3084) of Hunan Province, and Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering The paper is organized as follows. In Section 2, we present the new line search. In Section 3, we discuss the convergence properties of the class of methods with the proposed line search. In Section 4, we do some numerical experiments to show its efficiency. In Section 5, we make some conclusions. ## 2 Algorithm and Line Search Consider the following nonlinear equation: $$F(x) = 0, (2.1)$$ where the function $F: \mathbb{R}^n \to \mathbb{R}^n$ is continuous and monotone, but not necessarily differentiable. The so-called monotonicity here means that F satisfies $$\langle F(x) - F(y), x - y \rangle \ge 0, \quad \forall x, y \in \mathbb{R}^n,$$ (2.2) where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^n . Throughout the paper, we denote $F_k := F(x_k)$, $y_k := F_{k+1} - F_k$, $s_k := x_{k+1} - x_k$, and assume that the solution set of (2.1) is not empty. Note that the methods in [10, 13, 14, 9] possess global convergence properties by using the hyperplane projection technique, but these methods are not suitable for large-scale problems since they need compute or store matrices. On the other hand, it is well-known that the nonlinear conjugate gradient methods are efficient algorithms for large-scale unconstrained optimization problems. In order to take advantage of these methods, Li and Li [7] proposed a class of iterative methods with global convergence for solving the large-scale problem (2.1), whose steps are given below. **Algorithm 2.1.** Choose an initial point $x_0 \in \mathbb{R}^n$, and constants $\sigma > 0$, $\beta > 0$ and $\rho \in (0,1)$. Let k = 0. Step 1. Compute a direction d_k . Step 2. Compute the stepsize $\alpha_k := \max\{\beta \rho^i : i = 0, 1, \dots, \}$ such that $$- < F(x_k + \alpha_k d_k), d_k >> \sigma || F(x_k + \alpha_k d_k) || \alpha_k || d_k ||^2.$$ (2.3) Step 3. Set $$z_k := x_k + \alpha_k d_k. \tag{2.4}$$ Step 4. Let next iterate x_{k+1} be given by $$x_{k+1} := x_k - \frac{\langle F(z_k), x_k - z_k \rangle}{\|F(z_k)\|^2} F(z_k).$$ (2.5) Let k = k + 1 and go to Step 1. **Remark 2.2.** It is clear that Algorithm 2.1 is well defined if d_k satisfies $\langle F_k, d_k \rangle \langle 0$. The iterative point x_{k+1} given by (2.5) is the projection of x_k on the hyperplane $$H_k := \{ x \in \mathbb{R}^n : \langle F(z_k), x - z_k \rangle = 0 \}.$$ This hyperplane projection can ensure that the sequence of the distances between the iterates and the solution set of (2.1) is decreasing, which is independent of the line search used. This important result is specified as follows. **Lemma 2.3** ([10, Lemma 2.1]). If $F(x^*) = 0$ and $\langle F(z_k), x_k - z_k \rangle > 0$, then x_{k+1} , determined by (2.5), satisfies $$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - ||x_{k+1} - x_k||^2.$$ (2.6) In [7], Li and Li studied the following three practical methods: - (i) the SG-like method: $d_k := -\delta_k F_k$ with $\delta_{\min} \leq \delta_k \leq \delta_{\max}$, and $\delta_{\min}, \delta_{\max}$ are two positive constants; - (ii) the MPRP-based method: $d_0 := -F_0$ and $$d_k := -F_k + \beta_k^{PRP} d_{k-1} - \theta_k y_{k-1}, \quad k \ge 1, \tag{2.7}$$ where $$y_{k-1} := F_k - F_{k-1}, \quad \beta_k^{PRP} := \frac{\langle F_k, y_{k-1} \rangle}{\|F_{k-1}\|^2}, \quad \theta_k := \frac{\langle F_k, d_{k-1} \rangle}{\|F_{k-1}\|^2};$$ (2.8) (iii) the TPRP-based method: $d_0 := -F_0$ and $$d_k := -F_k + \beta_k^{PRP} \left(I - \frac{F_k F_k^T}{\|F_k\|^2} \right) d_{k-1}, \quad k \ge 1, \tag{2.9}$$ where I is the identity matrix and β_k^{PRP} is given by (2.8). It is easy to verify that the search direction d_k in the MPRP-based and TPRP-based methods satisfy the important relation $$\langle d_k, F_k \rangle = -\|F_k\|^2.$$ (2.10) Throughout the paper, we always suppose that the following assumption holds, which is the same as that in [7]. **Assumption 2.4.** The function $F: \mathbb{R}^n \to \mathbb{R}^n$ is monotone and Lipschitz continuous; that is, there exists a constant L > 0 such that $$||F(x) - F(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$ (2.11) The following theorem comes from [7]. **Theorem 2.5.** Let the iterative sequence $\{x_k\}$ be generated by the SG-like method, or the MPRP-based method, or the TPRP-based method with the line search (2.3). Then, the whole sequence $\{x_k\}$ converges to x^* with $F(x^*) = 0$. The above theorem shows that the sequence $\{x_k\}$ generated by Algorithm 2.1 converges globally. However, no local convergence properties of Algorithm 2.1 has been studied. In this paper, we further study the class of derivative-free methods. We will propose a new line search and show that the methods with this line search are globally and Q-linearly convergent even if F is nonsmooth. We will focus on the MPRP-based method. The results can be extended to the other two methods easily in a similar way. Let $\beta > 0, \rho \in (0,1)$ and $\sigma \in (0,1)$ be constants. We propose a line search technique to compute the stepsize $\alpha_k := \max\{\beta \rho^i : i = 0, 1, \dots, \}$ such that $$- \langle F(x_k + \alpha_k d_k), d_k \rangle > \sigma \|F(x_k + \alpha_k d_k)\| \|F_k\|. \tag{2.12}$$ Clearly, this line search is well defined if d_k satisfies $\langle F_k, d_k \rangle = -\|F_k\|^2$. In fact, as $\alpha \to 0^+$, the left and right sides of (2.12) tend to $-\langle F_k, d_k \rangle = \|F_k\|^2$ and $\sigma \|F_k\|^2$, respectively. Hence (2.12) is satisfied for all $\alpha_k > 0$ sufficiently small. Moreover, it is not difficult to show that Lemma 2.3 still holds. In the case d_k is determined by the SG-like method, we can further restrict $\sigma \in (0, \delta_{\min})$. The above properties obviously remain true. ## 3 Global and Q-linear Convergence Throughout this section, we suppose that $\{x_k\}$ is generated by Algorithm 2.1 with α_k determined by (2.12). We also suppose that the conditions in Assumption 2.1 hold. Clearly, (2.6) implies that $\{||x_k - x^*||\}$ is decreasing. Then $$\lim_{k \to \infty} ||x_{k+1} - x_k|| = 0. \tag{3.1}$$ From (2.4), (2.5) and the line search condition (2.12), we have $$||x_{k+1} - x_k|| = \left| \frac{\langle F(z_k), x_k - z_k \rangle}{||F(z_k)||^2} F(z_k) \right| \le ||z_k - x_k|| = \alpha_k ||d_k||, \tag{3.2}$$ and $$||x_{k+1} - x_k|| = \left| \frac{\langle F(z_k), x_k - z_k \rangle}{||F(z_k)||^2} F(z_k) \right| = \alpha_k \frac{-\langle F(z_k), d_k \rangle}{||F(z_k)||} \ge \sigma \alpha_k ||F_k||.$$ (3.3) It follows from (3.1) and (3.3) that $$\lim_{k \to \infty} \alpha_k ||F_k|| = 0. \tag{3.4}$$ The following lemma gives a lower bound to the stepsize α_k . **Lemma 3.1.** Let the sequence $\{x_k\}$ be generated by the MPRP-based method with line search (2.12). Then we have $$\alpha_k \ge \min\left\{\beta, \frac{\rho}{L} \frac{\|F_k\|^2 - \sigma \|F(z_k')\| \|F_k\|}{\|d_k\|^2}\right\},$$ (3.5) where $z'_k := x_k + \alpha'_k d_k$ and $\alpha'_k := \alpha_k / \rho$. *Proof.* If $\alpha_k \neq \beta$, then $\alpha'_k = \alpha_k/\rho$ does not satisfy the line search condition (2.12), that is, $$- \langle F(z_k'), d_k \rangle \langle \sigma || F(z_k') || || F_k ||, \tag{3.6}$$ which together with (2.11) implies $$-\langle F_k, d_k \rangle - \sigma \|F(z_k')\| \|F_k\| \le \langle F(z_k') - F_k, d_k \rangle \le L\alpha_k' \|d_k\|^2. \tag{3.7}$$ This and (2.10) yield (3.5).
Theorem 3.2. Let the sequence $\{x_k\}$ be generated by the MPRP-based method with line search (2.12). Then we have $$\liminf_{k \to \infty} ||F_k|| = 0.$$ (3.8) *Proof.* We prove this theorem by contradiction. Suppose that (3.8) is not true. Then there exists a constant $\eta > 0$ such that $$||F_k|| \ge \eta, \quad \forall k \ge 0. \tag{3.9}$$ From (2.6), we know that $\{x_k\}$ is bounded. Then the sequence $\{\|F_k\|\}$ is also bounded with some upper bound M > 0. By (2.7)-(2.8) and (2.11), we get $$\|d_k\| \leq \|F_k\| + \frac{2L\|F_k\| \|x_k - x_{k-1}\| \|d_{k-1}\|}{\|F_{k-1}\|^2} \leq M + \frac{2LM}{\eta^2} \|x_k - x_{k-1}\| \|d_{k-1}\|,$$ which together with (3.1) implies that these exists a positive constant M_1 such that $$||d_k|| \le M_1. \tag{3.10}$$ Therefore, by (2.4), $\{z'_k\}$ and $\{\|F(z'_k)\|\}$ are bounded. Case (i). If $\limsup_{k\to\infty} \alpha_k > 0$, we can easily get from (3.4) that $\liminf_{k\to\infty} ||F_k|| = 0$, which contradicts (3.9). Case (ii). If $\limsup_{k\to\infty} \alpha_k = 0$, then $$\lim_{k \to \infty} \alpha_k = 0. \tag{3.11}$$ Moreover, it follows from (2.11) and (3.10) that $$||F(z_k')|| \le ||F_k|| + L\alpha_k' ||d_k|| \le ||F_k|| + L\rho^{-1}\alpha_k M_1.$$ This, together with (3.5) and (3.9), shows that $$\begin{split} \alpha_k & \geq & \min \Big\{\beta, \frac{\rho}{L} \frac{(1-\sigma)\|F_k\|^2 - \sigma L \rho^{-1} \alpha_k M_1 \|F_k\|}{\|d_k\|^2} \Big\} \\ & \geq & \min \Big\{\beta, \frac{\rho}{L} \frac{(1-\sigma)\eta^2 - \sigma L \rho^{-1} \alpha_k M_1 M}{M_1^2} \Big\}, \end{split}$$ which implies $$\lim_{k \to \infty} \alpha_k \ge \min \left\{ \beta, \frac{\rho}{L} \frac{(1 - \sigma)\eta^2}{M_1^2} \right\} > 0.$$ This contradicts (3.11). The proof is then complete. Lemma 2.3 and Theorem 3.2 imply the following strong global convergence theorem. **Theorem 3.3.** Let the sequence $\{x_k\}$ be generated by the MPRP-based method with line search (2.12). Then the whole sequence $\{x_k\}$ converges to a solution x^* of (2.1). *Proof.* Lemma 2.3 and Theorem 3.2 show that there exists a subsequence of $\{x_k\}$ which converges to a solution x^* of F(x) = 0. Therefore, the whole sequence $\{x_k\}$ converges to x^* since Lemma 2.3 implies that $\{\|x_k - x^*\|\}$ is monotone decreasing and converges. In what follows, we are going to investigate the local convergence property of the MPRP-based method with line search (2.12). We note that the Lipschitz continuouity of F implies that function F is differentiable almost everywhere. To obtain the linear convergence of the MPRP-based method, we further make the following assumption which will be assumed to hold in the rest of the paper. **Assumption 3.4.** All $V \in \partial F(x^*)$ are nonsingular, where $F(x^*) = 0$ and $\partial F(x^*)$ is the generalized Jacobian of F at x^* in the sense of Clarke [1, 8]. It is well-known that, under the conditions of Assumption 3.1, x^* is an isolated solution of (2.1). Consequently, the sequence $\{x_k\}$ generated by Algorithm 2.1 with line search (2.12) converges to x^* . To derive the linear convergence of $\{x_k\}$, we first show some useful lemmas. **Lemma 3.5** ([8, Proposition 3.1]). If all $V \in \partial F(x)$ are nonsingular, then there is a neighborhood N(x) of x and a constant C such that, for any $y \in N(x)$ and any $M \in \partial F(y)$, M is nonsingular and satisfies $$||M^{-1}|| \le C. (3.12)$$ **Lemma 3.6** ([5, Corollary 3.4]). Let $F: S \to \mathbb{R}^n$ be locally Lipschitz continuous. Then, F is monotone if and only if, for each $x \in S$, the matrices $M \in \partial F(x)$ are positive semidefinite, where $S \subseteq \mathbb{R}^n$ is an open and convex set. **Lemma 3.7.** There exist a neighborhood $N(x^*)$ of x^* and positive constants m_1, m_2 and m_3 such that $$\langle x - y, F(x) - F(y) \rangle \ge m_1 ||x - y||^2, \quad \forall x, y \in N(x^*).$$ (3.13) $$m_2||x_k - x^*|| \le ||F_k|| \le m_3||x_k - x^*||.$$ (3.14) *Proof.* We prove (3.13) by contradiction. If (3.13) does not hold, then there exist sequences $\{x_l\}$, $\{y_l\}$, $\{u_{l,j}\}$, $\{V_{l,j}\}$ and $\lambda_{l,j} \geq 0, j = 1, 2, \dots, n+1$ such that $x_l \to x^*$, $y_l \to x^*$, $u_{l,j} \to x^*$, $V_{l,j} \in \partial F(u_{l,j})$, $\sum_{j=1}^{n+1} \lambda_{l,j} = 1$ for any l and $$\langle x_l - y_l, F(x_l) - F(y_l) \rangle = \sum_{j=1}^{n+1} \lambda_{l,j} \langle x_l - y_l, V_{l,j}(x_l - y_l) \rangle \langle \frac{1}{l} ||x_l - y_l||^2.$$ Without any loss of generality, we assume that $\frac{x_l-y_l}{\|x_l-y_l\|}\to d$ and $V_{l,j}\to V^*$ for $j=1,2,\cdots n+1$. Let $l\to\infty$; then we have $$< d, V^*d > < 0,$$ which leads to a contradiction because Lemma 3.5 and Lemma 3.6 imply that $V^* \in \partial F(x^*)$ is positive definite. The inequality (3.14) holds clearly. The proof is then completed. **Lemma 3.8.** Let the sequence $\{x_k\}$ be generated by the MPRP-based method with line search (2.12). Then we have $$||F_k||^2 \ge m_1 \alpha_k ||d_k||^2. \tag{3.15}$$ *Proof.* Without any loss of generality, we assume that $\{x_k\} \subset N(x^*)$. By the line search (2.12) and (2.10), we have $$\sigma ||F_k|| ||F(x_k + \alpha_k d_k)|| \leq -\langle F(x_k + \alpha_k d_k), d_k \rangle = -\langle F_k, d_k \rangle + \langle F_k - F(x_k + \alpha_k d_k), d_k \rangle$$ $$= ||F_k||^2 + \langle F_k - F(x_k + \alpha_k d_k), d_k \rangle.$$ This and (3.13) yield $$||F_k||^2 \ge \sigma ||F_k|| ||F(x_k + \alpha_k d_k)|| + \langle F(x_k + \alpha_k d_k) - F_k, d_k \rangle$$ $\ge m_1 \alpha_k ||d_k||^2.$ This shows that (3.15) holds. It follows from (2.7) and (2.11) that $$||d_{k}|| \leq ||F_{k}|| + ||\beta_{k}^{PRP}d_{k-1}|| + ||\theta_{k}y_{k-1}||$$ $$\leq ||F_{k}|| + \frac{2L||F_{k}|| ||x_{k} - x_{k-1}|| ||d_{k-1}||}{||F_{k-1}||^{2}}$$ $$\leq (1 + \frac{2L}{m_{1}})||F_{k}|| = C_{1}||F_{k}||,$$ (3.16) where $C_1 := 1 + \frac{2L}{m_1}$, the last inequality follows from (3.15) and (3.2). This and (3.3) show that $$\lim_{k\to\infty}\alpha_k\|d_k\|=0.$$ From (3.16) and (2.11), we know $$||F(z_k')|| \le ||F_k|| + L\rho^{-1}\alpha_k||d_k|| \le ||F_k|| + L\beta C_1\rho^{-1}||F_k||.$$ Therefore, we get from (3.5) $$\begin{array}{lcl} \alpha_k & \geq & \min \Big\{ \beta, \frac{\rho}{L} \frac{(1-\sigma) \|F_k\|^2 - \sigma L \beta C_1 \rho^{-1} \alpha_k \|F_k\|^2}{\|d_k\|^2} \Big\} \\ & = & \min \Big\{ \beta, \frac{\rho \left((1-\sigma) - \sigma L \beta C_1 \rho^{-1} \alpha_k \right)}{L} \frac{\|F_k\|^2}{\|d_k\|^2} \Big\}. \end{array}$$ Without any loss of generality, we assume $\alpha_k \leq \frac{\rho(1-\sigma)}{2\sigma L \beta C_1}$. Then from (3.16), we have $$\alpha_k \ge C_2 := \min\left\{\beta, \frac{\rho(1-\sigma)}{2LC_1^2}\right\} > 0.$$ (3.17) The following result shows that the MPRP-based method with line search (2.12) converges Q-linearly. **Theorem 3.9.** Let the sequence $\{x_k\}$ be generated by the MPRP-based method with line search (2.12). Then there exists a constant $r \in (0,1)$ such that $$||x_{k+1} - x^*|| \le r||x_k - x^*||. \tag{3.18}$$ *Proof.* From (3.3) and (3.17), we have $$||x_{k+1} - x_k|| \ge \sigma \alpha_k ||F_k|| \ge \sigma C_2 ||F_k||.$$ This together with (2.6) and (3.14) implies $$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - \sigma^2 C_2^2 ||F_k||^2 \le (1 - \sigma^2 C_2^2 m_2^2) ||x_k - x^*||^2.$$ (3.19) This yields (3.18) with $r := \sqrt{1 - \sigma^2 C_2^2 m_2^2} < 1$. The proof is then complete. Remark 3.1 It is not difficult to prove the global and linear convergence of the SG-like method and the TPRP-based method with line search (2.12) by using the completely same argument as that of the MPRP-based method. #### 4 **Numerical Experiments** In this section, we test the performance of the MPRP-based method with line search (2.12) which we call MPRP-2, and compare its performance with that of the MPRP-based method in [7] which we call MPRP-1. The parameters of the algorithms are specified as follows. - In MPRP-1, we set the parameters as same as those in [7], namely, $\rho = 0.5$, $\sigma = 2$ and $\beta = \frac{|\langle F_k, d_k \rangle|}{|\langle d_k, F(x_k + \epsilon d_k) - F_k \rangle / \epsilon|} \text{ with } \epsilon = 10^{-8};$ • In MPRP-2, we set $\rho = 0.1$, $\sigma = 0.5$. We use the same parameter β as that in the - MPRP-1 method. The codes were written in Matlab 7.4 and run on a personal computer with a 2.66 GHz CPU processor and 1 GB RAM memory. We stopped the iteration if the total number of iterations exceeds 10^4 or the inequality $||F_k|| \le 10^{-4}$ is satisfied. We tested the two methods on the following 11 examples with different sizes and initial points. **Example 4.1.** The discretized two-point boundary value problem [6]: Fig. 1: Performance profiles with respect to the CPU time. **Example 4.2.** The elements of F(x) are given by [7]: $$F_1(x) := 2x_1 + \sin x_1 - 1,$$ $$F_i(x) := -2x_{i-1} + 2x_i + \sin x_i - 1, \quad i = 2, 3, \dots, n-1,$$ $$F_n(x) := 2x_n + \sin x_n - 1.$$ **Example 4.3.** The gradient function of the Engval function [6]: $$F_1(x) := x_1(x_1^2 + x_2^2) - 1,$$ Table 1: Test results for the MPRP-1 and MPRP-2 methods on the test examples. | | | | | N | MPRP-1 | | | N | IPRP-2 | | |-----|-----------|---------------|--------------|----------------|-----------------------|------------------------|--------------|----------------|-------------------|------------------------| | Exa | $(x_0)_i$ | n | Iter | Fent | Time | $ F_k $ | Iter | Fent | Time | $ F_k $ | | 4.1 | 0.1 | 50 | 1051 | 3151 | 2.215 | 9.99e-005 | 780 | 2338 | 1.570 | 1.00e-004 | | | | 100 | 1734 | 5200 | 3.716 | 9.99e-005 | 1538 | 4612 | 3.323 | 9.99e-005 | | | | 200
500 | 4529
* | 13585 | 15.274
* | 1.00e-004
1.32e-004 | 3969
9857 | 11905
29569 | 14.528
409.140 | 1.00e-004
1.00e-004 | | 4.1 | 1 | 20 | 1142 | 3424 | 2.113 | 9.94e-005 | 1107 | 3319 | 1.929 | 9.96e-005 | | 4.1 | 1 | 30 | 2311 | 6931 | 3.273 | 9.98e-005 | 2220 | 6658 | 2.483 | 1.00e-004 | | | | 50 | 5583 | 16747 | 5.982 |
9.99e-005 | 5314 | 15940 | 6.131 | 9.99e-005 | | 4.1 | -0.1 | 20 | 1171 | 3511 | 2.319 | 9.95e-005 | 1132 | 3394 | 1.753 | 9.97e-005 | | | | 30 | 2376 | 7126 | 3.186 | 9.98e-005 | 2283 | 6847 | 2.867 | 1.00e-004 | | | | 50 | 5754 | 17260 | 5.701 | 9.99e-005 | 5483 | 16447 | 5.636 | 9.99e-005 | | 4.2 | 0.1 | 500 | 1032 | 3412 | 2.463 | 9.87e-005 | 992 | 2972 | 4.467 | 9.98e-005 | | | | 1000 | 1924 | 6257 | 4.160 | 9.97e-005 | 1803 | 5405 | 4.055 | 9.97e-005 | | | | 2000 | 3205 | 10416 | 8.193 | 9.99e-005 | 2851 | 8549 | 7.525 | 9.99e-005 | | | | 5000 | 6070 | 18522 | 28.661 | 9.98e-005 | 4264 | 12789 | 20.857 | 9.99e-005 | | 4.2 | 1 | 10000 | 7471 | 23711 | 66.095 | 9.99e-005 | 5384 | 16149 | 62.533 | 1.00e-004 | | 4.2 | 1 | 500
1000 | 988
1861 | 2998
5678 | 4.425
4.837 | 9.86e-005
9.98e-005 | 978
1788 | 2932
5362 | 2.602
4.246 | 9.85e-005
9.99e-005 | | | | 2000 | 3118 | 9535 | 8.189 | 9.99e-005 | 2835 | 8503 | 7.469 | 1.00e-004 | | | | 5000 | 5838 | 16915 | 27.034 | 9.99e-005 | 4251 | 12751 | 27.547 | 1.00e-004 | | | | 10000 | 7274 | 21357 | 65.066 | 1.00e-004 | 5374 | 16120 | 58.607 | 9.99e-005 | | 4.2 | 10 | 50 | 578 | 4882 | 3.036 | 8.90e-005 | 340 | 1020 | 1.508 | 9.05e-005 | | | | 100 | 1126 | 9952 | 2.858 | 9.34e-005 | 662 | 1983 | 1.993 | 9.67e-005 | | | | 500 | 5490 | 48924 | 13.290 | 5.94e-005 | 3142 | 9425 | 4.592 | 9.44e-005 | | | | 1000 | * | * | * | 2.86e + 000 | 6278 | 18835 | 11.502 | 9.89e-005 | | 4.3 | 0.01 | 1000 | 282 | 1913 | 1.956 | 9.77e-005 | 125 | 377 | 1.846 | 9.78e-005 | | | | 5000 | 585 | 4888 | 4.978 | 8.94e-005 | 133 | 401 | 3.180 | 9.41e-005 | | | | 8000 | 743 | 6430 | 9.240 | 9.64e-005 | 135 | 407 | 3.519 | 9.64e-005 | | | | 10000 | 806 | 7115 | 12.356 | 9.60e-005 | 136 | 410 | 3.732 | 9.70e-005 | | 4.3 | 0.1 | 15000 | 938 | 8353 | 18.110 | 9.22e-005 | 138 | 416
374 | 4.656 | 9.62e-005 | | 4.3 | 0.1 | 1000
5000 | 105
157 | 499
918 | $\frac{1.822}{3.360}$ | 9.89e-005
9.37e-005 | 125
133 | 374 | 1.737
2.086 | 9.05e-005
9.08e-005 | | | | 8000 | 180 | 1105 | 7.599 | 9.15e-005 | 135 | 404 | 2.780 | 9.42e-005 | | | | 10000 | 196 | 1211 | 3.850 | 9.79e-005 | 136 | 407 | 3.192 | 9.55e-005 | | | | 15000 | 208 | 1388 | 5.631 | 9.69e-005 | 138 | 413 | 3.419 | 9.58e-005 | | 4.3 | 1 | 1000 | 111 | 398 | 1.569 | 9.52e-005 | 103 | 304 | 1.561 | 9.06e-005 | | | | 5000 | 159 | 728 | 2.559 | 9.53e-005 | 102 | 301 | 1.948 | 9.34e-005 | | | | 8000 | 188 | 929 | 2.872 | 9.19e-005 | 101 | 298 | 2.477 | 9.44e-005 | | | | 10000 | 193 | 1001 | 3.890 | 9.08e-005 | 101 | 298 | 2.661 | 9.02e-005 | | | | 15000 | 206 | 1141 | 4.526 | 9.85e-005 | 100 | 295 | 5.922 | 9.27e-005 | | 4.3 | 10 | 1000 | 939 | 7989 | 3.008 | 9.54e-005 | 112 | 326 | 1.493 | 9.52e-005 | | | | 5000 | 1488
1643 | 13606 | 10.782 | 9.63e-005 | 114 | 331
334 | 3.659 | 9.11e-005 | | | | 8000
10000 | 1710 | 15145
15838 | 17.507 22.408 | 9.29e-005
9.17e-005 | 115
115 | 334 | 3.515 6.052 | 9.24e-005
9.70e-005 | | | | 15000 | 1823 | 17044 | 34.172 | 8.91e-005 | 116 | 337 | 12.602 | 9.35e-005 | | 4.4 | 1 | 1000 | 93 | 648 | 3.534 | 1.76e-005 | 4 | 7 | 1.515 | 2.45e-007 | | | | 5000 | 201 | 1625 | 4.057 | 4.94e-006 | 4 | 7 | 1.851 | 5.50e-007 | | | | 10000 | 296 | 2578 | 8.506 | 4.00e-006 | 4 | 7 | 2.831 | 7.78e-007 | | 4.4 | 10 | 1000 | 585 | 5357 | 3.753 | 1.77e-005 | 6 | 11 | 1.692 | 2.60e-007 | | | | 5000 | 904 | 8621 | 15.089 | 4.77e-006 | 6 | 11 | 2.318 | 5.81e-007 | | | | 10000 | 1031 | 9928 | 30.902 | 4.00e-006 | 6 | 11 | 3.215 | 8.21e-007 | | 4.4 | 100 | 1000 | 1166 | 11169 | 6.273 | 2.29e-005 | 13 | 31 | 2.005 | 2.81e-007 | | | | 5000 | 1485 | 14431 | 25.238 | 4.79e-006 | 13 | 31 | 2.810 | 6.31e-007 | | 1 = | 10 | 10000 | 1612 | 15738 | 50.270 | 4.02e-006 | 13 | 510 | 3.113 | 8.86e-007 | | 4.5 | 10 | 1000
2000 | 311
437 | 2170 3145 | 3.198
8.661 | 6.93e-005
6.01e-005 | 174
184 | 510
540 | 2.143
3.201 | 9.40e-005
9.39e-005 | | | | 5000 | 591 | 3145
4796 | 20.319 | 7.64e-005 | 197 | 540
578 | 9.212 | 9.28e-005 | | | | 10000 | 880 | 7140 | 57.712 | 9.49e-005 | 211 | 621 | 13.065 | 9.04e-005 | | 4.5 | 100 | 5000 | 249 | 1454 | 8.541 | 8.28e-005 | 195 | 572 | 5.864 | 9.44e-005 | | | | 8000 | 287 | 1799 | 15.744 | 9.41e-005 | 202 | 593 | 9.044 | 9.06e-005 | | | | 10000 | 416 | 2750 | 25.079 | 9.60e-005 | 205 | 602 | 10.000 | 9.22e-005 | | | | 15000 | 398 | 2686 | 34.999 | 7.50e-005 | 210 | 617 | 15.315 | 9.96e-005 | | 4.5 | -10 | 3000 | 342 | 2514 | 8.596 | 9.53e-005 | 173 | 503 | 4.192 | 9.19e-005 | | | | 5000 | 434 | 3255 | 15.555 | 6.25 e-005 | 180 | 524 | 5.440 | 9.47e-005 | | | | 8000 | 494 | 3990 | 28.301 | 9.61e-005 | 187 | 545 | 8.712 | 9.17e-005 | | | | 10000 | 542 | 4423 | 37.212 | 6.78e-005 | 190 | 554 | 11.451 | 9.35e-005 | | | | 15000 | 630 | 5271 | 69.307 | 6.06e-005 | 196 | 572 | 13.882 | 9.14e-005 | | 4.5 | -1 | 2000 | 228 | 1374 | 3.177 | 7.96e-005 | 180 | 531 | 1.994 | 9.33e-005 | | | | 5000 | 344 | 2276 | 6.961 | 7.55e-005 | 186 | 524 | 4.787 | 9.23e-005 | | | | 8000
10000 | 420
469 | 2982 | 12.695 | 9.55e-005 | 197 | 581 | 8.493 | 9.64e-005 | | | | 15000 | 539 | 3383
4044 | 17.407 29.390 | 9.16e-005
8.49e-005 | 201
207 | 594
611 | 8.738
9.980 | 9.28e-005
9.19e-005 | | | | 19000 | 009 | 4044 | ∠9.390 | 0.496-000 | 207 | 011 | 9.980 | 9.196-005 | Table 1 continued. | | | | | | MPRP-1 | | | N | IPRP-2 | | |------|--|--|---|---|--|---|--|---|--
---| | Exa | $(x_0)_i$ | n | Iter | Fent | Time | $ F_k $ | Iter | Fcnt | Time | $ F_k $ | | 4.6 | -1 | 1000 | 78 | 336 | 1.574 | 9.23e-005 | 113 | 336 | 1.561 | 9.69e-005 | | | | 5000 | 136 | 731 | 2.974 | 9.45e-005 | 122 | 363 | 2.503 | 9.01e-005 | | | | 8000 | 160 | 948 | 3.166 | 8.93e-005 | 124 | 369 | 2.453 | 9.49e-005 | | | | 10000 | 170 | 1051 | 4.345 | 8.15e-005 | 126 | 375 | 3.140 | 9.25e-005 | | | | 15000 | 180 | 1221 | 4.691 | 9.36e-005 | 128 | 381 | 3.422 | 9.03e-005 | | | | 20000 | 212 | 1482 | 5.972 | 9.32e-005 | 127 | 377 | 4.612 | 9.25e-005 | | 4.6 | -0.1 | 1000 | 147 | 992 | 1.868 | 9.21e-005 | 116 | 346 | 1.713 | 9.85e-005 | | 4.0 | -0.1 | 5000 | 255 | 1979 | 3.486 | 9.62e-005 | 122 | 363 | 4.507 | 9.47e-005 | | | | 8000 | 291 | 2355 | 7.085 | 9.74e-005 | 124 | 369 | 3.117 | 9.47e-005
9.23e-005 | | | | | | | | | | | | | | | | 10000 | 330 | 2589 | 6.004 | 9.62e-005 | 124 | 369 | 4.025 | 9.99e-005 | | | | 15000 | 348 | 2925 | 7.573 | 9.16e-005 | 127 | 377 | 3.605 | 8.62e-005 | | | | 20000 | 386 | 3221 | 10.791 | 9.84e-005 | 127 | 378 | 6.240 | 9.61e-005 | | 4.6 | 0.1 | 1000 | 143 | 936 | 1.687 | 8.62e-005 | 121 | 361 | 1.723 | 9.72e-005 | | | | 5000 | 165 | 1098 | 2.550 | 9.04e-005 | 126 | 375 | 2.659 | 9.41e-005 | | | | 8000 | 185 | 1102 | 4.279 | 9.45e-005 | 128 | 381 | 2.694 | 9.20e-005 | | | | 10000 | 162 | 1021 | 4.604 | 8.69e-005 | 129 | 384 | 3.863 | 9.32e-005 | | 4.7 | 10 | 1000 | 864 | 7656 | 5.068 | 8.86e-005 | 113 | 324 | 2.034 | 9.21e-005 | | | | 2000 | 1098 | 9996 | 10.375 | 7.47e-005 | 124 | 360 | 2.443 | 9.81e-005 | | | | 5000 | 1361 | 12759 | 27.060 | 8.93e-005 | 131 | 383 | 3.993 | 6.15e-005 | | | | 10000 | 1532 | 14549 | 60.354 | 9.94e-005 | 141 | 413 | 6.375 | 9.15e-005 | | 4.7 | 100 | 1000 | 2808 | 26926 | 15.139 | 6.64e-005 | 204 | 531 | 3.744 | 9.21e-005 | | | 100 | 5000 | 3287 | 31918 | 66.569 | 7.47e-005 | 205 | 532 | 4.239 | 9.88e-005 | | | | 10000 | 3415 | 33250 | 154.424 | 7.18e-005 | 202 | 521 | 25.386 | 9.28e-005 | | 4.7 | 1000 | 500 | 4939 | 48568 | 17.460 | | | 2104 | | | | 4.7 | 1000 | | | | | 8.32e-005 | 991 | | 3.556 | 9.42e-005 | | | | 1000 | 5178 | 51095 | 27.339 | 6.61e-005 | 994 | 2110 | 4.182 | 9.18e-005 | | | | 2000 | 5344 | 52850 | 48.390 | 8.89e-005 | 1000 | 2122 | 5.600 | 9.23e-005 | | | | 5000 | 5457 | 53980 | 130.397 | 8.88e-005 | 1015 | 2154 | 11.957 | 9.19e-005 | | 4.8 | 10 | 100 | 316 | 2614 | 1.392 | 9.51e-005 | 145 | 432 | 1.107 | 9.38e-005 | | | | 200 | 404 | 3499 | 1.853 | 9.80e-005 | 139 | 414 | 1.401 | 9.59e-005 | | | | 500 | 513 | 4600 | 7.587 | 7.71e-005 | 150 | 447 | 2.914 | 9.16e-005 | | | | 1000 | 610 | 5545 | 36.432 | 7.47e-005 | 159 | 473 | 11.587 | 9.86e-005 | | | | 2000 | 679 | 6241 | 150.141 | 8.57e-005 | 170 | 506 | 24.257 | 9.51e-005 | | | | 5000 | 803 | 7447 | 1071.404 | 7.15e-005 | 164 | 489 | 255.306 | 9.40e-005 | | | | 10000 | 865 | 8032 | 4439.149 | 9.02e-005 | 153 | 456 | 699.303 | 9.67e-005 | | 4.8 | -10 | 100 | 342 | 2720 | 1.742 | 9.69e-005 | 151 | 449 | 1.214 | 9.13e-005 | | 4.8 | -10 | | | | | | | | | | | | | 200 | 416 | 3570 | 2.478 | 7.60e-005 | 159 | 473 | 1.276 | 9.32e-005 | | | | 500 | 532 | 4752 | 7.669 | 8.85e-005 | 163 | 485 | 3.883 | 9.65e-005 | | | | 1000 | 626 | 5654 | 38.388 | 7.24e-005 | 170 | 506 | 9.303 | 9.48e-005 | | | | 2000 | 721 | 6600 | 159.368 | 7.20e-005 | 169 | 503 | 31.378 | 9.27e-005 | | | | 5000 | 842 | 7795 | 1130.288 | 7.65e-005 | 177 | 527 | 868.606 | 9.98e-005 | | 4.9 | 0 | 10 | 891 | 3117 | 1.481 | 9.91e-005 | 636 | 1906 | 1.228 | 9.99e-005 | | | | 20 | 5468 | 18149 | 3.383 | 9.94e-005 | 4081 | 12241 | 5.573 | 1.00e-004 | | | | 50 | * | * | * | 3.84e + 000 | 8334 | 25000 | 12.904 | 1.00e-004 | | | | 80 | * | * | * | 1.42e + 000 | 9090 | 27268 | 33.670 | 1.00e-004 | | | | 100 | 9174 | 25791 | 47.453 | 9.99e-005 | 7024 | 21070 | 43.767 | 9.98e-005 | | 4.9 | i | 10 | 975 | 3276 | 1.457 | 9.96e-005 | 740 | 2218 | 1.011 | 9.98e-005 | | | | 20 | 5657 | 19406 | 3.848 | 9.91e-005 | 4126 | 12376 | 2.876 | 9.95e-005 | | | | 50 | * | * | * | 4.65e + 000 | 8513 | 25537 | 14.698 | | | | | | | | | | | | | 1.00e-004 | | | | 80 | * | * | * | | | | | 1.00e-004
9.99e-005 | | 4.9 | | 80
100 | * | * | * | 1.81e + 000 | 9695 | 29083
23437 | 48.076 | 1.00e-004
9.99e-005
9.96e-005 | | | 10 | 100 | -1- | | ** | 1.81e+000
9.57e-004 | 9695
7813 | $\frac{29083}{23437}$ | $48.076 \\ 51.648$ | 9.99e-005
9.96e-005 | | 4.9 | 10 | 100 | 981 | 3338 | 2.093 | 1.81e+000
9.57e-004
9.93e-005 | 9695
7813
774 | 29083
23437
2320 | 48.076
51.648
1.140 | 9.99e-005
9.96e-005
9.94e-005 | | 4.9 | 10 | 100
10
20 | -1- | | ** | 1.81e+000
9.57e-004
9.93e-005
1.00e-004 | 9695
7813
774
4093 | 29083
23437
2320
12277 | 48.076
51.648
1.140
2.523 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005 | | 4.9 | 10 | 100
10
20
50 | 981 | 3338 | 2.093 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004 | 9695
7813
774
4093
8357 | 29083
23437
2320
12277
25069 | 48.076
51.648
1.140
2.523
27.211 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005 | | 4.9 | 10 | 100
10
20
50
80 | 981
5670
* | 3338
19081
* | 2.093
3.438
* | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000 | 9695
7813
774
4093
8357
9286 | 29083
23437
2320
12277
25069
27856 | 48.076
51.648
1.140
2.523
27.211
33.677 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.97e-005 | | | | 100
10
20
50
80
100 | 981
5670
*
* | 3338
19081
*
* | 2.093
3.438
*
* | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000 | 9695
7813
774
4093
8357
9286
7286 | 29083
23437
2320
12277
25069
27856
21856 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.97e-005
9.99e-005 | | 4.10 | 103 | 100
10
20
50
80 | 981
5670
* | 3338
19081
* | 2.093
3.438
* | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000 | 9695
7813
774
4093
8357
9286 | 29083
23437
2320
12277
25069
27856 | 48.076
51.648
1.140
2.523
27.211
33.677 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.97e-005 | | | 103 | 100
10
20
50
80
100 | 981
5670
*
* | 3338
19081
*
* | 2.093
3.438
*
* | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000 | 9695
7813
774
4093
8357
9286
7286 | 29083
23437
2320
12277
25069
27856
21856 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.97e-005
9.99e-005 | | | | 100
10
20
50
80
100 | 981
5670
*
*
*
1184 | 3338
19081
*
*
*
10579 | 2.093
3.438
*
*
* | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005 | 9695
7813
774
4093
8357
9286
7286 | 29083
23437
2320
12277
25069
27856
21856
577 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.97e-005
9.99e-005
9.89e-005 | | | $\frac{10^3}{10^2}$ | 100
10
20
50
80
100
4
4 | 981
5670
*
*
*
1184
592
177 | 3338
19081
*
*
*
10579
4684
728 | 2.093
3.438
*
*
*
0.399
0.178
0.040 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
9.34e-005
9.42e-005
9.27e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150 | 29083
23437
2320
12277
25069
27856
21856
577
511
448 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.99e-005
9.89e-005
9.89e-005
9.33e-005 | | | 10 ³ 10 ² 10 0 | 100
10
20
50
80
100
4
4
4
4 | 981
5670
*
*
*
1184
592
177
25 | 3338
19081
*
*
*
10579
4684
728
91 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.27e-005
5.88e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.99e-005
9.89e-005
9.89e-005
9.33e-005
9.78e-005 | | | 10 ³ 10 ² 10 0 -10 ³ | 100
10
20
50
80
100
4
4
4
4
4 | 981
5670
*
*
*
1184
592
177
25
2488 | 3338
19081
*
*
*
10579
4684
728
91
23013 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
9.34e-005
9.42e-005
9.27e-005
5.88e-005
9.39e-005 |
9695
7813
774
4093
8357
9286
7286
193
171
150
109 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.99e-005
9.89e-005
9.38e-005
9.38e-005
9.78e-005
9.57e-005 | | | 10^{3} 10^{2} 10 0 -10^{3} -10^{2} | 100
10
20
50
80
100
4
4
4
4
4
4 | 981
5670
*
*
*
1184
592
177
25
2488
685 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.27e-005
5.88e-005
9.39e-005
9.38e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.99e-005
9.89e-005
9.89e-005
9.33e-005
9.78e-005
9.57e-005
9.87e-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4 | 981
5670
*
*
*
1184
592
177
25
2488
685
177 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
9.34e-005
9.42e-005
9.27e-005
5.88e-005
9.38e-005
9.38e-005
9.38e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157
150
145 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018 | 9.99e-005
9.96e-005
9.94e-005
9.98e-005
9.99e-005
9.99e-005
9.99e-005
9.98e-005
9.38e-005
9.78e-005
9.57e-005
9.77e-005 | | | 10^{3} 10^{2} 10 0 -10^{3} -10^{2} | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
4
4
4
500 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
1177 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.200
4.916 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.42e-005
9.39e-005
9.39e-005
9.39e-005
8.97e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157
150
145 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.018
0.018
1.878 | 9.99e-005
9.96e-005
9.98e-005
9.98e-005
9.99e-005
9.99e-005
9.99e-005
9.89e-005
9.38e-005
9.78e-005
9.78e-005
9.77e-005
9.77e-005
9.61e-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
1177
2190 | 3338
19081
*
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
5.88e-005
9.39e-005
8.97e-005
8.60e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157
150
145 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424
484
540 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631 | 9.99c-005
9.96c-005
9.98c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.99c-005
9.89c-005
9.38c-005
9.38c-005
9.57c-005
9.57c-005
9.61c-005
9.61c-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000
5000 | 981
5670
*
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.27e-005
5.88e-005
9.39e-005
9.39e-005
8.97e-005
8.60e-005
8.84e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157
150
145
162
181
193 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424
484
540
576 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631
21.057 | 9.99e-005
9.96e-005
9.98e-005
9.98e-005
9.99e-005
9.99e-005
9.99e-005
9.89e-005
9.38e-005
9.78e-005
9.77e-005
9.77e-005
9.77e-005
9.77e-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
1177
2190 | 3338
19081
*
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
5.88e-005
9.39e-005
8.97e-005
8.60e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157
150
145 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424
484
540 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631 | 9.99c-005
9.96c-005
9.98c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.99c-005
9.89c-005
9.38c-005
9.38c-005
9.57c-005
9.57c-005
9.61c-005
9.61c-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
4
500
1000
5000
10000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902 | 2.093
3.438
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
1.22e-004
1.62e+000
9.34e-005
9.42e-005
5.88e-005
9.39e-005
9.38e-005
8.60e-005
8.84e-005
8.93e-005 | 9695 7813 774 4093 8357 9286 7286 193 171 150 109 157 150 145 162 181 193 195 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424
484
540
576
582 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631
21.057
34.414 | 9.99c-005
9.96c-005
9.94c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.89c-005
9.33c-005
9.57c-005
9.57c-005
9.77c-005
9.77c-005
9.18c-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000
5000
5000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
2190
1498
1729 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902
495 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.27e-005
5.88e-005
9.39e-005
8.97e-005
8.60e-005
8.60e-005
8.84e-005
9.38e-005
9.38e-005 | 9695
7813
774
4093
8357
9286
7286
193
171
150
109
157
150
145
162
181
193
195
115 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424
484
540
576
582
343 |
48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.018
0.018
1.878
5.631
21.057
34.414
1.758 | 9.99c-005
9.96c-005
9.98c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.99c-005
9.89c-005
9.38c-005
9.78c-005
9.57c-005
9.61c-005
9.77c-005
9.61c-005
9.66c-005
9.33c-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
500
1000
5000
10000
5000 | 981
5670
*
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729 | 3338
19081
*
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902
495
629 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.39e-005
9.39e-005
8.97e-005
8.97e-005
8.94e-005
9.39e-005
9.39e-005
9.39e-005
9.39e-005
9.39e-005 | 9695 7813 774 4093 8357 9286 7286 193 171 150 109 157 150 145 162 181 193 195 115 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
444
431
424
484
540
576
582
343
352 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631
21.057
34.414
1.758
1.711 | 9.99e-005 9.98e-005 9.98e-005 9.98e-005 9.99e-005 9.99e-005 9.99e-005 9.89e-005 9.38e-005 9.78e-005 9.77e-005 9.77e-005 9.61e-005 9.77e-005 9.18e-005 9.18e-005 9.38e-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000
5000
10000
5000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729
121
130
220 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676
13407
13723
14902
495
629
1293 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
1.22ee-004
1.62e+000
9.34e-005
9.42e-005
9.27e-005
5.88e-005
9.38e-005
9.38e-005
8.97e-005
8.60e-005
8.93e-005
9.52e-005
9.52e-005
9.62e-005 | 9695 7813 774 4093 8357 9286 7286 193 171 150 109 157 150 145 162 181 193 195 115 118 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
326
444
431
424
484
540
576
582
343
352
376 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
0.018
1.878
5.631
21.057
34.414
1.758
1.711
5.227 | 9.99c-005
9.96c-005
9.98c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.89c-005
9.38c-005
9.38c-005
9.57c-005
9.77c-005
9.77c-005
9.18c-005
9.77c-005
9.17c-005
9.17c-005
9.57c-005
9.57c-005
9.57c-005
9.57c-005 | | 4.11 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
4
500
1000
5000
1000
5000
1000
5000
1000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
50 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729
121
130
220
2161 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902
495
629
1293
5596 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355
55.960 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.38e-005
9.39e-005
8.97e-005
8.84e-005
8.84e-005
8.92e-005
9.32e-005
9.32e-005
7.89e-005
9.62e-005
9.62e-005
7.89e-005 | 9695 7813 774 4093 8357 9286 7286 7286 193 171 150 109 157 150 145 162 181 193 195 115 118 126 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
431
424
484
540
576
582
343
352
343
352
376 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631
21.057
34.414
1.758
1.711
5.227
86.318 | 9.99c-005
9.96c-005
9.98c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.89c-005
9.89c-005
9.78c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005
9.77c-005 | | 4.10 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ |
100
10
20
50
80
100
4
4
4
4
4
4
4
4
4
4
4
500
1000
5000
10000
5000
10000
5000
5000
10000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000 | 981
5670
*
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729
121
130
220
2261
1413 | 3338
19081
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902
495
629
1293
5596
13402 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355
55.960
5.562 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
1.22e-004
1.62e+000
9.34e-005
9.42e-005
9.39e-005
9.39e-005
9.38e-005
8.60e-005
8.97e-005
8.92e-005
9.92e-005
9.92e-005
9.92e-005
9.92e-005
9.92e-005
9.92e-005
9.92e-005
9.92e-005
9.92e-005 | 9695
7813
7744
4093
8357
9286
7286
193
171
150
109
157
150
145
162
181
193
195
118
126
129 | 29083
23437
2320
12276
25069
27856
577
511
448
326
444
431
424
484
540
558
343
343
352
376
385
376
385 | 48.076
51.648
1.140
2.523
27.211
33.677
46.005
0.024
0.021
0.020
0.013
0.019
0.018
1.878
5.631
21.057
34.414
1.758
1.711
5.227
86.318
1.845 | 9.99c-005
9.96c-005
9.98c-005
9.98c-005
9.99c-005
9.99c-005
9.99c-005
9.98c-005
9.38c-005
9.38c-005
9.57c-005
9.57c-005
9.77c-005
9.77c-005
9.76c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005
9.75c-005 | | 4.11 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
4
4
4
500
1000
5000
10000
5000
10000
5000
10000
5000
10000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
2190
1498
1729
121
130
220
2161
1413
1683 | 3338
19981
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902
495
629
1293
5596
13402
16057 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355
55.960
5.562
11.683 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.89e-005
9.39e-005
8.97e-005
8.60e-005
8.60e-005
8.92e-005
9.52e-005
9.62e-005
9.62e-005
9.24e-005
9.24e-005
9.24e-005 | 9695
7813
774
4093
8357
9286
7286
7286
193
171
150
109
157
150
145
162
181
193
195
115
118
126
129 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
431
424
484
576
582
343
352
343
352
366
385 | 48.076 51.648 1.140 2.523 27.211 33.677 46.005 0.024 0.021 0.020 0.013 0.019 0.018 0.018 1.878 5.631 21.057 34.414 1.758 1.711 5.227 86.318 1.845 2.680 | 9.99c-005 9.96c-005 9.98c-005 9.98c-005 9.99c-005 9.99c-005 9.99c-005 9.99c-005 9.89c-005 9.38c-005 9.37c-005 9.77c-005 | | 4.11 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ |
100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000
5000
10000
5000
10000
5000
10000
5000
10000
5000
10000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
500000
500000
500000
500000
50000
50000
50000
50000
50000
500000
500000
5000 | 981
5670
*
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729
121
130
220
221
1413
1683
2286 | 3338
19081
*
*
*
*
10579
4684
728
91
23013
4954
676
10736
13402
14902
495
629
1293
5596
13402
16057
22176 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355
55.960
5.562
11.683
66.070 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.39e-005
9.39e-005
8.97e-005
8.97e-005
8.94e-005
9.92e-005
9.22e-005
9.24e-005
9.24e-005
9.24e-005
9.24e-005
9.24e-005 | 9695
7813
7744
4093
8357
9286
7286
7286
7286
7193
171
150
109
157
150
145
162
181
193
195
1118
126
129
166
224 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
444
431
424
484
540
576
582
343
352
343
352
376
633
639 | 48.076 51.648 1.140 2.523 27.211 33.677 46.005 0.024 0.021 0.020 0.013 0.019 0.018 1.878 5.631 21.057 34.414 1.758 1.711 5.227 86.318 1.845 2.680 8.282 | 9.99e-005 9.98e-005 9.98e-005 9.98e-005 9.99e-005 9.99e-005 9.99e-005 9.89e-005 9.89e-005 9.76e-005 9.77e-005 9.77e-005 9.18e-005 9.33e-005 9.57e-005 9.66e-005 9.57e-005 9.67e-005 9.67e-005 9.67e-005 9.77e-005 | | 4.11 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ | 100
10
20
50
80
100
4
4
4
4
4
4
4
4
4
4
4
500
1000
5000
10000
5000
10000
5000
10000
5000
10000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000 | 981
5670
*
*
*
1184
592
177
25
2488
685
177
2190
1498
1729
121
130
220
2161
1413
1683 | 3338
19981
*
*
*
10579
4684
728
91
23013
4954
676
10736
13407
13723
14902
495
629
1293
5596
13402
16057 | 2.093
3.438
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355
55.960
5.562
11.683 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.89e-005
9.39e-005
8.97e-005
8.60e-005
8.60e-005
8.92e-005
9.52e-005
9.62e-005
9.62e-005
9.24e-005
9.24e-005
9.24e-005 | 9695
7813
774
4093
8357
9286
7286
7286
193
171
150
109
157
150
145
162
181
193
195
115
118
126
129 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
431
424
484
576
582
343
352
343
352
366
385 | 48.076 51.648 1.140 2.523 27.211 33.677 46.005 0.024 0.021 0.020 0.013 0.019 0.018 0.018 1.878 5.631 21.057 34.414 1.758 1.711 5.227 86.318 1.845 2.680 | 9.99c-005 9.96c-005 9.98c-005 9.98c-005 9.99c-005 9.99c-005 9.99c-005 9.99c-005 9.89c-005 9.38c-005 9.37c-005 9.77c-005 | | 4.11 | $ \begin{array}{c} 10^{3} \\ 10^{2} \\ 10 \\ 0 \\ -10^{3} \\ -10^{2} \\ -10 \\ 100 \end{array} $ |
100
10
20
50
80
100
4
4
4
4
4
4
4
4
500
1000
5000
10000
5000
10000
5000
10000
5000
10000
5000
10000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
50000
500000
500000
500000
500000
500000
50000
50000
50000
50000
50000
500000
500000
5000 | 981
5670
*
*
*
*
1184
592
177
25
2488
685
177
1177
2190
1498
1729
121
130
220
221
1413
1683
2286 | 3338
19081
*
*
*
*
10579
4684
728
91
23013
4954
676
10736
13402
14902
495
629
1293
5596
13402
16057
22176 | 2.093
3.438
*
*
*
*
0.399
0.178
0.040
0.012
0.860
0.200
0.039
4.916
10.866
41.868
90.250
2.124
2.776
8.355
55.960
5.562
11.683
66.070 | 1.81e+000
9.57e-004
9.93e-005
1.00e-004
2.26e-004
1.62e+000
4.73e+000
9.34e-005
9.42e-005
9.39e-005
9.39e-005
8.97e-005
8.97e-005
8.94e-005
9.92e-005
9.22e-005
9.24e-005
9.24e-005
9.24e-005
9.24e-005
9.24e-005 | 9695
7813
7744
4093
8357
9286
7286
7286
7286
7193
171
150
109
157
150
145
162
181
193
195
1118
126
129
166
224 | 29083
23437
2320
12277
25069
27856
21856
577
511
448
444
431
424
484
540
576
582
343
352
343
352
376
633
639 | 48.076 51.648 1.140 2.523 27.211 33.677 46.005 0.024 0.021 0.020 0.013 0.019 0.018 1.878 5.631 21.057 34.414 1.758 1.711 5.227 86.318 1.845 2.680 8.282 | 9.99e-005 9.98e-005 9.98e-005 9.98e-005 9.99e-005 9.99e-005 9.99e-005 9.89e-005 9.89e-005 9.76e-005 9.77e-005 9.77e-005 9.18e-005 9.33e-005 9.57e-005 9.66e-005 9.57e-005 9.67e-005 9.67e-005 9.67e-005 9.77e-005 | Fig. 2: Convergence rate of the two methods for Example 4.8 with n = 5000. $$F_i(x) := x_i(x_{i-1}^2 + 2x_i^2 + x_{i+1}^2) - 1, \quad i = 2, 3, \dots, n-1,$$ $F_n(x) := x_n(x_{n-1}^2 + x_n^2).$ **Example 4.4.** A nonsmooth and monotone function [7]: $$F_i(x) := 2x_i - \sin|x_i|, \quad i = 1, 2, \dots, n.$$ **Example 4.5.** The trigonometric function [2]: for $i = 1, 2, \dots, n$, $$F_i(x) := 2(n + i(1 - \cos x_i) - \sin x_i - \sum_{j=1}^n \cos x_j)(2\sin x_i - \cos x_i).$$ **Example 4.6.** The Broyden tridiagonal function [2]: $$F_1(x) := (3 - 0.5x_1)x_1 - 2x_2 + 1,$$ $$F_i(x) := (3 - 0.5x_i)x_i - x_{i-1} - 2x_{i+1} + 1, \quad i = 2, 3, \dots, n-1,$$ $$F_n(x) := (3 - 0.5)x_n - x_{n-1} + 1.$$ **Example 4.7.** The trigexp function [2]: $$F_1(x) := 3x_1^3 + 2x_2 - 5 + \sin(x_1 - x_2)\sin(x_1 + x_2),$$ $$F_i(x) := -x_{i-1}e^{(x_{i-1} - x_i)} + x_i(4 + 3x_i^2) + 2x_{i+1} + \sin(x_i - x_{i+1})\sin(x_i + x_{i+1}) - 8, \quad i = 2, \dots, n-1,$$ $$F_n(x) := -x_{n-1}e^{(x_{n-1} - x_n)} + 4x_n - 3.$$ The following four examples are nonsmooth equations, which come from the variational inequality problem (VIP). Let S be a nonempty and closed subset of \mathbb{R}^n and H be a continuous monotone mapping from \mathbb{R}^n into itself. The VIP is to find a vector $x^* \in S$ such that $$< y - x^*, H(x^*) > \ge 0, \quad \forall y \in S.$$ (4.1) Let $F(x) := x - P_S(x - H(x))$, where $P_S(u)$ denotes the projection of u onto S. It is well-known that the VIP (4.1) is equivalent to the system of equations F(x) = 0. In Examples 4.8-4.10, $S := \{x: x \ge 0\}$; in Example 4.11, $S := \{x: 0 \le x \le 1\}$. For these four examples, H(x) is given as follows. #### Example 4.8 ### Example 4.9 $$H(x) := D(x) + Mx + q,$$ where $D(x) := (d_1 \arctan(x_1), \dots, d_n \arctan(x_n))^T$ and $M := A^T A + B$. Here A, B, d, q are generated by the following Matlab code [4]. A=zeros(n,n); t=0; for i=1:n for j=1:n t=mod(t*31416+13846,46261); A(i,j)=t*(10/46261)-5; end; end; B=zeros(n,n); t=0; for i=1:n for j=i+1:n t=mod(t*42108+13846,46273); B(i,j)=t*10/46273-5; B(j,i)= - B(i,j); end; end; M= A *A+B; t=0; q=zeros(n,1); for j=1:n t=mod(t*45278+13846,46219); q(j)=t; end; q=(q/46219 -0.5)*1000; d=zeros(n,1); for j=1:n t=mod(t*45278+13846,46219); d(j)=t; end; d=d/46219; Example 4.10 The problem [11]: $$H(x) := \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} x + \left(x_1^3 - 8, x_2^3 + 3, 2x_3^3 - 3, 2x_4^3\right)^T.$$ ## Example 4.11 $$H_1(x) := x_1 - x_2 + \frac{1}{3}(x_1 - x_2)^3 - 1,$$ $$H_i(x) := -x_{i-1} + 2x_i - x_{i+1} + \frac{i}{3}(x_i - x_{i+1})^3 - \frac{i-1}{3}(x_{i-1} - x_i)^3 + (-1)^i i, \quad i = 2, \dots, n-1,$$ $$H_n(x) := -x_{n-1} + x_n - \frac{n-1}{3}(x_{n-1} - x_n)^3 + (-1)^n n.$$ Table 1 lists the numerical results for the methods on the test problems, where each column has the following meaning: Exa: the test example; Iter: the total number of iterations: Fcnt: the total number of function evaluations; Time: the CPU time in seconds; $||F_k||$: the norm of the residual at the stopping point; *: the method failed to find a solution within 10^4 iterations. We can see from Table 1 that the MPRP-2 method performs much better than the MPRP-1 method, since the MPRP-2 method need much less iterations and function evaluations and CPU time. In order to show the performance of the two methods clearly, we plotted Fig. 1 according to the data about CPU time in Table 1 by using the performance | | | | | Ne | wton-based | | MPRP-2 | | | | | |-------|-----------|------|------|------|------------|-----------|--------|-------|--------|-----------|--| | a_i | x_0 | n | Iter | Fent | Time | $ F_k $ | Iter | Fent | Time | $ F_k $ | | | 1 | \bar{x} | 10 | 54 | 275 | 1.133 | 9.69e-005 | 269 | 805 | 1.033 | 9.82e-00 | | | | | 50 | 448 | 3355 | 1.453 | 9.79e-005 | 3222 | 9664 | 1.604 | 9.99e-00 | | | | | 100 | 856 | 6583 | 2.866 | 9.15e-005 | 6708 | 20122 | 3.540 | 1.00e-00 | | | | | 500 | 883 | 6712 | 15.828 | 9.72e-005 | 6740 | 20218 | 11.960 | 1.00e-00 | | | | | 1000 | 818 | 6230 | 71.450 | 9.75e-005 | 6740 | 20218 | 85.116 | 1.00e-00 | | | | | 2000 | 848 | 6454 | 405.167 | 1.00e-004 | 6740 | 20218 | 38.463 | 1.00e-00 | | | 1 | â | 10 | 62 | 298 | 1.083 | 8.97e-005 | 331 | 985 | 0.862 | 9.99e-00 | | | | | 50 | 456 | 3280 | 1.027 | 9.95e-005 | 3798 | 11386 | 1.634 | 1.00e-00 | | | | | 100 | 1090 | 8089 | 2.387 | 9.65e-005 | 8110 | 24322 | 4.033 | 1.00e-00 | | | | | 500 | 802 | 5952 | 14.077 | 9.26e-005 | 6461 | 19374 | 11.679 | 1.00e-00 | | | | | 1000 | 764 | 5607 | 66.040 | 9.79e-005 | 6447 | 19332 | 16.802 | 1.00e-00 | | | | | 2000 | 914 | 6880 | 441.646 | 9.53e-005 | 6444 | 19323 | 30.286 | 1.00e-00 | | | i | \bar{x} | 10 | 56 | 289 | 1.677 | 9.05e-005 | 269 | 805 | 0.950 | 9.86e-00 | | | | | 50 | 468 | 3539 | 2.196 | 8.88e-005 | 3222 | 9664 | 1.929 | 1.00e-00 | | | | | 100 | 891 | 6716 | 2.437 | 9.08e-005 | 6709 | 20125 | 3.990 | 1.00e-00 | | | | | 500 | 881 | 6719 | 17.073 | 9.40e-005 | 6741 | 20221 | 13.572 | 1.00e-00 | | | | | 1000 | 863 | 6641 | 74.573 | 9.47e-005 | 6741 | 20221 | 30.308 | 1.00e-00 | | | | | 2000 | 954 | 7290 | 455.479 | 8.97e-005 | 6741 | 20221 | 38.248 | 1.00e-00 | | | i | â | 10 | 67 | 297 | 1.299 | 9.15e-005 | 330 | 974 | 0.836 | 9.94e-00 | | | | | 50 | 472 | 3432 | 1.270 | 9.85e-005 | 3805 | 11381 | 1.629 | 1.00e-00 | | | | | 100 | 1082 | 7994 | 2.359 | 9.85e-005 | 8128 | 24345 | 3.747 | 1.00e-00 | | | | | 500 | 823 | 5871 | 15.203 | 9.54e-005 | 6544 | 19563 | 10.911 | 1.00e-00 | | | | | 1000 | 871 | 6267 | 74.682 | 9.75e-005 | 6601 | 19717 | 17.467 | 1.00e-00 | | | | | 2000 | 834 | 5942 | 400.186 | 9.81e-005 | 6683 | 19941 | 27.861 | 1.00e-00 | | Table 2: Numerical results for the Newton-based method and the MPRP-2 method on Example 4.12.
profiles of Dolan and Moré [3]. Fig. 1 indicates that the MPRP-2 method completely overcomes the MPRP-1 method since its corresponding curve is much higher than that of the MPRP-1 method. Moreover, to verify the linear convergence rate of the methods, we plotted the curve " $k - \lg ||x_k - x^*||$ " on Example 4.8 with $x_0 = 10 * \operatorname{ones}(n, 1)$ and n = 5000, where $x^* = (\frac{1}{4}, 0, \frac{1}{4}, 0, \cdots, \frac{1}{4}, 0)^T$ is the solution. Fig. 2 shows clearly Q-linear convergence of the MPRP-2 method for Example 4.8. In order to compare the performance of the Newton-based method by Zhou and Toh in [13] and the MPRP-2 method, we also did some experiments on the following example. **Example 4.12** $F(x) := \nabla f(x) = 0$, where $\nabla f(x)$ is the gradient of the function $$f(x) := \frac{1}{2} \sum_{i=1}^{n-1} (x_i - x_{i+1})^2 + \frac{1}{12} \sum_{i=1}^{n-1} a_i (x_i - x_{i+1})^4, \quad a_i \ge 0.$$ We set the parameters $\gamma_1 = 1, \delta = 0.8, \sigma = 0.1, t = \frac{1}{2}$ and $\kappa = 0$ in the Newton-based method. It is easy to see that Example 4.12 has the solution set $X^* = \{x \in \mathbb{R}^n : x_1 = x_2 = \cdots = x_n\}$. Numerical results are listed in Table 2, where $\bar{x} = (1, \frac{1}{2}, \cdots, \frac{1}{n})^T, \hat{x} = (10, 0, 10, 0, \cdots, 10, 0)^T$. From Table 2, we can see that the Newton-based method need less iterations and function evaluations, but it requires more CPU time when the size is relatively large. ## 5 Conclusions In this paper, we proposed a line search technique and established the global and Q-linear convergence of the MPRP-based method with this line search for solving large-scale monotone nonlinear equations. The new line search is well-defined and the new algorithms are Q-linearly convergent due to the important relation (2.10). In our numerical experiments, we noted that the initial stepsize choices have important impact on computational efficiency of the methods. How to choose a suitable initial stepsize, such as adopting self-adaptive technique, is our further study. Moreover, it is worth discussing the convergence rate of the methods under the weaker local error bound condition and extending the methods to general nonlinear equations without monotonicity. ## References - [1] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. - [2] W. La Cruz, J.M. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, *Math. Comput.* 75 (2006) 1429–1448. - [3] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, *Math. Program.* 91 (2002) 201–213. - [4] B. He, X. Yuan and J. Zhang, Comparison of two kinds of prediction-correction methods for monotone variational inequalities, *Comput. Optim. Appl.* 27 (2004) 247–267. - [5] V. Jeyakumar, D.T. Luc and S. Schaible, Characterizations of generalized monotone nonsmooth continuous maps using approximate Jacobians, *J. Convex Anal.* 5 (1998) 119–132. - [6] D. Li and M. Fukushima, A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal. 37 (1999) 152–172. - [7] Q. Li and D. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, *IMA J. Numer. Anal.* 31 (2001) 1625–1635. - [8] L. Qi and J. Sun, A nonsmooth version of Newton's method, *Math. Program.* 58 (1993) 353–367. - [9] M.V. Solodov and B.F. Svaiter, A new projection method for variational inequality problems, SIAM J. Contr. Optim. 37 (1999) 765–776. - [10] M.V. Solodov and B.F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in *Reformulation: Nonsmooth, Piecewise Smooth, Semismooth, and Smoothing Methods*, M. Fukushima and L. Qi (eds.), Kluwer Academic Publishers, Dordrecht, 1998, pp. 355–369. - [11] N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems, *Math. Program.* 76 (1997) 469–491. - [12] Y.B. Zhao and D. Li, Monotonicity of fixed point and normal mapping associated with variational inequality and its application, SIAM J. Optim. 4 (2001) 962–973. - [13] G. Zhou and K.C. Toh, Superlinear convergence of a Newton-type algorithm for monotone equations, *J. Optim. Theory Appl.* 125 (2005) 205–221. - [14] W. Zhou and D. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, *Math. Comput.* 77 (2008) 2231–2240. Manuscript received 6 July 2014 revised 14 November 2014 accepted for publication 31 December 2014 Weijun Zhou Department of Mathematics, Changsha University of Science and Technology Changsha 410004, China E-mail address: weijunzhou@126.com Dong-Hui Li School of Mathematical Sciences, South China Normal University Guangzhou 510631, China E-mail address: dhli@scnu.edu.cn