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ON THE Q-LINEAR CONVERGENCE RATE OF A CLASS OF
METHODS FOR MONOTONE NONLINEAR EQUATIONS*

WEIJUN ZHOU AND DONG-HUI L1

Abstract: Recently, Li and Li [[MA J. Numer. Anal., 31 (2011) 1625-1635] proposed a class of methods
for solving large-scale systems of monotone equations which may be nonsmooth. Those methods have been
proved to possess strong global convergence property in the sense that the whole iterative sequence converges
to a solution of the equation. However, the convergence rate of the methods is not known. In this paper, we
present a new line search and show that the class of methods with that line search still remain strong global
convergence property. In addition, the sequence generated by any one of this class of methods converges
Q-linearly to a solution of the monotone equation when the underlying function is Lipschitz continuous and
all elements of its generalized Jacobian at the solution are nonsingular. Some numerical results are also
reported.
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Introduction

In this paper, we consider iterative methods for solving large-scale systems of monotone
equations. Such equations arise in various practical situations [10, 12, 13]. The study of
numerical methods for this kind of equations has received much attention. By exploiting the
structure of monotonicity, Solodov and Svaiter [10] presented a Newton type method, which
has the truly global convergence property that the iterative sequence converges to a solution
of the equation. Zhou and Toh [13] extended this method to monotone equations with
singular solutions and established its superlinear convergence under the local error bound
condition, which is weaker than the nonsingularity condition. Zhou and Li [14] introduced
a globally convergent quasi-Newton method for monotone equations.

Recently, Li and Li [7] introduced a class of iterative methods for solving large-scale
systems of monotone equations. These methods converge globally. However, no local con-
vergence properties of the methods has been studied. In this paper, we will propose a new
line search and show that the class of methods, with the proposed line search, are globally
and Q-linearly convergent even if the equation is not differentiable. Here the Q stands for
quotient.
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of Hunan Province, and Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in
Engineering
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The paper is organized as follows. In Section 2, we present the new line search. In
Section 3, we discuss the convergence properties of the class of methods with the proposed
line search. In Section 4, we do some numerical experiments to show its efficiency. In Section
5, we make some conclusions.

Algorithm and Line Search

Consider the following nonlinear equation:
F(z)=0, (2.1)

where the function F': R® — R" is continuous and monotone, but not necessarily differen-
tiable. The so-called monotonicity here means that F' satisfies

< F(z) = F(y),r—y>>0, Vz,yeR", (2.2)

where < -,- > denotes the inner product in R™. Throughout the paper, we denote F} :=
F(zy), yx := Fr41 — Fx, sk := xTp41 — x), and assume that the solution set of (2.1) is not
empty.

Note that the methods in [10, 13, 14, 9] possess global convergence properties by using the
hyperplane projection technique, but these methods are not suitable for large-scale problems
since they need compute or store matrices. On the other hand, it is well-known that the
nonlinear conjugate gradient methods are efficient algorithms for large-scale unconstrained
optimization problems. In order to take advantage of these methods, Li and Li [7] proposed
a class of iterative methods with global convergence for solving the large-scale problem (2.1),
whose steps are given below.

Algorithm 2.1. Choose an initial point 2y € R™, and constants ¢ > 0, 8 > 0 and p € (0,1).
Let £ =0.

Step 1. Compute a direction dy.

Step 2. Compute the stepsize ay, := max{8p’ : i =0,1,---,} such that
— < F(l‘k + Ozkdk), dy >> O'HF(I‘k + akdk)||ak||dk\|2. (23)

Step 3. Set
2k = T + apdy. (2.4)
Step 4. Let next iterate zp1 be given by

< F(zp),x, — 21 >
[ (z)||?

Thyl = T — F(zg). (2.5)

Let k =k + 1 and go to Step 1.
Remark 2.2. It is clear that Algorithm 2.1 is well defined if d; satisfies < Fj,dr >< 0.
The iterative point zp41 given by (2.5) is the projection of x on the hyperplane
Hy:={xeR": < F(z),x — 2z, >=0}.

This hyperplane projection can ensure that the sequence of the distances between the iterates
and the solution set of (2.1) is decreasing, which is independent of the line search used. This
important result is specified as follows.
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Lemma 2.3 ([10, Lemma 2.1]). If F(z*) = 0 and < F(z),xr — 2z >> 0, then xp41,
determined by (2.5), satisfies

ks — 271" < flow — 2™ = oerr — o)™ (2.6)

In [7], Li and Li studied the following three practical methods:

(i) the SG-like method: dj := —;F; with dmin < 0k < Omax, and dmin, Omax are two
positive constants;

(ii) the MPRP-based method: dg := —Fp and

dip = —Fp + B P dp—1 — Opy—r, k> 1, (2.7)
where
oo = Fo= Py, BT = SIS Z g Sl Z o)
(iii) the TPRP-based method: dy := —Fj and
dy, == —Fy, + B (I - F;j’z;)dk_l, k> 1, (2.9)

BEEP is given by (2.8).

where [ is the identity matrix and
It is easy to verify that the search direction dj in the MPRP-based and TPRP-based
methods satisfy the important relation

< dy, Fp >= —||Fe||%. (2.10)

Throughout the paper, we always suppose that the following assumption holds, which is
the same as that in [7].

Assumption 2.4. The function F' : R™ — R"™ is monotone and Lipschitz continuous; that
is, there exists a constant L > 0 such that

[1F(z) = F(y)ll < Lllx —yll, Va,y € R (2.11)
The following theorem comes from [7].

Theorem 2.5. Let the iterative sequence {xr} be generated by the SG-like method, or the
MPRP-based method, or the TPRP-based method with the line search (2.3). Then, the whole
sequence {xy} converges to x* with F(z*) = 0.

The above theorem shows that the sequence {zj} generated by Algorithm 2.1 converges
globally. However, no local convergence properties of Algorithm 2.1 has been studied. In
this paper, we further study the class of derivative-free methods. We will propose a new
line search and show that the methods with this line search are globally and Q-linearly
convergent even if F' is nonsmooth.

We will focus on the MPRP-based method. The results can be extended to the other
two methods easily in a similar way.
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Let 8> 0,p€ (0,1) and o € (0,1) be constants. We propose a line search technique to

compute the stepsize oy := max{Bp’ :i =0,1,---,} such that
— < F(ar + agdy), di > o[ F(xr + ondp) ||| Frl]- (2.12)
Clearly, this line search is well defined if dj, satisfies < Fy,dp >= —||F;||*>. In fact, as

a — 0T, the left and right sides of (2.12) tend to — < Fy,dy >= ||Fx||?> and o||Fx|?,
respectively. Hence (2.12) is satisfied for all a > 0 sufficiently small. Moreover, it is not
difficult to show that Lemma 2.3 still holds.

In the case dy, is determined by the SG-like method, we can further restrict o € (0, dmin)-
The above properties obviously remain true.

3| Global and Q-linear Convergence
g

Throughout this section, we suppose that {zj} is generated by Algorithm 2.1 with «y
determined by (2.12). We also suppose that the conditions in Assumption 2.1 hold.
Clearly, (2.6) implies that {||zy — 2*||} is decreasing. Then

lim ||zg41 — zk| = 0. (3.1)
k—o0
From (2.4), (2.5) and the line search condition (2.12), we have

< F(zi),zr — 21 >

lzisn = ol = | = S Fn)| < = ol = anlll, (32
and
<F(zk),xk—zk) —<F(2k);dk>
logsa =l = | Fan)| = an > oallFill. (3.3)
! 1 (1) 12 1z )
It follows from (3.1) and (3.3) that
Jim ay | Py = 0. (3.4)

The following lemma gives a lower bound to the stepsize ay.

Lemma 3.1. Let the sequence {x} be generated by the MPRP-based method with line search
(2.12). Then we have

p I1FE|® — ol F' (z1) I Fx

o > min {ﬁ, 7 A }, (3.5)

where z}, := z, + ajdi and o}, == a/p.
Proof. If ay, # f3, then o) = ay/p does not satisfy the line search condition (2.12), that is,
— < F(z),dp >< || F(z;) [ %, (3.6)
which together with (2.11) implies
= < Fioydy, > =0 | F(zp)[I|1Fell << F(2;) = Fie, di >< Lo || d]|*. (3.7)

This and (2.10) yield (3.5). O
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Theorem 3.2. Let the sequence {xy} be generated by the MPRP-based method with line
search (2.12). Then we have
lim inf || Fy|| = 0. (3.8)
k—o0

Proof. We prove this theorem by contradiction. Suppose that (3.8) is not true. Then there
exists a constant 1 > 0 such that

1Ekll =, Vk=>0. (3.9)

From (2.6), we know that {z;} is bounded. Then the sequence {||Fx||} is also bounded with
some upper bound M > 0. By (2.7)-(2.8) and (2.11), we get

2L|| Fy|l|w — wp—1]||dk—1]] OLM
< M+ == lon — wp- [l di
e < M =5l = zialldeall,

k]l < 1 E%l +

which together with (3.1) implies that these exists a positive constant M; such that

l|dill < M. (3.10)
Therefore, by (2.4), {2} and {||F(z},)||} are bounded.
Case (i). If limsupay > 0, we can easily get from (3.4) that likm inf | F|| = 0, which
k—o0 00

contradicts (3.9).
Case (ii). If limsup,_, . ax = 0, then

lim o = 0. (3.11)

k—o0

Moreover, it follows from (2.11) and (3.10) that
IF () < 1 Fell + Lo lldill < [|Fxll + Lo~ e M.

This, together with (3.5) and (3.9), shows that

. p (1= 0)l[Fi)|* — oLp™ oue My || Fi
ap > mln{ , = }
: »I Ak
, p(1—o)n?—oLptapMiM
Z min {/87 E M12 }7
which implies
1— 2
dm o 2 min {3, z(]\/é)n} =0
This contradicts (3.11). The proof is then complete. O

Lemma 2.3 and Theorem 3.2 imply the following strong global convergence theorem.

Theorem 3.3. Let the sequence {1} be generated by the MPRP-based method with line
search (2.12). Then the whole sequence {xr} converges to a solution x* of (2.1).

Proof. Lemma 2.3 and Theorem 3.2 show that there exists a subsequence of {z;} which
converges to a solution z* of F(x) = 0. Therefore, the whole sequence {xj} converges to z*
since Lemma 2.3 implies that {||zx — 2*||} is monotone decreasing and converges. O
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In what follows, we are going to investigate the local convergence property of the MPRP-
based method with line search (2.12). We note that the Lipschitz continuouity of F' implies
that function F' is differentiable almost everywhere. To obtain the linear convergence of the
MPRP-based method, we further make the following assumption which will be assumed to
hold in the rest of the paper.

Assumption 3.4. Al V € 9F(x*) are nonsingular, where F(z*) = 0 and 9F(z*) is the
generalized Jacobian of F' at * in the sense of Clarke [1, 8.

It is well-known that, under the conditions of Assumption 3.1, z* is an isolated solution
of (2.1). Consequently, the sequence {x} generated by Algorithm 2.1 with line search (2.12)
converges to z*.

To derive the linear convergence of {x}}, we first show some useful lemmas.

Lemma 3.5 ([8, Proposition 3.1]). If all V € 0F(z) are nonsingular, then there is a
neighborhood N(x) of x and a constant C such that, for any y € N(x) and any M € 0F (y),
M is nonsingular and satisfies

M~ < C. (3.12)

Lemma 3.6 ([5, Corollary 3.4]). Let F : S — R"™ be locally Lipschitz continuous. Then, F
is monotone if and only if, for each x € S, the matrices M € OF (x) are positive semidefinite,
where S C R™ is an open and convex set.

Lemma 3.7. There exist a neighborhood N(x*) of * and positive constants my, ma and
mg such that
<x—y, F(zx)—F(y) >>m|lz —y||?, Vz,y € N(z*). (3.13)

mallxy — 2| < || Fil| < malloy — 27| (3.14)

Proof. We prove (3.13) by contradiction. If (3.13) does not hold, then there exist sequences
{z:i}, {wi}, {w;}, {Vi;} and N ; > 0,5 = 1,2,---n + 1 such that ; — 2%, y; — 2%,
w; — a*, Vi € 0F (w;), E;jll Ai; =1 for any [ and

n+1
1
<ap—y, F(r) = Fy) >= Y My <@ —y, Vi —u) >< 7l = vl
j=1

Without any loss of generality, we assume that % —dandV;; - V*forj=1,2,---n+
1. Let | — oo; then we have
<d,V*d ><0,

which leads to a contradiction because Lemma 3.5 and Lemma 3.6 imply that V* € 0F (z*)
is positive definite. The inequality (3.14) holds clearly. The proof is then completed. O

Lemma 3.8. Let the sequence {x} be generated by the MPRP-based method with line search
(2.12). Then we have
1F5l1% = ma v i || (3.15)

Proof. Without any loss of generality, we assume that {z;} C N(z*). By the line search
(2.12) and (2.10), we have

ol FellllF(zr + ardy) || < — < Fzg + ands), di, >
= —< Fy,dg >+<Fk—F(IL‘;€+akdk),dk >
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= ||Fk||2+ < Fj, — F(xk + Ozkdk),dk > .
This and (3.13) yield

IFell?> > ollFelllF(zx + cndi) |+ < F(xk + axdy) — Fr, di >
> myog|di®.
This shows that (3.15) holds. O

It follows from (2.7) and (2.11) that

ldll < I1Fall + 18 di—1 ]| + 10xyn—1]
2L|| F[llex — zx—a[lllds-l

< ||Fxl +
= || k“ ||Fk71||2
2L
< (1+m71)”FkH = C1||Fil, (3.16)

where Cp :=1+ 1%, the last inequality follows from (3.15) and (3.2). This and (3.3) show
that
k—o0
From (3.16) and (2.11), we know
IFGE < 1l + Lo~ elldi || < || Fxll + LBC1p~ || Fl.

Therefore, we get from (3.5)

1 — o)||Fi|? — o LBC p~ || F||?
o = minfp 2 OO o0k el il

L lldx |
. p((l—a) —aLﬁClp_lak) ||F’;§||2
= min {ﬁ, 5 }
L [ldk|
Without any loss of generality, we assume ay, < 2”;2}2. Then from (3.16), we have
. p(l—o)
AL Z Cz = min {ﬁ, W} > 0. (317)

The following result shows that the MPRP-based method with line search (2.12) converges
Q-linearly.

Theorem 3.9. Let the sequence {xy} be generated by the MPRP-based method with line
search (2.12). Then there exists a constant r € (0,1) such that

@1 — 2" < rllox — 27 (3.18)
Proof. From (3.3) and (3.17), we have
[#r41 — @kl = oa||Fill = oCo| Fil|-

This together with (2.6) and (3.14) implies

k41 — 2| < oy, — ¥ = 2 C3|| Fy]|* < (1 = 0*CFm3)||ox — 2*|1%. (3.19)
This yields (3.18) with r := /1 — 02C%m32 < 1. The proof is then complete. O

Remark 3.1 It is not difficult to prove the global and linear convergence of the SG-like
method and the TPRP-based method with line search (2.12) by using the completely same
argument as that of the MPRP-based method.
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Numerical Experiments

In this section, we test the performance of the MPRP-based method with line search (2.12)
which we call MPRP-2, and compare its performance with that of the MPRP-based method
in [7] which we call MPRP-1. The parameters of the algorithms are specified as follows.

e In MPRP-1, we set the parameters as same as those in [7], namely, p = 0.5, 0 = 2 and
B = g Tt Fsyq With €= 1075

e In MPRP-2, we set p = 0.1, 0 = 0.5. We use the same parameter 5 as that in the
MPRP-1 method.

The codes were written in Matlab 7.4 and run on a personal computer with a 2.66 GHz
CPU processor and 1 GB RAM memory. We stopped the iteration if the total number of
iterations exceeds 10% or the inequality || || < 1074 is satisfied. We tested the two methods
on the following 11 examples with different sizes and initial points.

Example 4.1. The discretized two-point boundary value problem [6]:

2 1
-1 2 -1
e o b (smay =1, sing, — )T
v ' ' ’ x4+ ———(sinzy —1,--- ,sinz, — 1)".
(n+1)2 L7500 n
—1
-1 2
1(_'_'_,_,‘
09} ‘ ‘ ”_“.- ______ -
08 ’_,"-
0.7 | ‘J"r
"l ‘-' = = = MPRP-1
! MPRP-2
st h
04 _.l‘
J
o ! 2 3 4 5 6

Fig. 1: Performance profiles with respect to the CPU time.

Example 4.2. The elements of F(z) are given by [7]:

Fi(z) = 2z +sinz; — 1,
Fi(x) = —2z;_1+2x;+sinz;—1, 1=2,3,--- ,n—1,
F,(x) = 2x,+sinz, — 1.

Example 4.3. The gradient function of the Engval function [6]:

Fi(z) := J;l(x% + x%) -1,
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Table 1: Test results for the MPRP-1 and MPRP-2 methods on the test examples.
MPRP-1 MPRP-2
Exa (zg); n Iter Fcnt Time [ Fp |l Tter Fcnt Time || Fll
4.1 0.1 50 1051 3151 2.215 9.99e-005 780 2338 1.570 1.00e-004
100 1734 5200 3.716 9.99e-005 1538 4612 3.323 9.99e-005
200 4529 13585 15.274 1.00e-004 3969 11905 14.528 1.00e-004
500 * * * 1.32e-004 9857 29569 409.140 1.00e-004
4.1 1 20 1142 3424 2.113 9.94e-005 1107 3319 1.929 9.96e-005
30 2311 6931 3.273 9.98e-005 2220 6658 2.483 1.00e-004
50 5583 16747 5.982 9.99e-005 5314 15940 6.131 9.99e-005
4.1 -0.1 20 1171 3511 2.319 9.95e-005 1132 3394 1.753 9.97e-005
30 2376 7126 3.186 9.98e-005 2283 6847 2.867 1.00e-004
50 5754 17260 5.701 9.99e-005 5483 16447 5.636 9.99e-005
4.2 0.1 500 1032 3412 2.463 9.87e-005 992 2972 4.467 9.98e-005
1000 1924 6257 4.160 9.97e-005 1803 5405 4.055 9.97e-005
2000 3205 10416 8.193 9.99e-005 2851 8549 7.525 9.99e-005
5000 6070 18522 28.661 9.98e-005 4264 12789 20.857 9.99e-005
10000 7471 23711 66.095 9.99e-005 5384 16149 62.533 1.00e-004
4.2 1 500 988 2998 4.425 9.86e-005 978 2932 2.602 9.85e-005
1000 1861 5678 4.837 9.98e-005 1788 5362 4.246 9.99e-005
2000 3118 9535 8.189 9.99e-005 2835 8503 7.469 1.00e-004
5000 5838 16915 27.034 9.99e-005 4251 12751 27.547 1.00e-004
10000 7274 21357 65.066 1.00e-004 5374 16120 58.607 9.99e-005
4.2 10 50 578 4882 3.036 8.90e-005 340 1020 1.508 9.05e-005
100 1126 9952 2.858 9.34e-005 662 1983 1.993 9.67e-005
500 5490 48924 13.290 5.94e-005 3142 9425 4.592 9.44e-005
1000 2.86e+000 6278 18835 11.502 9.89e-005
4.3 0.01 1000 282 1913 1.956 9.77e-005 125 377 1.846 9.78e-005
5000 585 4888 4.978 8.94e-005 133 401 3.180 9.41e-005
8000 743 6430 9.240 9.64e-005 135 407 3.519 9.64e-005
10000 806 7115 12.356 9.60e-005 136 410 3.732 9.70e-005
15000 938 8353 18.110 9.22e-005 138 416 4.656 9.62e-005
4.3 0.1 1000 105 499 1.822 9.89e-005 125 374 1.737 9.05e-005
5000 157 918 3.360 9.37e-005 133 398 2.086 9.08e-005
8000 180 1105 7.599 9.15e-005 135 404 2.780 9.42e-005
10000 196 1211 3.850 9.79e-005 136 407 3.192 9.55e-005
15000 208 1388 5.631 9.69e-005 138 413 3.419 9.58e-005
4.3 1 1000 111 398 1.569 9.52e-005 103 304 1.561 9.06e-005
5000 159 728 2.559 9.53e-005 102 301 1.948 9.34e-005
8000 188 929 2.872 9.19e-005 101 298 2.477 9.44e-005
10000 193 1001 3.890 9.08e-005 101 298 2.661 9.02e-005
15000 206 1141 4.526 9.85e-005 100 295 5.922 9.27e-005
4.3 10 1000 939 7989 3.008 9.54e-005 112 326 1.493 9.52e-005
5000 1488 13606 10.782 9.63e-005 114 331 3.659 9.11e-005
8000 1643 15145 17.507 9.29e-005 115 334 3.515 9.24e-005
10000 1710 15838 22.408 9.17e-005 115 334 6.052 9.70e-005
15000 1823 17044 34.172 8.91e-005 116 337 12.602 9.35e-005
4.4 1 1000 93 648 3.534 1.76e-005 4 7 1.515 2.45e-007
5000 201 1625 4.057 4.94e-006 4 7 1.851 5.50e-007
10000 296 2578 8.506 4.00e-006 4 7 2.831 7.78e-007
4.4 10 1000 585 5357 3.753 1.77e-005 6 11 1.692 2.60e-007
5000 904 8621 15.089 4.77e-006 6 11 2.318 5.81e-007
10000 1031 9928 30.902 4.00e-006 6 11 3.215 8.21e-007
4.4 100 1000 1166 11169 6.273 2.29e-005 13 31 2.005 2.81e-007
5000 1485 14431 25.238 4.79e-006 13 31 2.810 6.31e-007
10000 1612 15738 50.270 4.02e-006 13 31 3.113 8.86e-007
4.5 10 1000 311 2170 3.198 6.93e-005 174 510 2.143 9.40e-005
2000 437 3145 8.661 6.01e-005 184 540 3.201 9.39e-005
5000 591 4796 20.319 7.64e-005 197 578 9.212 9.28e-005
10000 880 7140 57.712 9.49e-005 211 621 13.065 9.04e-005
4.5 100 5000 249 1454 8.541 8.28e-005 195 572 5.864 9.44e-005
8000 287 1799 15.744 9.41e-005 202 593 9.044 9.06e-005
10000 416 2750 25.079 9.60e-005 205 602 10.000 9.22e-005
15000 398 2686 34.999 7.50e-005 210 617 15.315 9.96e-005
4.5 -10 3000 342 2514 8.596 9.53e-005 173 503 4.192 9.19e-005
5000 434 3255 15.555 6.25e-005 180 524 5.440 9.47e-005
8000 494 3990 28.301 9.61e-005 187 545 8.712 9.17e-005
10000 542 4423 37.212 6.78e-005 190 554 11.451 9.35e-005
15000 630 5271 69.307 6.06e-005 196 572 13.882 9.14e-005
4.5 -1 2000 228 1374 3.177 7.96e-005 180 531 1.994 9.33e-005
5000 344 2276 6.961 7.55e-005 186 524 4.787 9.23e-005
8000 420 2982 12.695 9.55e-005 197 581 8.493 9.64e-005
10000 469 3383 17.407 9.16e-005 201 594 8.738 9.28e-005
15000 539 4044 29.390 8.49e-005 207 611 9.980 9.19e-005
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Table 1 continued.
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MPRP-1 MPRP-2

Exa (z0)3 n Tter Fent Time MFL Tter Fent Time TFg I
16 -1 1000 78 336 1.574 9.23e-005 113 336 1.561 9.69¢-005
5000 136 731 2.974 9.45e-005 122 363 2.503 9.01e-005
8000 160 948 3.166 8.93e-005 124 369 2.453 9.49¢-005
10000 | 170 1051 4.345 8.15e-005 126 375 3.140 9.25e-005
15000 | 180 1221 4.691 9.36e-005 128 381 3.422 9.03e-005
20000 | 212 1482 5.972 9.32e-005 127 377 4.612 9.25e-005
1.6 Z0.1 1000 147 992 1.868 9.21e-005 116 346 1.713 9.85¢-005
5000 255 1979 3.486 9.62-005 122 363 4.507 9.47¢-005
8000 291 2355 7.085 9.74e-005 124 369 3.117 9.23e-005
10000 | 330 2589 6.004 9.62e-005 124 369 4.025 9.99¢-005
15000 | 348 2925 7.573 9.16e-005 127 377 3.605 8.62¢-005
20000 | 386 3221 10.791 9.84e-005 127 378 6.240 9.61e-005
1.6 0.1 1000 143 936 1.687 8.62¢-005 121 361 1.723 9.72¢-005
5000 165 1098 2.550 9.04e-005 126 375 2.659 9.41e-005
8000 185 1102 4.279 9.45¢-005 128 381 2.694 9.20e-005
10000 | 162 1021 4.604 8.69e-005 129 384 3.863 9.32¢-005
a7 10 1000 864 7656 5.068 8.866-005 113 324 2.034 9.21e-005
2000 1098 9996 10.375 7.47¢-005 124 360 2.443 9.81e-005
5000 1361 12759  27.060 8.93e-005 131 383 3.993 6.15¢-005
10000 | 1532 14549  60.354 9.94¢-005 141 413 6.375 9.15¢-005
17 100 1000 2808 26926  15.139 6.64¢-005 204 531 3.744 9.21e-005
5000 3287 31918  66.569 7.47¢-005 205 532 4.239 9.88e-005
10000 | 3415 33250  154.424 7.18e-005 202 521 25.386 9.28e-005
a7 1000 500 4939 48568  17.460 8.32¢-005 991 2104 3.556 9.42¢-005
1000 5178 51095  27.339 6.61e-005 994 2110 4.182 9.18¢-005
2000 5344 52850  48.390 8.89e-005 1000 2122 5.600 9.23e-005
5000 5457 53980  130.397 8.88e-005 1015 2154 11.957 9.19¢-005
18 10 100 316 2614 1.392 9.516-005 145 132 T.107 9.386-005
200 404 3499 1.853 9.80e-005 139 414 1.401 9.59¢-005
500 513 4600 7.587 7.71e-005 150 447 2.914 9.16e-005
1000 610 5545 36.432 7.47e-005 159 473 11.587 9.86e-005
2000 679 6241 150.141 8.57¢-005 170 506 24.257 9.51e-005
5000 803 7447 1071.404  7.15e-005 164 489 255.306  9.40e-005
10000 | 865 8032 4439.149  9.02¢-005 153 456 699.303  9.67¢-005
18 -0 100 342 2720 T.742 9.696-005 151 149 T.214 9.136-005
200 416 3570 2.478 7.60e-005 159 473 1.276 9.32e-005
500 532 4752 7.669 8.85e-005 163 485 3.883 9.65e-005
1000 626 5654 38.388 7.24e-005 170 506 9.303 9.48e-005
2000 721 6600 159.368 7.20e-005 169 503 31.378 9.27¢-005
5000 842 7795 1130.288  7.65e-005 177 527 868.606  9.98¢-005
1.9 ) 10 891 3117 1.481 9.91e-005 636 1906 1.228 9.99¢-005
20 5468 18149  3.383 9.94e-005 4081 12241 5.573 1.00e-004
50 * * * 3.84e+000 | 8334 25000 12.904 1.00e-004
80 * * * 1.42e4000 | 9090 27268  33.670 1.00e-004
100 9174 25791  47.453 9.99¢-005 7024 21070  43.767 9.98e-005
4.9 B 10 975 3276 1.457 9.96e-005 740 2218 T.011 9.98¢-005
20 5657 19406  3.848 9.91e-005 4126 12376  2.876 9.95¢-005
50 * * * 4.65e+000 | 8513 25537  14.698 1.00e-004
80 * * * 1.81e4000 | 9695 29083  48.076 9.99¢-005
100 * * * 9.57e-004 7813 23437  51.648 9.96e-005
1.9 10 10 981 3338 2.093 9.93¢-005 774 2320 1.140 9.94¢-005
20 5670 19081 3.438 1.00e-004 4093 12277  2.523 9.98¢-005
50 * * * 2.26e-004 8357 25069  27.211 9.99¢-005
80 * * * 1.62e4000 | 9286 27856  33.677 9.97¢-005
100 * * * 4.73e4+000 | 7286 21856  46.005 9.99¢-005
4.10 103 4 1184 10579  0.399 9.34e-005 193 577 0.024 9.89¢-005
102 4 592 4684 0.178 9.42e-005 171 511 0.021 9.98¢-005
10 4 177 728 0.040 9.27¢-005 150 448 0.020 9.33e-005
0 4 25 91 0.012 5.88e-005 109 326 0.013 9.78e-005
-103 4 2488 23013  0.860 9.39¢-005 157 444 0.019 9.57¢-005
-102 4 685 4954 0.200 9.38¢-005 150 431 0.018 9.87¢-005
-10 4 177 676 0.039 9.39¢-005 145 424 0.018 9.77¢-005
I11 100 500 1177 10736  4.916 8.976-005 162 184 1.878 9.616-005
1000 2190 13407  10.866 8.60e-005 181 540 5.631 9.77¢-005
5000 1498 13723 41.868 8.84e-005 193 576 21.057 9.18e-005
10000 | 1729 14902 90.250 8.93e-005 195 582 34.414 9.66e-005
4.11 I 500 121 495 2.124 9.52¢-005 115 343 1.758 9.33e-005
1000 130 629 2.776 9.00e-005 118 352 1.711 9.75¢-005
5000 220 1293 8.355 9.62¢-005 126 376 5.227 9.50e-005
10000 | 2161 5596 55.960 7.89¢-005 129 385 86.318 9.82¢-005
111 B 500 1413 13402  5.562 9.24e-005 166 156 1.845 9.46¢-005
1000 1683 16057  11.683 9.16e-005 224 633 2.680 9.67¢-005
5000 2286 22176  66.070 9.02e-005 224 639 8.282 9.85e-005
10000 | 2546 24815 143.606 9.93e-005 251 737 16.651 9.56e-005
15000 | 2701 26369  227.273 8.95e-005 243 669 147.564  9.68e-005
20000 | 2811 27469  313.991 8.97¢-005 233 672 22.694 9.21e-005
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Fig. 2: Convergence rate of the two methods for Example 4.8 with n = 5000.

wi(wd, +227 +a?y)—1, i=2,3,-,n—1,
Fo(z) = @a(rh_q+ 93?1)
Example 4.4. A nonsmooth and monotone function [7]:

Fi(z) :=2x; —sin|z;|, i=1,2,---,n.
Example 4.5. The trigonometric function [2]: for i = 1,2,--- ,n,

n

Fi(z) :=2(n+i(1 — cosz;) — sinz; — ZCOS z;)(2sinz; — cosx;).

j=1
Example 4.6. The Broyden tridiagonal function [2]:
Fl(x) (3—0.51’1).’E1 —2$2+1,
Fi(x) = (3—-05x)x; —xim1 — 2241 +1, i=2,3,--- ,n—1,
F.(z) = (3—-0.5)z, —zp—1+ 1.
Example 4.7. The trigexp function [2]:
Fi(z 323 + 29 — 5+ sin (zy — o) sin (21 + 22),
Fi(z) = oz e g (4 + 3x3) 4 2241
+sin (x; — 1) sin (2 + i41) =8, i=2,---,n—1,
F,(x) = — gy _qeFn1T ) gy 3,

The following four examples are nonsmooth equations, which come from the variational
inequality problem (VIP). Let S be a nonempty and closed subset of R™ and H be a
continuous monotone mapping from RR”™ into itself. The VIP is to find a vector z* € S such
that

<y—a",H(z*)>>0, Vyebs. (4.1)
Let F(z) := 2 — Pg(xz — H(x)), where Ps(u) denotes the projection of u onto S. It is well-

known that the VIP (4.1) is equivalent to the system of equations F(z) = 0. In Examples
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4.8-4.10, S := {x : z > 0}; in Example 4.11, S := {x : 0 <z < 1}. For these four examples,
H(x) is given as follows.
Example 4.8

H(z) := m+(—1,1,—1,---,(—1)”)T.

Example 4.9
H(z) :=D(z)+ Mz + g,

where D(x) := (dy arctan(xy),- - - ,d, arctan(x,,))? and M := AT A+ B. Here A, B,d, q are
generated by the following Matlab code [4].

A=zeros(n,n); t=0; for i=1:n for j=1:n t=mod(t*31416+13846,46261);
A(i,j)=tx(10/46261)-5; end; end; B=zeros(n,n); t=0; for i=1:n for j=i+l:n

t=mod (t*42108+13846,46273) ; B(i,j)=t*10/46273-5; B(j,i)= - B(i,j); end; end;

M= A" *A+B; t=0; g=zeros(n,1); for j=1:n t=mod(t*45278+13846,46219); q(j)=t; end;
q=(q/46219 -0.5)*1000; d=zeros(n,1); for j=1:n t=mod(t*45278+13846,46219); d(j)=t;
end; d=d4/46219;

Example 4.10 The problem [11]:

00 0 O
H(z) = 8 1 _11 8 z+ (2} — 8,23 + 3,223 —3,2x2)T.
00 0 1
Example 4.11
1 3
Hi(x) = x1 —x2+ g(xl —x9)° — 1,
)
Hi(z) = —mi1+2% — 241 + g(l’i —zi11)?
1 _
71 3 (l‘i—lil‘i)3+(71)li7 7’:27 7”717
n—1

H,(x) = —xp_1+x,— T(xn_l - 1’,1)3 +(=1)"n.

Table 1 lists the numerical results for the methods on the test problems, where each column
has the following meaning;:

Exa:  the test example;

Iter:  the total number of iterations;

Fent:  the total number of function evaluations;

Time: the CPU time in seconds;

[[Fx|l:  the norm of the residual at the stopping point;

*: the method failed to find a solution within 10* iterations.

We can see from Table 1 that the MPRP-2 method performs much better than the
MPRP-1 method, since the MPRP-2 method need much less iterations and function eval-
uations and CPU time. In order to show the performance of the two methods clearly, we
plotted Fig. 1 according to the data about CPU time in Table 1 by using the performance
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Table 2: Numerical results for the Newton-based method and the MPRP-2 method on
Example 4.12.

Newton-based MPRP-2

a; zg n Tter Fent Time 1, Il Tter Fent Time | Fy |l

1 T 10 54 275 1.133 9.69e-005 269 805 1.033 9.82e-005
50 448 3355 1.453 9.79e-005 3222 9664 1.604 9.99e-005
100 856 6583 2.866 9.15e-005 6708 20122 3.540 1.00e-004
500 883 6712 15.828 9.72e-005 6740 20218 11.960 1.00e-004
1000 818 6230 71.450 9.75e-005 6740 20218 85.116 1.00e-004
2000 848 6454 405.167 1.00e-004 6740 20218 38.463 1.00e-004

1 Ed 10 62 298 1.083 8.97e-005 331 985 0.862 9.99e-005
50 456 3280 1.027 9.95e-005 3798 11386 1.634 1.00e-004
100 1090 8089 2.387 9.65e-005 8110 24322 4.033 1.00e-004
500 802 5952 14.077 9.26e-005 6461 19374 11.679 1.00e-004
1000 764 5607 66.040 9.79e-005 6447 19332 16.802 1.00e-004
2000 914 6880 441.646 9.53e-005 6444 19323 30.286 1.00e-004

i T 10 56 289 1.677 9.05e-005 269 805 0.950 9.86e-005
50 468 3539 2.196 8.88e-005 3222 9664 1.929 1.00e-004
100 891 6716 2.437 9.08e-005 6709 20125 3.990 1.00e-004
500 881 6719 17.073 9.40e-005 6741 20221 13.572 1.00e-004
1000 863 6641 74.573 9.47e-005 6741 20221 30.308 1.00e-004
2000 954 7290 455.479 8.97e-005 6741 20221 38.248 1.00e-004

i Ed 10 67 297 1.299 9.15e-005 330 974 0.836 9.94e-005
50 472 3432 1.270 9.85e-005 3805 11381 1.629 1.00e-004
100 1082 7994 2.359 9.85e-005 8128 24345 3.747 1.00e-004
500 823 5871 15.203 9.54e-005 6544 19563 10.911 1.00e-004
1000 871 6267 74.682 9.75e-005 6601 19717 17.467 1.00e-004
2000 834 5942 400.186 9.81e-005 6683 19941 27.861 1.00e-004

profiles of Dolan and Moré [3]. Fig. 1 indicates that the MPRP-2 method completely over-
comes the MPRP-1 method since its corresponding curve is much higher than that of the
MPRP-1 method. Moreover, to verify the linear convergence rate of the methods, we plotted
the curve “k —lg ||z — z*||” on Example 4.8 with 2y = 10 % ones(n, 1) and n = 5000, where
¥ = (i,O7 i(), e ,%,O)T is the solution. Fig. 2 shows clearly Q-linear convergence of the
MPRP-2 method for Example 4.8.

In order to compare the performance of the Newton-based method by Zhou and Toh in
[13] and the MPRP-2 method, we also did some experiments on the following example.
Example 4.12 F(z) := V f(z) = 0, where V f(z) is the gradient of the function

1n—1 1 n—1
f(l‘) = 5 Z(xl — JZZ‘_H)Q + T . ai(a:i — $i+1)4; a; Z 0.
i=1 =1
We set the parameters vy = 1,§ = 0.8,0 = 0.1,t = % and ¥ = 0 in the Newton-based
method. It is easy to see that Example 4.12 has the solution set X* = {x € R": x; =
Ty = -+ = x,}. Numerical results are listed in Table 2, where z = (1, %, ,%)T,:i: =

(10,0, 10,0, ---,10,0)”. From Table 2, we can see that the Newton-based method need less
iterations and function evaluations, but it requires more CPU time when the size is relatively
large.

Conclusions

In this paper, we proposed a line search technique and established the global and Q-linear
convergence of the MPRP-based method with this line search for solving large-scale mono-
tone nonlinear equations. The new line search is well-defined and the new algorithms are
Q-linearly convergent due to the important relation (2.10). In our numerical experiments,
we noted that the initial stepsize choices have important impact on computational efficiency
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of the methods. How to choose a suitable initial stepsize, such as adopting self-adaptive
technique, is our further study. Moreover, it is worth discussing the convergence rate of
the methods under the weaker local error bound condition and extending the methods to
general nonlinear equations without monotonicity.
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