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(2013), Wu (2007), (2008), (2009), (2010), Zhang et al. (2014), Zhou and Wang (2009), and
others).

Although nonlinear multiobjective programming problems with the coefficients consid-
ered as deterministic values occur in various fields of applications in O.R., however, this
assumption is not satisfied by great majority of real-life engineering and economical prob-
lems. In recent years, therefore, attempts were made by several authors to prove optimality
conditions and duality results for interval-valued vector optimization problems (see, for in-
stance, Ahmad et al. (2015), Bhurjee and Panda (2012), Bitran (1980), Chanas and Kuchta
(1996), Hosseinzade and Hassanpour (2011), Ishihuchi and Tanaka (1990), Jana and Panda
(2014), Oliveira and Antunes (2007), Wu (2009), and others). Whereas many optimality and
duality results have been explored for interval-valued optimization problems if the involved
functions are smooth, while only few papers studied optimality conditions and duality results
for scalar nonsmooth interval-valued optimization problems. For the considered nonsmooth
scalar optimization problem with interval-valued objective function, Sun and Wang (2013)
proved optimality conditions and several duality results under convexity assumption. Re-
cently, Antczak (2017) derived the Fritz John and the Karush-Kuhn-Tucker type necessary
optimality conditions for (weakly LU -efficiency) LU -efficiency of a feasible solution for a
nondifferentiable interval-valued vector optimization problem. Further, he also proved the
sufficiency of the Karush-Kuhn-Tucker type necessary optimality conditions and Mond-Weir
duality results for convex nonsmooth interval-valued vector optimization problems.

Recent years have seen an increasing interest amongst researchers to explore saddle point
criteria for scalar interval-valued optimization problems. Namely, Sun et al. (2014) derived
saddle point optimality conditions and established a relation between an optimal solution of
the considered interval-valued optimization problem and a saddle point of the Lagrangian
function. Recently, Jayswal et al. (2016) proved saddle-point optimality conditions under
invexity assumption. Hence, they found a relation between a LU -optimal solution of the
considered nonsmooth scalar optimization problem with interval-valued objective function
and a saddle-point of the Lagrangian function.

However, to the author’s knowledge, there are not any result on saddle point criteria
for nondifferentiable vector optimization problems with multiple interval-valued objective
functions. The purpose of this paper is, therefore, to study saddle point criteria for non-
differentiable interval-valued multiobjective programming problems, that is, for nonsmooth
vector optimization problems with interval-valued objective functions and inequality con-
straints. We define the vector-valued Lagrange function and its saddle point for the aforesaid
interval-valued multiobjective programming problem. Then we derive the saddle point crite-
ria for the considered nonsmooth vector optimization problem with multiple interval-valued
objective function. In other words, we prove the equivalence between a saddle point of the
vector-valued Lagrange function and a weak LU -Pareto solution (a LU -Pareto solution) of
the considered nonsmooth interval-valued multiobjective programming problem under the
assumption that the involved functions are convex. Further, we define vector Wolfe dual
problem with multiple interval-valued objective function for the aforesaid interval-valued
multiobjective programming problem. We establish several duality theorems between these
nonsmooth multiobjective programming problems with interval-valued multiple objective
functions also under convexity hypotheses.

2 Notations and Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its nonnegative orthant. The

following convention for equalities and inequalities will be used in the paper.
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For any vectors x = (x1, x2, . . . , xn)
T
and y = (y1, y2, . . . , yn)

T
in Rn, we define:

(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n;
(ii) x > y if and only if xi > yi for all i = 1, 2, . . . , n;
(iii) x ≧ y if and only if xi ≧ yi for all i = 1, 2, . . . , n;
(iv) x ≥ y if and only if x ≧ y and x ̸= y.
Let I (R) be a class of all closed and bounded intervals in R. Throughout this paper,

when we say that A is a closed interval, we mean that A is also bounded in R. If A is a
closed interval, we use the notation A = [aL, aU ], where aL and aU mean the lower and upper
bounds of A, respectively. In other words, if A = [aL, aU ] ∈ I (R), then A = [aL, aU ] ={
x ∈ R : aL ≦ x ≦ aU

}
. If aL = aU = a, then A = [a, a] = a is a real number.

Let A = [aL, aU ], B = [bL, bU ], then, by definition, we have:

i) A+B = {a+ b : a ∈ A and b ∈ B} = [aL + bL, aU + bU ],

ii) −A = {−a : a ∈ A} = [−aU ,−aL],

iii) A−B = A+ (−B) = {a− b : a ∈ A and b ∈ B} = [aL − bU , aU − bL],

iv) k +A = {k + a : a ∈ A} = [k + aL, k + aU ] , where k is a real number,

v) kA =

{ [
kaL, kaU

]
if k > 0,[

kaU , kaL
]

if k ≦ 0
where k is a real number.

In interval mathematics, an order relation is often used to rank interval numbers and
it implies that an interval number is better than another but not that one is larger than
another. For A = [aL, aU ] and B = [bL, bU ], we write A ≦LU B if and only if aL ≦ bL

and aU ≦ bU . It is easy to see that ≦LU is a partial ordering on I (R). Also, we can write
A <LU B if and only if A ≦LU B and A ̸= B. Equivalently, A <LU B if and only if(
aL < bL, aU ≦ bU

)
or

(
aL ≦ bL, aU < bU

)
or

(
aL < bL, aU < bU

)
.

Throughout this section, let X be a nonempty subset of Rn. Further, ψ : X → I (R) is
called an interval-valued function if ψ (x) =

[
ψL (x) , ψU (x)

]
with ψL, ψU : X → R such

that ψL (x) ≦ ψU (x) for each x ∈ X.
It is well-known that a function f : X → R defined on a convex set X ⊂ Rn is said to

be (strictly) convex provided that, for all x ∈ X, (x ̸= u) and any α ∈ [0, 1], one has

f (u+ α (x− u)) ≦ αf (x) + (1− α) f (u) . (<)

Definition 2.1 (Rockafellar (1970)). Let f : X → R be a convex function defined on a
convex set X ⊂ Rn. The subdifferential of a convex function f at u ∈ X, denoted by ∂f (u),
is defined as follows

∂f (u) =
{
ξ ∈ Rn : f (x)− f (u) ≧ ξT (x− u) ∀x ∈ X

}
.

Let f : X → Rp be a (strictly) convex vector-valued function defined on a nonempty
convex set X ⊂ Rn. Then the inequalities

fi (x)− fi (u) ≧ ξTi (x− u) , i = 1, . . . , p (>) (2.1)

hold for all x ∈ X, (x ̸= u) and each ξi ∈ ∂f (u), where ∂fi (u) denotes the subdifferential
of fi at u.

Similar to the definition of convexity for a real-valued function, the notion of convexity
for an interval-valued function is defined as follows:
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Definition 2.2 (Wu (2007)). Let X be a nonempty convex subset of Rn and f : X → I (R)
be an interval-valued function defined on X. It is said that f is convex on X if the inequality

f (u+ α (x− u)) ≦LU αf (x) + (1− α) f (u)

holds for all x, u ∈ X and any α ∈ [0, 1].

Proposition 2.3 (Wu (2007)). Let X be a nonempty convex subset of Rn and f : X → I (R)
be an interval-valued function defined on X. The interval-valued function f is convex at
u ∈ X if and only if the real-valued functions fL and fU are convex at u.

Remark 2.4. If f : X → I (R) is convex at u on X, then the inequalities

fL (x)− fL (u) ≧
(
ξL

)T
(x− u) , ∀ξL ∈ ∂fL (u) , (2.2)

fU (x)− fU (u) ≧
(
ξU

)T
(x− u) , ∀ξU ∈ ∂fU (u) (2.3)

hold for all x ∈ X, where ∂fL (u) and ∂fU (u) denote the subdifferentials of fL and fU at
u, respectively. If inequalities (2.2) and (2.3) are satisfied at every u ∈ X, then f is convex
on X.

Remark 2.5. If f : X → I (R) is strictly convex at u ∈ X on X, then both the functions
fL and fU are strictly convex at u ∈ X on X, that is, inequalities (2.2) and (2.3) are strict
for all x ∈ X, x ̸= u.

In this paper, we consider the following vector optimization problem with interval-valued
multiple objective function:

f(x) = (f1(x), . . . , fp(x)) → min

g(x) = (g1(x), . . . , gm(x)) ≦ 0,

x ∈ Rn,

(IVP)

where each fk : Rn → I (R), k ∈ K = {1, . . . , p} is an interval-valued function, that is,

fk(x) =
[
fLk (x), f

U
k (x)

]
, i ∈ I,

and, moreover, g : X → Rm. We shall assume, moreover, that fLk , f
U
k : Rn → R, k ∈ K

and gj : Rn → R, j ∈ J , are locally Lipschitz functions on Rn. For the purpose of

simplifying our presentation, we introduce the following notations fL =
(
fL1 , . . . , f

L
p

)T
,

fU =
(
fU1 , . . . , f

U
p

)T
. Further, let us denote by D the set of all feasible solutions in the

considered interval-valued multiobjective optimization problem (IVP), that is, the set D =
{x ∈ Rn : g(x) ≦ 0} and, moreover, by J (x) the set of constraint indices that are active at
a feasible solution x, that is, J (x) = {j ∈ J : gj(x) = 0}.

Since each of objective values fi is a closed interval, we need to provide an ordering
relation between any two closed intervals. The most direct way is to invoke the ordering
relation ≦LU that was defined above. However, ≦LU is a partial ordering, not a total
ordering, on I (R). Therefore, we shall follow the similar concept of nondominated solution
used in multiobjective programming problem to investigate the solution concepts.

For such an interval-valued multicriterion optimization problem, its optimal solution is
defined in terms of a weak LU -Pareto (LU -Pareto) solution in the following sense (see, for
instance, Ahmad et al. (2015), Wu (2009)):
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Definition 2.6. A feasible point x is said to be a weak LU -Pareto solution (a weakly LU -
efficient solution) of (IVP) if and only if there is no another feasible solution x such that,
for each k ∈ K,

fk(x) <LU fk(x).

Definition 2.7. A feasible point x is said to be a LU -Pareto solution (a LU -efficient solu-
tion) of (IVP) if and only if there is no another feasible solution x such that

f(x) <LU f(x).

Recently, Antczak (2017) established the following Karush-Kuhn-Tucker necessary op-
timality conditions for a nonsmooth multiobjective programming problem with multiple
interval-valued objective function involving inequality constraints under the generalized
Slater constraint qualification.

Theorem 2.8 (Karush-Kuhn-Tucker necessary optimality conditions). Let x ∈ D be a weak
LU -Pareto solution of the interval-valued multiobjective optimization problem (IVP) and the

constraint qualification of Slater’s type be satisfied at x. Then there exist λ
L ∈ Rp, λ

U ∈ Rp

and µ ∈ Rm such that

0 ∈
p∑

k=1

λ
L

k ∂f
L
k (x) +

p∑
k=1

λ
U

k ∂f
U
k (x) +

m∑
j=1

µj∂gj(x), (2.4)

µjgj(x) = 0, j ∈ J, (2.5)

λ
L ≥ 0, λ

U ≥ 0, µ ≧ 0. (2.6)

Definition 2.9.
(
x, λ, µ

)
∈ D × R2p

+ × Rm
+ is said to be a Karush-Kuhn-Tucker point

of the considered interval-valued vector optimization problem (IVP) if the Karush-Kuhn-
Tucker necessary optimality conditions (2.4)-(2.6) are satisfied at x with Lagrange multipliers

λ
L ∈ Rp, λ

U ∈ Rp and µ ∈ Rm.

3 Vector Saddle Point Criteria

In this section, for the constrained nonsmooth multiobjective programming problem (IVP)
with multiple interval-valued objective function, we define the vector-valued Lagrange func-
tion Lp and a saddle point of Lp . Then, we prove the saddle point criteria for the problem
(IVP) under assumption that the involved functions are convex.

The vector-valued Lagrange function Lp of the considered interval-valued vector opti-

mization problem (IVP) is the function Lp : D ×R2p
+ ×Rm

+ → Rp defined by

Lp (x, λ, µ) := diagλL fL(x) + diagλU fU (x) +
1

p

m∑
j=1

µjgj(x)e, (3.1)

where e = [1, . . . , 1] ∈ Rp, λ =
[
λL, λU

]
∈ R2p

+ and, for any τ ∈ Rp, the symbol diag τ is
defined as follows

diag τ =


τ1 0 . . . 0
0 τ2 . . . 0

. . . 0
0 . . . 0 τp

 . (3.2)

Now, we give the definition of a saddle point of the vector-valued Lagrange function Lp

defined for the considered nonsmooth interval-valued vector optimization problem (IVP).
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Definition 3.1. A point
(
x, λ, µ

)
∈ D × R2p

+ × Rm
+ is said to be a saddle point of the

vector-valued Lagrange function Lp defined for the considered multiobjective programming
problem (IVP) with multiple interval-valued objective function if,

i) Lp

(
x, λ, µ

)
≦ Lp

(
x, λ, µ

)
∀µ ∈ Rm

+ ,

ii) Lp

(
x, λ, µ

)
≰ Lp

(
x, λ, µ

)
∀x ∈ D.

Theorem 3.2. Let
(
x, λ, µ

)
∈ D×R2p

+ ×Rm
+ be a saddle point of the vector-valued Lagrange

function Lp defined for the considered interval-valued vector optimization problem (IVP).

Then x is a LU -Pareto solution of the problem (IVP). Further, if Lagrange multipliers λ
L

and λ
U

are assumed to satisfy
(
λ
L

k , λ
U

k

)
> 0 for some k ∈ K, then x is a weak LU -Pareto

solution of the problem (IVP).

Proof. Since
(
x, λ, µ

)
∈ D × R2p

+ × Rm
+ is a saddle point of the vector-valued Lagrange

function Lp defined for the considered interval-valued vector optimization problem (IVP),
by Definition 3.1, the conditions i) and ii) are fulfilled. Thus, by the condition i) and the
definition of the vector-valued Lagrange function Lp, the inequalities

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x) ≦

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x), k ∈ K

hold for all µ ∈ Rm
+ . From the feasibility of x in (IVP), it follows that the inequality

m∑
j=1

µjgj(x) ≦
m∑
j=1

µjgj(x)

holds for all λ ∈ Rm
+ . Therefore, for µ = 0, we have

m∑
j=1

µjgj(x) ≧ 0. (3.3)

Then, by x ∈ D and µ ∈ Rm
+ , it follows that

m∑
j=1

µjgj(x) ≦ 0. (3.4)

Thus, (3.3) and (3.4) yield
m∑
j=1

µjgj(x) = 0. (3.5)

We proceed by contradiction. Suppose, contrary to the result, that x ∈ D is not a
LU -Pareto solution of the problem (IVP). Then, by Definition 2.7, there exists x̃ ∈ D such
that

f(x̃) <LU f(x).
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Therefore, by definition of the relation <LU , it follows that(
fL(x̃) < fL(x) ∧ fU (x̃) ≦ fU (x)

)
or

(
fL(x̃) ≦ fL(x) ∧ fU (x̃) < fU (x)

)
or

(
fL(x̃) < fL(x) ∧ fU (x̃) < fU (x)

)
.

Hence, by the Karush-Kuhn-Tucker necessary optimality condition (2.6), the above inequal-
ities imply

λ
L

k f
L
k (x̃) + λ

U

k f
U (x̃) ≦ λ

L

k f
L
k (x) + λ

U

k f
U (x), k ∈ K, (3.6)

λ
L

k f
L
k (x̃) + λ

U

k f
U (x̃) < λ

L

k f
L
k (x) + λ

U

k f
U (x) for at least one k ∈ K. (3.7)

Since x̃ ∈ D, x ∈ D and µ ∈ Rm
+ , by (3.5), inequalities (3.6) and (3.7) yield, respectively,

λ
L

k f
L
k (x̃) + λ

U

k f
U
k (x̃) +

1

p

m∑
j=1

µjgj(x̃) ≦

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x), k ∈ K,

(3.8)

λ
L

k f
L
k (x̃) + λ

U

k f
U
k (x̃) +

1

p

m∑
j=1

µjgj(x̃) <

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x) for at least one k ∈ K.

(3.9)

Thus, by (3.2), (3.8) and (3.9) imply

diagλ
L
fL(x̃) + diagλ

U
fU (x̃) +

1

p

m∑
j=1

µjgj(x̃)e ≤

diagλ
L
fL(x) + diagλ

U
fU (x) +

1

p

m∑
j=1

µjgj(x)e.

By definition of the vector-valued Lagrange function Lp, we have that the inequality

Lp

(
x̃, λ, µ

)
≤ Lp

(
x, λ, µ

)
holds, which contradicting the inequality ii) in Definition 3.1.

Now, we prove that x ∈ D is a weak LU -Pareto solution of the problem (IVP). By means
of contradiction, suppose that x ∈ D is not a weak LU -Pareto solution of the problem (IVP).
Then, by Definition 2.6, there exists x̃ ∈ D such that

fk(x̃) <LU fk(x), k ∈ K.

Therefore, by definition of the relation <LU , we have for any k ∈ K,(
fLk (x̃) < fLk (x) ∧ fUk (x̃) ≦ fUk (x)

)
or

(
fLk (x̃) ≦ fLk (x) ∧ fUk (x̃) < fUk (x)

)
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or
(
fLk (x̃) < fLk (x) ∧ fUk (x̃) < fUk (x)

)
.

Since (λ
L

k , λ
U

k ) > 0 for some k ∈ K, multiplying each inequality above by the corresponding
Lagrange multiplier, we obtain that inequalities (3.6) and (3.7) are satisfied. The rest of
the proof is the same as in the case of LU -efficiency and, therefore, it is omitted in the
paper.

Now, under stronger hypotheses, we prove the converse result.

Theorem 3.3. Let
(
x, λ, µ

)
∈ D × R2p

+ × Rm
+ be a Karush-Kuhn-Tucker point of the con-

sidered nonsmooth vector optimization problem (IVP) with multiple interval-valued objective
function. Furthermore, assume that the objective functions fLk , k ∈ K, fUk , k ∈ K, and
the constraint functions gj , j ∈ J , are convex on D. Then

(
x, λ, µ

)
is a saddle point of the

vector-valued Lagrange function Lp defined for the problem (IVP).

Proof. First, we prove the inequality i) in Definition 3.1. By assumption,
(
x, λ, µ

)
∈

D × R2p
+ × Rm

+ is a Karush-Kuhn-Tucker point of the considered interval-valued vector
optimization problem (IVP). Using the feasibility of x for the problem (IVP) together with
the Karush-Kuhn-Tucker necessary optimality condition (2.5), we get that the following
inequalities

µjgj (x) ≦ µjgj (x) , j ∈ J (3.10)

hold for all µ = (µ1, . . . , µm) ∈ Rm
+ . By (3.10), it follows that the inequalities

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x) ≦

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x), k ∈ K

(3.11)

hold for any µ ∈ Rm
+ . Thus, by (3.2), (3.11) implies that the inequality

diagλ
L
fL(x) + diagλ

U
fU (x) +

1

p

m∑
j=1

µjgj(x)e ≦

diagλ
L
fL(x) + diagλ

U
fU (x) +

1

p

m∑
j=1

µjgj(x)e

holds for any µ ∈ Rm
+ . Hence, by the definition of the vector-valued Lagrange function (3.1),

the inequality
Lp

(
x, λ, µ

)
≦ Lp

(
x, λ, µ

)
(3.12)

holds for any µ ∈ Rm
+ .

Now, we prove the second inequality in Definition 3.1. We proceed by contradiction.
Suppose, contrary to the result, that there exists x̃ ∈ D such that Lp

(
x̃, λ, µ

)
≤ Lp

(
x, λ, µ

)
.

Then, by the definition of the vector-valued Lagrange function, it follows that

diagλ
L
fL(x̃) + diagλ

U
fU (x̃) +

1

p

m∑
j=1

µjgj(x̃)e ≤

diagλ
L
fL(x) + diagλ

U
fU (x) +

1

p

m∑
j=1

µjgj(x)e.
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Thus, by (3.2), it follows that

λ
L

k f
L
k (x̃) + λ

U

k f
U
k (x̃) +

1

p

m∑
j=1

µjgj(x̃) ≦

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x), k ∈ K.

λ
L

k f
L
k (x̃) + λ

U

k f
U
k (x̃) +

1

p

m∑
j=1

µjgj(x̃) <

λ
L

k f
L
k (x) + λ

U

k f
U
k (x) +

1

p

m∑
j=1

µjgj(x) for at least one k ∈ K.

Adding both sides of the inequalities above, we get

p∑
k=1

λ
L

k f
L
k (x̃) +

p∑
k=1

λ
U

k f
U
k (x̃) +

m∑
j=1

µjgj(x̃) <

p∑
k=1

λ
L

k f
L
k (x) +

p∑
k=1

λ
U

k f
U
k (x) +

m∑
j=1

µjgj(x).

(3.13)

By assumption, fLk , k ∈ K, fUk , k ∈ K, gj , j ∈ J , are convex functions on D. Hence, the
inequalities

fLk (x̃)− fLk (x) ≧ ξLk (x̃− x) , k ∈ K, (3.14)

fUk (x̃)− fUk (x) ≧ ξUk (x̃− x) , k ∈ K, (3.15)

g
j
(x̃)− g

j
(x) ≧ ζj (x̃− x) , j ∈ J (3.16)

hold for any ξLk ∈ ∂fLk (x), ξUk ∈ ∂fUk (x), k ∈ K, ζj ∈ ∂gj (x), j ∈ J . Multiplying
inequalities (3.14)-(3.16) by the associated Lagrange multiplier and then adding both sides
of the obtained inequalities, respectively, we get

p∑
k=1

λ
L

k f
L
k (x̃)−

p∑
k=1

λ
L

k f
L
k (x) ≧

p∑
k=1

λ
L

k ξ
L
k (x̃− x) , (3.17)

p∑
k=1

λ
U

k f
U
k (x̃)−

p∑
k=1

λ
U

k f
U
k (x) ≧

p∑
k=1

λ
U

k ξ
U
k (x̃− x) , (3.18)

m∑
j=1

µjgj(x̃)−
m∑
j=1

µjgj(x) ≧
m∑
j=1

µjζj (x̃− x) . (3.19)

Combining inequalities (3.17)-(3.19), we obtain

p∑
k=1

λ
L

k f
L
k (x̃) +

p∑
k=1

λ
U

k f
U
k (x̃) +

m∑
j=1

µjgj(x̃)

−
p∑

k=1

λ
L

k f
L
k (x)−

p∑
k=1

λ
U

k f
U
k (x)−

m∑
j=1

µjgj(x) ≧

p∑
k=1

λ
L

k ξ
L
k (x̃− x) +

p∑
k=1

λ
U

k ξ
U
k (x̃− x) +

m∑
j=1

µjζj (x̃− x) .

(3.20)



10 TADEUSZ ANTCZAK

Thus, by (3.13) and (3.20), the inequality p∑
k=1

λ
L

k ξ
L
k +

p∑
k=1

λ
U

k ξ
U
k +

m∑
j=1

µjζj

 (x̃− x) < 0 (3.21)

holds, contradicting the Karush-Kuhn-Tucker necessary optimality condition (2.4). This
completes the proof of this theorem.

The following result follows directly from the above theorem.

Corollary 3.4. Let x ∈ D be a weak LU -Pareto solution of the considered nonsmooth
vector optimization problem (IVP) with multiple interval-valued objective function and the
Karush-Kuhn-Tucker necessary optimality conditions (2.4)-(2.6) be satisfied at x with La-

grange multipliers λ =
[
λ
L
, λ

U
]
∈ R2p

+ and µ ∈ Rm
+ . Further, assume that all hypotheses

of Theorem 3.3 are fulfilled. Then
(
x, λ, µ

)
is a saddle point of the vector-valued Lagrange

function Lp defined for the problem (IVP).

In order to illustrate the results established in the paper, we consider an example of a
convex nondifferentiable multiobjective programming problem with interval-valued objective
functions in which all involved functions are convex.

Example 3.1. Consider the family of convex nondifferentiable optimization problem with
interval-valued objective functions:

f(x) = ([1, 2] (|x1|+ |x2|) , . . . , [p, p+ 1] (|x1|+ |x2|)) → min

g1(x) = x21 − x1 ≦ 0,
g1(x) = x22 − x2 ≦ 0,

(IVP1)

where p ≥ 1 is a finite integer number. Note that D = {(x1, x2) ∈ R2 : x21 − x1 ≦ 0, x22−
x2 ≦ 0} and x = (0, 0) is a feasible point of the problem (IVP1). It can be shown that there

exist λ
L ∈ Rp, λ

U ∈ Rp and µ ∈ R2 (for example, λ
L
= (1, . . . , 1) ∈ Rp, λ

U
= (1, . . . , 1) ∈

Rp, µ =
(
1
2 ,

1
2

)
∈ R2) such that the Karush-Kuhn-Tucker necessary optimality conditions

(2.4)-(2.6) are satisfied at x = (0, 0) with these Lagrange multipliers. Also it is not difficult
to show that fLk , k ∈ K, fUk , k ∈ K, gj , j ∈ J (x), are convex functions on D. Since

all hypotheses of Theorem 3.3 are satisfied,
(
x, λ, µ

)
is a saddle point of the vector-valued

Lagrange function Lp defined for the considered nonsmooth vector optimization problem
(IVP1) with interval-valued objective functions. Further, by Theorem 3.2, it follows that
x = (0, 0) is a LU -Pareto solution of the problem (IVP1).

4 Wolfe Duality

In this section, for the considered nonsmooth multiobjective programming problem (IVP)
with multiple interval-valued objective function, its vector Wolfe dual problem with multiple
interval-valued objective function is defined as follows:

ϑ (y, µ) =

fL1 (y) +
1

2

m∑
j=1

µjgj(y), f
U
1 (y) +

1

2

m∑
j=1

µjgj(y)

 , . . . , (4.1)
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1

2

m∑
j=1

µjgj(y), f
U
p (y) +

1

2

m∑
j=1

µjgj(y)

 → max

such that 0 ∈
p∑

k=1

λLk ∂f
L
k (y) +

p∑
k=1

λUk ∂f
U
k (y) +

m∑
j=1

µj∂gj(y), (IVWD)

y ∈ X, λL ≥ 0, λLe = 1, λU ≥ 0, λUe = 1, µ ≧ 0,

where e = (1, . . . , 1)
T ∈ Rp.

Let

W =

{(
y, λL, λU , µ

)
∈ Rn ×Rp ×Rp ×Rm : 0 ∈

p∑
k=1

λLk ∂f
L
k (y)+

p∑
k=1

λUk ∂f
U
k (y) +

m∑
i=1

µi∂gi(y), λL ≥ 0, λLe = 1, λU ≥ 0, λUe = 1, µ ≧ 0

}

be the set of all feasible solutions of the problem (IVWD). Further, let us denote by Y
the projection of W on X, that is, Y =

{
y ∈ Rn :

(
y, λL, λU , µ

)
∈W

}
. We now derive

duality relations between vector optimization problems (IVP) and (IVWD) with multiple
interval-valued objective functions.

Theorem 4.1 (Weak duality). Let x and
(
y, λL, λU , µ

)
be any feasible solutions for the

problems (IVP) and (IVWD), respectively. Further, assume that fLk , k ∈ K, fUk , k ∈ K,
gj, j ∈ J ,, are convex functions on D ∪ Y . Then,

f (x) ≮LU ϑ (y, µ) .

Proof. Suppose, contrary to the result, that

f (x) <LU ϑ (y, µ) .

Hence, by definition of the objective function ϑ, we have

f (x) <LU f(y) +
1

2

m∑
j=1

µjgj(y)e.

Thus, by definition of the relation <LU , we have
fL (x) < fL(y) +

1

2

m∑
j=1

µjgj(y)e,

fU (x) ≦ fU (y) +
1

2

m∑
j=1

µjgj(y)e,

or


fL (x) ≦ fL(y) +

1

2

m∑
j=1

µjgj(y)e,

fU (x) < fU (y) +
1

2

m∑
j=1

µjgj(y)e,
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or


fL (x) < fL(y) +

1

2

m∑
j=1

µjgj(y)e,

fU (x) < fU (y) +
1

2

m∑
j=1

µjgj(y)e.

By
(
y, λL, λU , µ

)
∈W , the above relations give, respectively,

p∑
k=1

λLk f
L
k (x) <

p∑
k=1

λLk f
L
k (y) +

1

2

m∑
j=1

µjgj(y)

p∑
k=1

λLk ,

p∑
k=1

λUk f
U
k (x) ≦

p∑
k=1

λUk f
U
k (y) +

1

2

m∑
j=1

µjgj(y)

p∑
k=1

λUk ,

or



p∑
k=1

λLk f
L
k (x) ≦

p∑
k=1

λLk f
L
k (y) +

1

2

m∑
j=1

µjgj(y)

p∑
k=1

λLk ,

p∑
k=1

λUk f
U
k (x) <

p∑
k=1

λUk f
U
k (y) +

1

2

m∑
j=1

µjgj(y)

p∑
k=1

λUk ,

or



p∑
k=1

λLk f
L
k (x) <

p∑
k=1

λLk f
L
k (y) +

1

2

m∑
j=1

µjgj(y)

p∑
k=1

λLk ,

p∑
k=1

λUk f
U
k (x) <

p∑
k=1

λUk f
U
k (y) +

1

2

m∑
j=1

µjgj(y)

p∑
k=1

λUk .

Hence, by
∑p

k=1 λ
L
k = 1 and

∑p
k=1 λ

U
k = 1, the above relations imply

p∑
k=1

λLk f
L
k (x) +

p∑
k=1

λUk f
U
k (x) <

p∑
k=1

λLk f
L
k (y) +

p∑
k=1

λUk f
U
k (y) +

m∑
j=1

µjgj(y).

By x ∈ D and
(
y, λL, λU , µ

)
∈W , the above inequality gives

p∑
k=1

λLk f
L
k (x) +

p∑
k=1

λUk f
U
k (x) +

m∑
j=1

µjgj(x) <

p∑
k=1

λLk f
L
k (y) +

p∑
k=1

λUk f
U
k (y) +

m∑
j=1

µjgj(y).

(4.2)

By assumption, fLk , k ∈ K, fUk , k ∈ K, gj , j ∈ J , are convex functions on D ∪ Y . Hence,
the inequalities

fLk (x)− fLk (y) ≧ ξLk (x− y) k ∈ K, (4.3)

fUk (x)− fUk (y) ≧ ξUk (x− y) k ∈ K, (4.4)

gj (x)− gj(y) ≧ ζj (x− y) , j ∈ J (4.5)



NONSMOOTH INTERVAL-VALUED VECTOR OPTIMIZATION 13

hold for any ξLk ∈ ∂fLk (y), ξUk ∈ ∂fUk (y), k ∈ K, ζj ∈ ∂gj (y), j ∈ J . By the last constraint
of the problem (IVWD), we obtain from (4.3)-(4.5), respectively,

p∑
k=1

λLk f
L
k (x)−

p∑
k=1

λLk f
L
k (y) ≧

p∑
k=1

λLk ξ
L
k (x− y) , (4.6)

p∑
k=1

λUk f
U
k (x)−

p∑
k=1

λUk f
U
k (y) ≧

p∑
k=1

λUk ξ
U
k (x− y) , (4.7)

m∑
j=1

µjgj(x)−
m∑
j=1

µjgj(y) ≧
m∑
j=1

µjζj (x− y) . (4.8)

Thus, (4.6)-(4.8) yield

p∑
k=1

λLk f
L
k (x) +

p∑
k=1

λUk f
U
k (x) +

m∑
j=1

µjgj(x)+

−
p∑

k=1

λLk f
L
k (y)−

p∑
k=1

λUk f
U
k (y)−

m∑
j=1

µjgj(y) ≧

p∑
k=1

λLk ξ
L
k (x− y) +

p∑
k=1

λUk ξ
U
k (x− y) +

m∑
j=1

µjζj (x− y) .

(4.9)

By (4.2) and (4.9), it follows that the inequality p∑
k=1

λLk ξ
L
k +

p∑
k=1

λUk ξ
U
k +

m∑
j=1

µjζj

 (x− y) < 0 (4.10)

holds, which is a contradiction to the first constraint of the interval-valued vector Wolfe dual
problem (IVWD). Thus, the proof of this theorem is completed.

If the stronger assumption of convexity is imposed on the objective functions, then the
following result is true:

Theorem 4.2 (Weak duality). Let x and
(
y, λL, λU , µ

)
be feasible solutions for the problems

(IVP) and (IVWD), respectively. Further, assume that the objective functions fLk , k ∈ K,
fUk , k ∈ K, are strictly convex functions on D ∪ Y , gj, j ∈ J (y), are convex functions on
D ∪ Y . Then,

fk(x) ≮LU ϑk (y, µ) for each k ∈ K.

Theorem 4.3 (Strong duality). Let x be a LU -Pareto solution (a weak LU -Pareto solution)
of the considered interval-valued vector optimization problem (IVP) and the constraint qual-

ification of Slater’s type be satisfied at x. Then there exist λ
L ∈ Rp, λ

U ∈ Rp and µ ∈ Rm

such that (x, λ
L
, λ

U
, µ) is feasible for the vector Wolfe dual problem (IVWD) with multiple

interval-valued objective function and the objective functions of (IVP) and (IVWD) are equal
at these points. If also all hypotheses of the weak duality theorem (Theorem 4.1 or Theo-

rem 4.2) are satisfied, then (x, λ
L
, λ

U
, µ) is a LU -efficient solution (a weakly LU -efficient

solution) of maximum type for the problem (IVWD).
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Proof. By assumption, x is a LU -Pareto optimal solution of the problem (IVP) and the
constraint qualification of Slater’s type is satisfied at x. Then, the necessary optimality

conditions (2.4)-(2.6) are satisfied with Lagrange multipliers λ
L ∈ Rp, λ

U ∈ Rp and µ ∈
Rm. Thus, the feasibility of (x, λ

L
, λ

U
, µ) for the problem (IVWD) follows directly from

these conditions. Hence, the objective functions in (IVP) and (IVWD) are equal at x and

(x, λ
L
, λ

U
, µ), respectively.

Suppose that (x, λ
L
, λ

U
, µ) is not a LU -efficient solution of a maximum type for the

problem (IVWD). Then, by definition, there exists (y, λL, λU , µ) ∈W such that

ϑ(x, µ) <LU ϑ (y, µ) .

Thus,

f (x) +
1

2

m∑
i=1

µigi(x)e <LU f(y) +
1

2

m∑
i=1

µigi(y)e.

Using x ∈ D together with the necessary optimality condition (2.6), we have that the
following inequality

f (x) <LU f(y) +
1

2

m∑
i=1

µigi(y)e

holds, contradicting the weak duality theorem (Theorem 4.1). Hence, (x, λ
L
, λ

U
, µ) is a

LU -efficient solution of a maximum type for the problem (IVWD). In order to prove that

(x, λ
L
, λ

U
, µ) is a weakly LU -efficient solution of maximum type for the problem (IVWD),

hypotheses of the weak duality theorem (Theorem 4.2) should be assumed.

Theorem 4.4 (Converse duality). Let (y, λ
L
, λ

U
, µ) be a weakly LU -efficient solution (a

LU -efficient solution) of a maximum type in the problem (IVWD) such that y ∈ D. Further-
more, assume that fLk , k ∈ K, fUk , k ∈ K, are strictly convex functions (convex functions)
on D ∪ Y and gj, j ∈ J (y), are convex functions on D ∪ Y . Then y is a weak LU -Pareto
solution ( a LU -Pareto solution) of the problem (IVP).

Proof. Proof of this theorem follows directly from weak duality (Theorem 4.1 or Theorem
4.2).

A restricted version of converse duality for interval-valued vector optimization problems
(IVP) and (IVWD) is presented in two next theorems.

Theorem 4.5 (Restricted converse duality). Let (y, λ
L
, λ

U
, µ) be feasible of the vector Wolfe

dual problem (IVWD) with multiple interval-objective function. Further, assume that func-
tions fLk , f

U
k , k ∈ K, gj, j ∈ J , are convex on D ∪ Y . If there exists x ∈ D such that

f(x) = ϑ (y, µ), then x is a LU -Pareto solution of the interval-valued vector optimization
problem (IVP).

Proof. We proceed by contradiction. Suppose, contrary to the result, that x is not a LU -
Pareto solution of the problem (IVWP). This means, by Definition 2.6, that there exists
x̃ ∈ D such that

f(x̃) <LU f(x). (4.11)

Thus, by assumption f(x) = ϑ (y, µ), (4.11) gives

f(x̃) <LU ϑ (y, µ) . (4.12)
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Hence, by the definition of the relation <LU and the definition of the objective function ϑ
in (IVDW), (4.12) impliesfL(x̃) < fL (y) +

1

2

m∑
j=1

µjgj(y)e ∧ fU (x̃) ≦ fU (y) +
1

2

m∑
j=1

µjgj(y)e

 (4.13)

or

fL(x̃) ≦ fL (y) +
1

2

m∑
j=1

µjgj(y)e ∧ fU (x̃) < fU (y) +
1

2

m∑
j=1

µjgj(y)e

 (4.14)

or

fL(x̃) < fL (y) +
1

2

m∑
j=1

µjgj(y)e ∧ fU (x̃) < fU (y) +
1

2

m∑
j=1

µjgj(y)e

 . (4.15)

By
(
y, λ

L
, λ

U
, µ

)
∈ W , it follows that λ

L ≥ 0, λLe = 1, λU ≥ 0, λUe = 1 Hence, (4.13)-

(4.15) yield

p∑
k=1

λ
L

k f
L
k (x̃) +

p∑
k=1

λ
U

k f
U
k (x̃) <

p∑
k=1

λ
L

k f
L
k (y) +

p∑
k=1

λ
U

k f
U
k (y) +

m∑
j=1

µjgj(y). (4.16)

Using x̃ ∈ D and (y, λ
L
, λ

U
, µ) ∈W , we have

p∑
k=1

λ
L

k f
L
k (x̃) +

p∑
k=1

λ
U

k f
U
k (x̃) +

m∑
j=1

µjgj(x̃) <

p∑
k=1

λ
L

k f
L
k (y) +

p∑
k=1

λ
U

k f
U
k (y) +

m∑
j=1

µjgj(y).

(4.17)

Since fLk , f
U
k , k ∈ K, gj , j ∈ J , are convex onD∪Y , by (2.1), (2.2) and (2.3), the inequalities

fLk (x̃)− fLk (y) ≧
(
ξLk

)T
(x̃− y) , k ∈ K, (4.18)

fUk (x̃)− fUk (y) ≧
(
ξUk

)T
(x̃− y) , k ∈ K, (4.19)

g
j
(x̃)− g

j
(y) ≧ ζTj (x̃− y) , j ∈ J (4.20)

hold for each ξL ∈ ∂fLk (y), ξU ∈ ∂fUk (y), k ∈ K, ζj ∈ ∂gj (y), j ∈ J , respectively. Hence,

by (y, λ
L
, λ

U
, µ) ∈W , (4.18)-(4.20) yield, respectively,

λ
L

k f
L
k (x̃)− λ

L

k f
L
k (y) ≧ λ

L

k

(
ξLk

)T
(x̃− y) , k ∈ K, (4.21)

λ
U

k f
U
k (x̃)− λ

U

k f
U
k (y) ≧ λ

U

k

(
ξUk

)T
(x̃− y) , k ∈ K, (4.22)

µjgj(x̃)− µjgj (y) ≧ µjζ
T
j (x̃− y) , j ∈ J . (4.23)

Thus, (4.21)-(4.23) imply

p∑
k=1

λ
L

k f
L
k (x̃)−

p∑
k=1

λ
L

k f
L
k (y) +

p∑
k=1

λ
U

k f
U
k (x̃)−

p∑
k=1

λ
U

k f
U
k (y)+ (4.24)
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m∑
j=1

µjgj(x̃)−
m∑
j=1

µjgj
(y) ≧

p∑
k=1

λ
L

k

(
ξLk

)T
(x̃− y)+

p∑
k=1

λ
U

k

(
ξUk

)T
(x̃− y) +

m∑
j=1

µjζ
T
j (x̃− y) .

Combining (4.17) and (4.24), we get that the inequality p∑
k=1

λ
L

k

(
ξLk

)T
+

p∑
k=1

λ
U

k

(
ξUk

)T
+

m∑
j=1

µjζ
T
j

 (x̃− y) < 0

holds for each ξLk ∈ ∂fLk (y), ξUk ∈ ∂fUk (y), k ∈ K, ζj ∈ ∂gj (y), j ∈ J (y), contradicting
the first constraint of (IVWD). This means that x is a LU -Pareto solution of the problem
(IVP) and completes the proof of this theorem.

Theorem 4.6 (Restricted converse duality). Let (y, λ
L
, λ

U
, µ) be feasible for the interval-

valued vector Wolfe dual problem (IVWD). Further, assume that the objective functions fLk ,
fUk , k ∈ K, are strictly convex on D ∪ Y and gj, j ∈ J (y), are convex on D ∪ Y . If
there exists x ∈ D such that f(x) = ϑ(y, µ), then x is a weak LU -Pareto solution of the
interval-valued vector optimization problem (IVP).

Proof. Proof of this theorem is similar to the proof of Theorem 4.5 and, therefore, it has
been omitted in the paper.

5 Conclusion

In the paper, we have considered a convex nonsmooth multiobjective programming prob-
lem with multiple interval-valued objective function. For such interval-valued multiobjective
programming problem, its vector-valued Lagrange function and a saddle point have been de-
fined. Then, the saddle point criteria have been established for the aforesaid interval-valued
multiobjective programming problem under the assumption that the functions constituting
it are convex. Further, for the considered nonsmooth multiobjective programming problem
with multiple interval-valued objective function, its vector Wolfe dual problem with interval-
valued objective function has been defined. Several duality results between both interval-
valued considered nonsmooth multiobjective programming problems have been proved also
under convexity hypotheses. To the best of our knowledge, there are no saddle point crite-
ria and Wolfe duality results in the literature for such vector optimization problems, that
is, for nonsmooth multiobjective programming problems with multiple interval-valued ob-
jective functions. Therefore, the results presented in this paper are new in the area of
interval-valued multiobjective programming.
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