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the sufficiency of quasi-strict feasibility for ensuring its solution set to be nonempty and
bounded.

Motivated and inspired by the above works, in this paper we first introduce a new con-
cept, i. e., P-strict feasibility for the equilibrium problem and verify the P-strict feasibility is
equivalent to its strict feasibility if the bifunction satisfies some conditions. Then, we investi-
gate that the P-strict feasibility is a sufficient condition for the solution set of the equilibrium
problem to be nonempty and bounded if the underlying bifunction is pseudomonotone in
reflexive Banach spaces. Finally, we give several examples to support our main results. In
comparison to Theorem 3.1 in [11], Theorem 3.4 of this paper relaxes the condition that the
bifunction is proper and weakens the monotone-type assumption.

The rest of this paper is organized as follows. In Sect. 2, we recall some basic notations
and present some preliminary results. In Sect. 3, we introduce the concept of P-strict feasi-
bility for the equilibrium problem. We discuss the P-strict feasibility is a sufficient condition
guaranteeing the nonemptiness and boundedness of the solution set for the pseudomonotone
equilibrium problem in reflexive Banach spaces. Finally, we conclude this paper in Sect. 4.

2 Notations and Preliminaries

Throughout this paper, let us denote X to be a reflexive Banach space with the dual space
X∗, ∥x∥ to be the norm of x ∈ X, and ⟨ϕ, x⟩ to be the dual pair between ϕ ∈ X∗ and x ∈ X.
Let K ⊂ X be a nonempty, closed, and convex subset, φ : K × K → R̄ be a bifunction,
where R̄ := R ∪ {±∞}. The equilibrium problem is to find x ∈ K such that

φ(x, y) ≥ 0, ∀y ∈ K. (2.1)

In the following, we use EP(φ,K) and S(φ,K) to denote the problem (2.1) and its solution
set, respectively.

The EP(φ,K) includes the variational inequalities as its special cases: If φ(x, y) =
⟨Tx, y − x⟩ for all x, y ∈ K, where T : K → X∗ is a single-valued mapping, then (2.1)
reduces to the following classical variational inequality problem VI(T,K): to find x ∈ K
such that

⟨Tx, y − x⟩ ≥ 0, ∀y ∈ K.

It is well known that EP(φ,K) is closely related to the following dual equilibrium prob-
lem, denoted by DEP(φ,K), which consists of finding x ∈ K such that

φ(y, x) ≤ 0, ∀y ∈ K. (2.2)

The symbol ”→” and ”⇀” are used to denote the strong and weak convergence, respec-
tively. Let

barr(K) := {x∗ ∈ X∗ : sup
x∈K

⟨x∗, x⟩ < ∞} (2.3)

denoting the barrier cone of K. The recession cone of K is the closed and convex cone
defined by

K∞ := {d ∈ X : ∃tn ↓ 0,∃xn ∈ K, tnxn ⇀ d}. (2.4)

It is known that, given x0 ∈ K,

K∞ = {d ∈ X : x0 + λd ∈ K for all λ > 0}. (2.5)

For a nonempty set D in X, int(D) denotes the interior of D.
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Definition 2.1 ([11]). Let K be a nonempty, closed, and convex subset of X with
int(barrK) ̸= ∅. We say that EP(φ,K) is strictly feasible if

F+
K := {x ∈ K : φ(x, x+ d) > 0, ∀d ∈ K∞ \ {0}} ̸= ∅.

Definition 2.2. A bifunction φ : K ×K → R̄ is said to be

(i) monotone on K if
φ(x, y) + φ(y, x) ≤ 0, ∀x, y ∈ K;

(ii) pseudomonotone on K if

φ(x, y) ≥ 0 implies φ(y, x) ≤ 0, ∀x, y ∈ K

or equivalently
φ(x, y) > 0 implies φ(y, x) < 0, ∀x, y ∈ K.

Some preliminary results are quoted below.

Lemma 2.3 ( [6]). Let K be a nonempty, closed, and convex subset in X with int(barrK) ̸=
∅, then there does not exist {xn} ⊂ K with each ∥xn∥ → ∞ such that xn

∥xn∥ ⇀ 0. If

additionally K is a cone, then there does not exist {dn} ⊂ K with each ∥dn∥ = 1 such that
dn ⇀ 0.

Lemma 2.4. Let X be a reflexive Banach space with the dual space X∗, K be a nonempty,
closed, and convex subset in X and φ : K ×K → R̄ be a bifunction satisfying the following
conditions:

(i) φ is pseudomonotone;

(ii) for every x, y ∈ K and t ∈ [0, 1],

lim
t→0+

φ(x+ t(y − x), x)

t
= −φ(x, y).

Then x ∈ K is a solution of EP(φ,K) if and only if it is a solution of DEP(φ,K).

Proof. Let x∗ ∈ K solves EP(φ,K). Then

φ(x∗, y) ≥ 0, ∀y ∈ K.

Since φ is pseudomonotone,

φ(y, x∗) ≤ 0, ∀y ∈ K.

Thus, x∗ also solves DEP(φ,K).
Conversely, let x∗ ∈ K such that

φ(y, x∗) ≤ 0, ∀y ∈ K.

For any z ∈ K, we take zt = x∗ + t(z − x∗) ∈ K for t ∈ (0, 1). It follows that

φ(zt, x
∗) ≤ 0, ∀z ∈ K.
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By (ii), we have

lim
t→0+

φ(zt, x
∗)

t
= −φ(x∗, z), ∀z ∈ K,

and so

φ(x∗, z) ≥ 0, ∀z ∈ K.

Hence, x∗ also solves EP(φ,K). This completes the proof.

Lemma 2.5 ( [5]). Let K be a nonempty and convex subset of a Hausdorff topological vector
space E and G : K → 2E be a set-valued mapping from K into E satisfying the following
properties:

(i) G is a KKM mapping for every finite subset A of K, co(A) ⊂
∪

x∈A G(x);

(ii) G(x) is closed in E for every x ∈ K;

(iii) G(x0) is compact in E for some x0 ∈ K.

Then
∩

x∈K G(x) ̸= ∅.

3 Main Results

In this section, we first introduce a new notation, i. e., P-strict feasibility for EP(φ,K) in
reflexive Banach spaces. Then, we shall establish the equivalence between P-strict feasibility
and its strict feasibility whenever the bifunction satisfies some conditions.

Definition 3.1. Let K be a nonempty, closed, and convex subset of X and φ : K×K → R̄
be a bifunction. The EP(φ,K) is called P-strictly feasible iff,

PK := {x ∈ K : φ(x, y) > −∞, ∀y ∈ K} ̸= ∅.

Theorem 3.2. Let X be a reflexive Banach space with the dual space X∗, K be a nonempty,
closed, and convex subset in X with int(barrK) ̸= ∅, and φ : K ×K → R̄ be a bifunction
satisfying the following conditions:

(i) φ(x, x) = 0 for all x ∈ K;

(ii) for every x, y ∈ K and t ∈ [0, 1],

lim
t→0+

φ(x+ t(y − x), x)

t
= −φ(x, y);

(iii) for every x ∈ K, φ(x, ·) is lower semicontinuous.

Then the following statements are equivalent:

(i) EP(φ,K) is strictly feasible;

(ii) EP(φ,K) is P-strictly feasible.
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Proof. The “only if” part: If the conclusion does not hold, then for all x ∈ K, there exists
dx ∈ K∞ \ {0} such that yx = x+ dx ∈ K satisfying

φ(x, x+ dx) = φ(x, yx) = −∞. (3.1)

Since EP(φ,K) is strictly feasible, let x0 ∈ F+
K . Thus, φ(x0, x0 + dx) > 0, which is a

contradiction with (3.1) as x0 ∈ K.
The “if” part: Suppose that EP(φ,K) is P-strictly feasible. Now we claim that for all

λ > 0,

{x ∈ K : φ(x, x+ λd) > 0, ∀d ∈ K∞ \ {0}} ̸= ∅. (3.2)

If the claim (3.2) does not hold, then there exists a sequence {dn} ⊂ K∞ \ {0} such that

φ(x, x+ λdn) ≤ 0, ∀x ∈ K.

Without loss of generality, we may assume that ∥dn∥ = 1 for each n. Hence, dn ⇀ d0 as
n → ∞. Since K∞ is a closed and convex cone, it is weakly closed and so d0 ∈ K∞. By
Lemma 2.3, we have d0 ̸= 0.
Combining with dn ⇀ d0 and the lower semicontinuity of φ(x, ·), it follows that

φ(x, x+ λd0) ≤ 0. (3.3)

Since EP(φ,K) is P-strictly feasible, let x0 ∈ PK . Now we claim that for any λ > 0,

φ(x0, x0 + λd0) < 0. (3.4)

In fact, if not, then φ(x0, x0 + λd0) = 0 as (3.3) holds. The assumption (i) implies that
d0 = 0 because λ > 0 is arbitrary. It leads to a contradiction, so the claim (3.4) is verified.

Since x0 ∈ K, for any y ∈ K, we have xt = x0 + t(y− x0) ∈ K for all t ∈ [0, 1]. It follows
from the assumption (ii) that

lim
t→0+

φ(xt, x0)

t
= −φ(x0, y) < +∞.

Thus, for small enough t > 0, 1
tφ(xt, x0) < +∞. It turns out that

φ(xt, x0) ≤ 0. (3.5)

By y is arbitrary, we can take y = x0 + d0 ∈ K in (3.5). It yields that for any small enough
t > 0,

φ(x0 + td0, x0) ≤ 0. (3.6)

The inequality (3.4) and the assumption (ii) implies that

lim
t→0+

φ(x0 + t2d0, x0)

t

= lim
t→0+

φ(x0 + t(x0 + td0 − x0), x0)

t

= −φ(x0, x0 + td0)

> 0. (3.7)

Setting k = t2. Since 0 ≤ t ≤ 1, 0 ≤ k ≤ t ≤ 1. Hence, (3.7) shows that for sufficient small
k > 0, we have φ(x0+kd0, x0) > 0. It leads to a contradiction with (3.6). So the claim (3.2)
is proved. Hence, EP(φ,K) is strict feasibility. This completes the proof.
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In the following, we shall discuss that the P-strict feasibility is a sufficient condition
for EP(φ,K) to have a nonempty and bounded solution set whenever φ(·, ·) enjoys the
pseudomonotonicity assumption in reflexive Banach spaces. In order to obtain the result,
we first give the following Theorem 3.3.

Theorem 3.3. Let X be a reflexive Banach space with the dual space X∗, K be a nonempty,
closed, and convex subset in X with int(barrK) ̸= ∅ and φ : K × K → R̄ be a bifunction
satisfying the following conditions:

(i) φ is pseudomonotone and φ(x, x) = 0 for all x ∈ K;

(ii) for every x ∈ K, φ(x, ·) is quasiconvex and lower semicontinuous.

If F+
K ̸= ∅, then the solution set of DEP(φ,K) is nonempty and bounded.

Proof. First, we claim that there exists a bounded set C ⊂ K, such that for every x ∈ K \C,
there exists some y ∈ C satisfying

φ(y, x) > 0. (3.8)

If the above claim (3.8) does not hold, then there exists a sequence {xn} ⊂ K, such that
for each n, ∥xn∥ ≥ n and φ(y, xn) ≤ 0 for every y ∈ K with ∥y∥ ≤ n. Without loss of
generality, we may assume that dn = xn

∥xn∥ ⇀ d0 as n → ∞. Then d0 ∈ K∞ by the definition

of the recession cone. Since int(barrK) ̸= ∅, d0 ̸= 0 by Lemma 2.3.
For all ∥y∥ < n, the assumption (i) and (ii) imply that

φ(y, y + d0)

≤ lim inf
n→∞

φ

(
y, y +

1

∥xn∥
(xn − y)

)
≤ 0

and so F+
K = ∅, which is a contradiction. Hence, the claim (3.8) is proved.

Let G : K → 2K be a set-valued mapping defined by

G(y) := {x ∈ K : φ(y, x) ≤ 0}, ∀y ∈ K.

For any xn ∈ G(y) with xn → x0, one has

φ(y, xn) ≤ 0.

It follows from the lower semicontinuity of φ(y, ·) that

φ(y, x0) ≤ lim inf
n→∞

φ(y, xn) ≤ 0.

This shows that x0 ∈ G(y) and so G(y) is closed. Next we need to prove that G is a KKM
mapping from K to K. If not, then there exist t1, t2, ..., tn ∈ [0, 1], y1, y2, ..., yn ∈ K and
ỹ = t1y1 + t2y2 + ...+ tnyn ∈ co{y1, y2, ..., yn} such that ỹ ̸∈ ∪Gi∈{1,2,...,n}(yi). Then

φ(yi, ỹ) > 0, ∀i = 1, 2, . . . , n.

By φ is pseudomonotone, we have

φ(ỹ, yi) < 0, ∀i = 1, 2, . . . , n.
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From φ(ỹ, ·) is quasiconvex, it turns out that

0 = φ(ỹ, ỹ) < 0,

which is a contradiction. Thus, we know that G is a KKM mapping.
We may assume that C is a bounded, closed, and convex set (otherwise, consider the

closed and convex hull of C instead of C). Let {y1, . . . , ym} be finite number of points in
K and let M := co(C ∪ {y1, . . . , ym}). Then the reflexivity of the space X yields that M is
weakly compact convex. Consider the set-valued mapping G′ defined by G′(y) := G(y)∩M
for every y ∈ M . Then each G′(y) is a weakly compact convex subset of M and G′ is a
KKM mapping. We claim that

∅ ̸=
∩
y∈M

G′(y) ⊂ C. (3.9)

Indeed, by Lemma 2.5, the intersection in (3.9) is nonempty. Moreover, if there exists some
x0 ∈

∩
y∈M G′(y) but x0 ̸∈ C, then by the claim (3.8), we have φ(y, x0) > 0 for some y ∈ C.

Thus, x0 ̸∈ G(y) and so x0 ̸∈ G′(y), a contradiction to the choice of x0.
Let z ∈

∩
y∈M G′(y). Then z ∈ C by (3.9), hence z ∈

∩m
i=1(G(yi) ∩ C). Thus the

collection {G(y) ∩ C : y ∈ K} has finite intersection property. Since for each y ∈ K,
G(y) ∩ C is weakly compact, it follows that

∩
y∈K(G(y) ∩ C) is nonempty which coincides

with the solution set of DEP(φ,K). This completes the proof.

In the following Theorem 3.4, we shall discuss the P-strict feasibility is a sufficient con-
dition for ensuring the nonemptiness and boundedness of the solution set of the EP(φ,K)
with a pseudomonotone bifunction in reflexive Banach spaces.

Theorem 3.4. Let X be a reflexive Banach space with the dual space X∗, K be a nonempty,
closed, and convex subset in X with int(barrK) ̸= ∅ and φ : K × K → R̄ be a bifunction
satisfying the following conditions:

(i) φ is pseudomonotone and φ(x, x) = 0 for all x ∈ K;

(ii) for every x, y ∈ K and t ∈ [0, 1],

lim
t→0+

φ(x+ t(y − x), x)

t
= −φ(x, y);

(iii) for every x ∈ K, φ(x, ·) is quasiconvex and lower semicontinuous.

If EP(φ,K) is P-strictly feasible, then the solution set of EP(φ,K) is nonempty and bounded.

Proof By Theorem 3.2, Theorem 3.3 and Lemma 2.4, we obtain that S(h,K) is nonempty
and bounded. This completes the proof.

Remark 3.5. Theorem 3.4 presents the P-strict feasibility is a sufficient condition for
EP(φ,K) to have a nonempty and bounded solution set in reflexive Banach spaces. In
comparison to Theorem 3.1 of [11], Theorem 3.4 weakens the monotone-type assumption
and relaxes the condition to the case that φ : K ×K → R̄.

Corollary 3.6. Let X be a reflexive Banach space with the dual space X∗, K be a nonempty,
closed, and convex subset in X with int(barrK) ̸= ∅ and φ : K × K → R ∪ {+∞} be a
bifunction satisfying the following conditions:
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(i) φ is pseudomonotone and φ(x, x) = 0 for all x ∈ K;

(ii) for every x, y ∈ K and t ∈ [0, 1],

lim
t→0+

φ(x+ t(y − x), x)

t
= −φ(x, y);

(iii) for every x ∈ K, φ(x, ·) is quasiconvex and lower semicontinuous.

Then the solution set of EP(φ,K) is nonempty and bounded.

Proof. Since φ(·, ·) is proper, EP(φ,K) is P-strictly feasible. By Theorem 3.4, S(φ,K) is
nonempty and bounded. This completes the proof.

Remark 3.7. In fact, the assumption that “φ : K ×K → R ∪ {+∞}” in Corollary 3.6 is
stronger than the condition that “PK ̸= ∅”. Naturally, we can know that even if there is no
any strict feasibility condition, the nonemptiness and boundedness of S(φ,K) still can be
guaranteed.

The following examples are to show that all the assumptions of Theorem 3.4 is essential.

Example 3.8. Let X = ℓ2 and so X∗ = ℓ2. The norm and the inner product in ℓ2 are
defined by

∥x∥2 = (

∞∑
n=1

|xn|2)
1
2 , ∀x ∈ ℓ2,

and

⟨x, y⟩ =
∞∑

n=1

xnyn, ∀x, y ∈ ℓ2.

Let K = {x = (x1, x2, ..., xn, ...) ∈ ℓ2 : |xn| ≤ n, ∀n ∈ N}. Define φ : K ×K → R̄ by

φ(x, y) := −⟨x, y − x⟩∥x∥22, ∀x, y ∈ K.

It is easy to see that φ(x, x) = 0 and the lower semicontinuity of φ(x, ·) hold. Now we
shall show that φ is not pseudomonotone on K. Take x = (1, 1, . . . , 0, 1, . . . ) and y =
(0, 0, . . . , 1, 0, . . . ), we have

φ(x, y)

= −⟨(1, 1, . . . , 0, 1, . . . ), (−1,−1, . . . , 1,−1, . . . )⟩∥(1, 1, . . . , 0, 1, . . . )∥22
> 0,

however,

φ(y, x)

= −⟨(0, 0, . . . , 1, 0, . . . ), (1, 1, . . . ,−1, 1 . . . )⟩∥(0, 0, . . . , 1, 0, . . . )∥22
> 0.

This implies that φ is not pseudomotone.
Then, we will prove the condition (ii) of Theorem 3.4 is satisfied. For all t ∈ [0, 1],

lim
t→0+

φ(x+ t(y − x), x)

t
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= lim
t→0+

−⟨x+ t(y − x), t(x− y)⟩∥x+ t(y − x)∥22
t

= ⟨x, y − x⟩∥x∥22
= −φ(x, y).

For any y1, y2 ∈ K and any k ∈ [0, 1], we have

φ(x, ky1 + (1− k)y2)

= −⟨x, ky1 + (1− k)y2 − x⟩∥x∥22
= −k⟨x, y1 − x⟩∥x∥22 − (1− k)⟨x, y2 − x⟩∥x∥22
= kφ(x, y1) + (1− k)φ(x, y2),

which implies that φ(x, ·) is convex and so quasiconvex. It is easy to see that EP(φ,K) is
P-strictly feasible. Indeed, for any y ∈ K, we have

φ(0, y) = 0 > −∞,

which implies that PK ̸= ∅. However, by the simple deduction, it yields that the solution
set is the unbounded solution set K.

Remark 3.9. From Example 3.8, we can know that the pseudomonotonicity assumption in
Theorem 3.4 is important.

Example 3.10. Let X = ℓp (1 < p < +∞) and so X∗ = ℓq ( 1p + 1
q = 1). Let K = {x =

(x1, x2, ..., xn, ...) ∈ ℓp : xn ≥ 0,∀n ∈ N}. Define φ : K ×K → R̄ by

φ(x, y) := ∥y − x∥p, ∀x, y ∈ K,

where ∥x∥p = (
∑∞

n=1 |xn|p)
1
p . It is clear that φ(x, x) = 0 and the lower semicontinuity of

φ(x, ·) hold. Now we shall prove that φ is not pseudomonotone. Indeed,

φ(x, y) = ∥y − x∥p > 0,

however,

φ(y, x) = ∥x− y∥p > 0.

For all t ∈ [0, 1], we have

lim
t→0+

φ(x+ t(y − x), x)

t

= lim
t→0+

t∥y − x∥p
t

= ∥y − x∥p
̸= −φ(x, y),

which shows that the assumption (ii) is also not satisfied.
For any y1, y2 ∈ K and any k ∈ [0, 1], we have

φ(x, ky1 + (1− k)y2)

= ∥ky1 + (1− k)y2 − x∥p
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≤ k∥x− y1∥p + (1− k)∥x− y2∥p
= kφ(x, y1) + (1− k)φ(x, y2),

which implies that φ(x, ·) is convex and so quasiconvex.
Next we will verify that EP(φ,K) is P-strictly feasible. Indeed, let x ∈ K, for any y ∈ K,

φ(x, y) = ∥y − x∥p ≥ 0 > −∞,

which implies that PK ̸= ∅. Obviously, the solution set of EP(φ,K) is the unbounded set
K.

Remark 3.11. Example 3.10 turns out that the pseudomonotonicity and the assumption
(ii) of Theorem 3.4 is essential.

The following examples show that if φ is pseudomonotone, the P-strict feasibility is a
sufficient condition for S(φ,K) to be nonempty and bounded.

Now let us consider another example in a Hilbert space ℓ2.

Example 3.12. Let X = ℓ2 and so X∗ = ℓ2. Let K = {x = (x1, x2, ..., xn, ...) ∈ ℓ2 : |xn| ≤
n, ∀n ∈ N}. Define φ : K ×K → R̄ by

φ(x, y) := ⟨x, y − x⟩, ∀x, y ∈ K.

It is easy to see that φ(x, x) = 0 and the lower semicontinuity of φ hold. Now we shall show
that φ is pseudomonotone. Indeed,

⟨x, y − x⟩ ≥ 0.

Then ∥y− x∥22 = ⟨y− x, y− x⟩ ≥ 0 implies that ⟨y, y− x⟩ ≥ ⟨x, y− x⟩ and so ⟨y, y− x⟩ ≥ 0.
Thus, we have

⟨y, x− y⟩ ≤ 0.

Then, we will prove the condition (ii) is satisfied. For all t ∈ [0, 1],

lim
t→0+

φ(x+ t(y − x), x)

t

= lim
t→0+

⟨x+ t(y − x), t(x− y)⟩
t

= lim
t→0+

⟨x+ t(y − x), x− y⟩

= −φ(x, y).

For any y1, y2 ∈ K and any k ∈ [0, 1], we have

φ(x, ky1 + (1− k)y2)

= ⟨x, ky1 + (1− k)y2 − x⟩
= ⟨x, k(y1 − x)⟩+ ⟨x, (1− k)(y2 − x)⟩
= kφ(x, y1) + (1− k)φ(x, y2),

which implies that φ(x, ·) is convex and so quasiconvex. Next we will verify that EP(φ,K)
is quasi-strictly feasible. Indeed, for any y ∈ K, we have

φ(e1, y) = ⟨e1, y − e1⟩ = y1 − 1 ≥ −2 > −∞,

which implies that E+
K ̸= ∅. Moreover, by a simple deduction, it yields that the solution set

is the bounded single-point set {0}.
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4 Conclusions

We first presented the P-strict feasibility for EP(φ,K) is equivalent to its strict feasibility
if the bifunction satisfies some conditions. We studied that the P-strict feasibility is a
sufficient condition for S(φ,K) to be nonempty and bounded if the bifunction φ enjoys
pseudomonotonicity assumption in reflexive Banach spaces. We found that the P-strict
feasibility is weaker than the assumption that φ(·, ·) is proper, so the stronger condition of
Theorem 3.1 in [11] can be realxed. Further research works should be carried out to study
the various strict feasibility for some other kinds of optimization problems.
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