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P-STRICT FEASIBILITY OF EQUILIBRIUM PROBLEMS IN
REFLEXIVE BANACH SPACES

XUE-PING Luo*

Abstract: In this paper, P-strict feasibility of a equilibrium problem as a novel notation is introduced.
Moreover, we discuss that the P-strict feasibility is a sufficient condition for guaranteeing the nonemptiness
and boundedness of the solution set for the equilibrium problem with a pseudomonotone bifunction in
reflexive Banach spaces. Our results generalize and extend some known results.
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Introduction

It is well known that the equilibrium problem provides a unifying model for lots of math-
ematical problems such as variational inequalities, complementarity problems, fixed point
problems etc. Because of its wide applications, the equilibrium problem has been studied
intensively in recent years. For details, we refer the readers to [1-3,9-12] and the references
therein.

The issue on the nonemptiness and boundedness of the solution sets is among the most
interesting and important topics in the field of optimization problems. It is found that
strict feasibility is a useful condition guaranteeing the nonemptiness and boundedness of the
solution sets. In [4,6-8,13—16], the authors have considered that a monotone-type variational
inequality or complementarity problem has a nonempty and bounded solution set if and
only if it is strictly feasible by implementing various different approaches. Recently, Hu and
Fang [9] extended the concept of strict feasibility to the generalized system and proved that
a monotone generalized system is solvable whenever it is strictly feasible. Later, Hu and
Fang [11] further studied that under the suitable conditions, the equilibrium problem has a
nonempty and bounded solution set if and only if it is strictly feasible. Very recently, Luo [14]
introduced quasi-strict feasibility for the generalized mixed variational inequality and studied
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the sufficiency of quasi-strict feasibility for ensuring its solution set to be nonempty and
bounded.

Motivated and inspired by the above works, in this paper we first introduce a new con-
cept, i. e., P-strict feasibility for the equilibrium problem and verify the P-strict feasibility is
equivalent to its strict feasibility if the bifunction satisfies some conditions. Then, we investi-
gate that the P-strict feasibility is a sufficient condition for the solution set of the equilibrium
problem to be nonempty and bounded if the underlying bifunction is pseudomonotone in
reflexive Banach spaces. Finally, we give several examples to support our main results. In
comparison to Theorem 3.1 in [11], Theorem 3.4 of this paper relaxes the condition that the
bifunction is proper and weakens the monotone-type assumption.

The rest of this paper is organized as follows. In Sect. 2, we recall some basic notations
and present some preliminary results. In Sect. 3, we introduce the concept of P-strict feasi-
bility for the equilibrium problem. We discuss the P-strict feasibility is a sufficient condition
guaranteeing the nonemptiness and boundedness of the solution set for the pseudomonotone
equilibrium problem in reflexive Banach spaces. Finally, we conclude this paper in Sect. 4.

Notations and Preliminaries

Throughout this paper, let us denote X to be a reflexive Banach space with the dual space
X*, ||z|| to be the norm of x € X, and (¢, z) to be the dual pair between ¢ € X* and z € X.
Let K C X be a nonempty, closed, and convex subset, ¢ : K x K — R be a bifunction,
where R := R U {£00}. The equilibrium problem is to find # € K such that

p(z,y) 20, VyeK. (2.1)

In the following, we use EP(p, K) and S(¢, K) to denote the problem (2.1) and its solution
set, respectively.

The EP(p, K) includes the variational inequalities as its special cases: If o(z,y)
(Tz,y — x) for all z,y € K, where T : K — X* is a single-valued mapping, then (2.1)
reduces to the following classical variational inequality problem VI(T, K): to find 2 € K
such that

(Tr,y—x) >0, YyekK.
It is well known that EP(p, K) is closely related to the following dual equilibrium prob-
lem, denoted by DEP(p, K), which consists of finding x € K such that
p(y,z) <0, VyeK. (2.2)

The symbol ”—” and ”—"” are used to denote the strong and weak convergence, respec-
tively. Let

barr(K) := {z" € X* : sup(z*,z) < oo} (2.3)
reK

denoting the barrier cone of K. The recession cone of K is the closed and convex cone
defined by
Ky :={de X:3t,]0,3x, € K, t,x, — d}. (2.4)

It is known that, given xg € K,
Ko ={de X :zy+ A\ € K for all A > 0}. (2.5)

For a nonempty set D in X, int(D) denotes the interior of D.
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Definition 2.1 ([11]). Let K be a nonempty, closed, and convex subset of X with
int(barr K) # (). We say that EP (¢, K) is strictly feasible if

Fi={reK:p(x,z+d) >0, Vde K\ {0}}#0.
Definition 2.2. A bifunction ¢ : K x K — R is said to be
(i) monotone on K if
e(z,y) + ¢y, ) <0, Va,ye€ K;

(ii) pseudomonotone on K if

¢(z,y) > 0 implies p(y,z) <0, Vz,y € K

or equivalently
o(z,y) > 0 implies p(y,x) <0, Vz,y€ K.
Some preliminary results are quoted below.

Lemma 2.3 ([6]). Let K be a nonempty, closed, and convex subset in X with int(barr K) #
(0, then there does not exist {x,} C K with each ||z,| — oo such that Hi—zl - 0. If
additionally K is a cone, then there does not exist {d,} C K with each ||d,|| = 1 such that
dn, — 0.

Lemma 2.4. Let X be a reflexive Banach space with the dual space X*, K be a nonempty,
closed, and conver subset in X and ¢ : K x K — R be a bifunction satisfying the following
conditions:

(i) ¢ is pseudomonotone;

(ii) for every z,y € K and t € [0,1],

i Ple ity —2),a)

Jim . = —¢(@,y)-

Then x € K is a solution of EP(p, K) if and only if it is a solution of DEP(p, K).
Proof. Let z* € K solves EP(p, K'). Then

p(z*,y) >0, VyeK.
Since ¢ is pseudomonotone,

oy, z*) <0, VyeK.

Thus, x* also solves DEP (¢, K).
Conversely, let z* € K such that

oy, z*) <0, VyeK.
For any z € K, we take z; = 2* + ¢(z — 2*) € K for t € (0,1). It follows that

o(z, ") <0, VzeK.
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By (ii), we have

oGt
tg%hfi Sﬁ(x 72)7 VZEKv
and so
plx*,z) >0, VzekK.
Hence, z* also solves EP(p, K). This completes the proof. O

Lemma 2.5 ([5]). Let K be a nonempty and convex subset of a Hausdor(f topological vector
space E and G : K — 2F be a set-valued mapping from K into E satisfying the following
properties:

(i) G is a KKM mapping for every finite subset A of K, co(A) C |J,ca G();
(ii) G(x) is closed in E for every x € K;

(iii) G(=zg) is compact in E for some xg € K.
Then (e x G(x) # 0.

Main Results

In this section, we first introduce a new notation, i. e., P-strict feasibility for EP (¢, K) in
reflexive Banach spaces. Then, we shall establish the equivalence between P-strict feasibility
and its strict feasibility whenever the bifunction satisfies some conditions.

Definition 3.1. Let K be a nonempty, closed, and convex subset of X and ¢ : K x K — R
be a bifunction. The EP(p, K) is called P-strictly feasible iff,

Px:={zx e K :p(x,y)>—-00, VYyeK}#0.
Theorem 3.2. Let X be a reflexive Banach space with the dual space X*, K be a nonempty,

closed, and convex subset in X with int(barr K) # (), and ¢ : K x K — R be a bifunction
satisfying the following conditions:

(i) ¢(x,x) =0 for all z € K,
(i1) for every xz,y € K and t € [0, 1],

lim oz +tly —x),)
t—0+ t

= —p(z,9);

(iii) for every x € K, p(z,-) is lower semicontinuous.
Then the following statements are equivalent:

(i) EP(p, K) is strictly feasible;
(ii) EP(p, K) is P-strictly feasible.
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Proof. The “only if” part: If the conclusion does not hold, then for all x € K, there exists
d, € K \ {0} such that y, = x + d, € K satisfying

oz, x+dy) = p(z,y,) = —00. (3.1)

Since EP(p, K) is strictly feasible, let xg € Fj. Thus, ¢(xg, 7o + d;) > 0, which is a
contradiction with (3.1) as zp € K.

The “if” part: Suppose that EP (¢, K) is P-strictly feasible. Now we claim that for all
A >0,

{ze K:p(x,z+ M) >0, Vde K\ {0}}#0. (3.2)
If the claim (3.2) does not hold, then there exists a sequence {d,} C K \ {0} such that
oz, x4+ Ad,) <0, VrekK.

Without loss of generality, we may assume that ||d,| = 1 for each n. Hence, d,, — dp as
n — oo. Since K is a closed and convex cone, it is weakly closed and so dy € K. By
Lemma 2.3, we have dy # 0.

Combining with d,, — dy and the lower semicontinuity of ¢(z, -), it follows that

o(z,z + Adp) < 0. (3.3)
Since EP(ip, K) is P-strictly feasible, let zy € Px. Now we claim that for any A > 0,
(g, o + Adg) < 0. (3.4)

In fact, if not, then ¢(xg, o + Ady) = 0 as (3.3) holds. The assumption (i) implies that
dp = 0 because A > 0 is arbitrary. It leads to a contradiction, so the claim (3.4) is verified.

Since z € K, for any y € K, we have 2y = ¢ +t(y — x¢) € K for all t € [0,1]. Tt follows
from the assumption (ii) that

. SO(l‘t,.’L'())
lim 220 T0 0 4) < oo
i, FEEE = plaoy) < e
Thus, for small enough ¢ > 0, $¢(z4, 2g) < +00. It turns out that

p(zt,0) < 0. (3.5)

By y is arbitrary, we can take y = zg + do € K in (3.5). It yields that for any small enough
t >0,

Lp(.’L'() + tdp, :1?0) <0. (36)
The inequality (3.4) and the assumption (ii) implies that

(o + t2dg, o)

lim
t—0+ t
— lm o(xo + t(xo + tdy — x0), To)
t—0t t
= —p(xo,x0 + tdp)
> 0. (3.7)

Setting k = t2. Since 0 <t < 1,0 < k <t < 1. Hence, (3.7) shows that for sufficient small
k > 0, we have p(x¢+ kdy, xo) > 0. It leads to a contradiction with (3.6). So the claim (3.2)
is proved. Hence, EP(p, K) is strict feasibility. This completes the proof. O
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In the following, we shall discuss that the P-strict feasibility is a sufficient condition
for EP(p, K) to have a nonempty and bounded solution set whenever ¢(-,-) enjoys the
pseudomonotonicity assumption in reflexive Banach spaces. In order to obtain the result,
we first give the following Theorem 3.3.

Theorem 3.3. Let X be a reflexive Banach space with the dual space X*, K be a nonempty,
closed, and convex subset in X with int(barr K) # 0 and ¢ : K x K — R be a bifunction
satisfying the following conditions:

(i) ¢ is pseudomonotone and p(x,x) =0 for all x € K;

(ii) for every x € K, ¢(x,-) is quasiconvex and lower semicontinuous.

If ]-"I"; # (), then the solution set of DEP (¢, K) is nonempty and bounded.

Proof. First, we claim that there exists a bounded set C C K, such that for every € K\ C,
there exists some y € C satisfying

e(y,z) > 0. (3.8)

If the above claim (3.8) does not hold, then there exists a sequence {x,} C K, such that
for each n, ||z,|| > n and ¢(y,x,) < 0 for every y € K with |ly|| < n. Without loss of
generality, we may assume that d,, = Hi—::” — dg as n — oo. Then dy € K, by the definition
of the recession cone. Since int(barr K) # 0, dy # 0 by Lemma 2.3.

For all ||ly|| < m, the assumption (i) and (ii) imply that

<)0(:'-/7?/_|_d0)
1
< liminfo (y,y+ — (2, — )
n—c0 (E2]
<0

and so F;; = (), which is a contradiction. Hence, the claim (3.8) is proved.
Let G : K — 2K be a set-valued mapping defined by

Gly) ={z e K:p(y,z) <0}, VyeK.
For any =, € G(y) with x,, — ¢, one has
¢y, n) < 0.
It follows from the lower semicontinuity of p(y,-) that
¢y, xo) < liminfp(y, z,) < 0.

This shows that xg € G(y) and so G(y) is closed. Next we need to prove that G is a KKM
mapping from K to K. If not, then there exist t1,ts,...,t, € [0,1], y1,92,...,yn € K and
¥ =tiy1 +tayo + ... + tpyn € co{y1,¥2, ..., Yn} such that ¥ € UG,cq12,... 3 (yi). Then

o(yi,y) >0, Vi=1,2,...,n.
By ¢ is pseudomonotone, we have

o(y,y:) <0, Vi=1,2,...,n.
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From ¢(y, ) is quasiconvex, it turns out that

0=o(y,y) <0,

which is a contradiction. Thus, we know that G is a KKM mapping.

We may assume that C' is a bounded, closed, and convex set (otherwise, consider the
closed and convex hull of C instead of C). Let {y1,...,ym} be finite number of points in
K and let M :=co(C U{y1,...,ym}). Then the reflexivity of the space X yields that M is
weakly compact convex. Consider the set-valued mapping G’ defined by G’ (y) := G(y) " M
for every y € M. Then each G'(y) is a weakly compact convex subset of M and G’ is a
KKM mapping. We claim that

0# () Gy cc. (3.9)

yeM

Indeed, by Lemma 2.5, the intersection in (3.9) is nonempty. Moreover, if there exists some
2o € (yen G'(y) but zo € C, then by the claim (3.8), we have ¢(y,z9) > 0 for some y € C'.
Thus, 2o € G(y) and so g € G'(y), a contradiction to the choice of zg.

Let z € (N,car G'(y). Then z € C by (3.9), hence z € M2, (G(y;) N C). Thus the
collection {G(y) N C : y € K} has finite intersection property. Since for each y € K,
G(y) N C is weakly compact, it follows that (), (G(y) N C) is nonempty which coincides
with the solution set of DEP(p, K). This completes the proof. O

In the following Theorem 3.4, we shall discuss the P-strict feasibility is a sufficient con-
dition for ensuring the nonemptiness and boundedness of the solution set of the EP (¢, K)
with a pseudomonotone bifunction in reflexive Banach spaces.

Theorem 3.4. Let X be a reflexive Banach space with the dual space X*, K be a nonempty,
closed, and convex subset in X with int(barr K) # 0 and ¢ : K x K — R be a bifunction
satisfying the following conditions:

(i) ¢ is pseudomonotone and p(z,x) =0 for all z € K;
(ii) for every z,y € K and t € [0,1],

i P&ty —2),2)

Jim, ; = —p(@,y);

(iii) for every x € K, p(z,-) is quasiconver and lower semicontinuous.

IfEP(p, K) is P-strictly feasible, then the solution set of EP(p, K) is nonempty and bounded.

Proof By Theorem 3.2, Theorem 3.3 and Lemma 2.4, we obtain that S(h, K') is nonempty
and bounded. This completes the proof. O

Remark 3.5. Theorem 3.4 presents the P-strict feasibility is a sufficient condition for
EP(p, K) to have a nonempty and bounded solution set in reflexive Banach spaces. In
comparison to Theorem 3.1 of [11], Theorem 3.4 weakens the monotone-type assumption
and relaxes the condition to the case that ¢ : K x K — R.

Corollary 3.6. Let X be a reflexive Banach space with the dual space X*, K be a nonempty,
closed, and convex subset in X with int(barr K) # 0 and ¢ : K x K — RU {400} be a
bifunction satisfying the following conditions:
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(i) ¢ is pseudomonotone and p(z,x) =0 for all x € K;
(i1) for every xz,y € K and t € [0, 1],

lim oz +tly —x),)
t—0+ t

= —p(z,y);
(iii) for every x € K, ¢(x,-) is quasiconvex and lower semicontinuous.

Then the solution set of EP (¢, K) is nonempty and bounded.

Proof. Since ¢(+,-) is proper, EP(p, K) is P-strictly feasible. By Theorem 3.4, S(¢, K) is
nonempty and bounded. This completes the proof. O

Remark 3.7. In fact, the assumption that “p : K x K — RU {+00}” in Corollary 3.6 is
stronger than the condition that “Py # ()”. Naturally, we can know that even if there is no
any strict feasibility condition, the nonemptiness and boundedness of S(p, K) still can be
guaranteed.

The following examples are to show that all the assumptions of Theorem 3.4 is essential.

Example 3.8. Let X = ¢2 and so X* = ¢2. The norm and the inner product in ¢? are
defined by

(oo}
lzllz = 3 lzal?)?, Vo e,
n=1

and

(367y> = anynv Vm,y € 62'

n=1
Let K = {x = (21,22, ..., Tp,...) € £2: |z,| < n,¥n € N}. Define p : K x K — R by
p(x,y) = —(w,y —x)|z]3, Vr,yeK.

It is easy to see that p(z,2) = 0 and the lower semicontinuity of ¢(x,-) hold. Now we
shall show that ¢ is not pseudomonotone on K. Take z = (1,1,...,0,1,...) and y =
(0,0,...,1,0,...), we have

o(z,y)
= —{((1,1,...,0,1,...), (=1, —1,..., 1, =1,. . M[(1,1,...,0,1,...)3
> 0,
however,
o(y, )
= —{0,0,...,1,0,...),(1,1,...,—=1,1...))](0,0,...,1,0,...)|3
> 0.

This implies that ¢ is not pseudomotone.
Then, we will prove the condition (ii) of Theorem 3.4 is satisfied. For all ¢ € [0, 1],

i P&ty —2),2)

t—0+ t



P-STRICT FEASIBILITY OF EQUILIBRIUM PROBLEMS 125

—(@+ty — =)tz —y)llz +tly — )3

= lim
t—0+ t
(z,y — )||lz||3

= —p(x,y).

For any y1,y2 € K and any k € [0, 1], we have

o(x, kyr + (1 = k)y2)
= —(,kyr + (1 = k)yz — x)|3
= —k{z,y1 — 2)[|lz]3 — (1 — k) (2,92 — 2)||=[l3
= ko(z,y1) + (1 = k), y2),

which implies that ¢(z,-) is convex and so quasiconvex. It is easy to see that EP(p, K) is
P-strictly feasible. Indeed, for any y € K, we have

90(07:'-/) =0> — 00,

which implies that Px # (). However, by the simple deduction, it yields that the solution
set is the unbounded solution set K.

Remark 3.9. From Example 3.8, we can know that the pseudomonotonicity assumption in
Theorem 3.4 is important.

Example 3.10. Let X = (7 (1 < p < +00) and so X* = ¢4 (% +% =1). Let K = {z =
(1,22, ey Ty, ...) € LP 2, > 0,V¥n € N}. Define ¢ : K x K — R by

oz, y) = lly —zlp, Vo,yek,

where ||z[l, = (3,2, |xn|p)% It is clear that ¢(x,x) = 0 and the lower semicontinuity of
©(x,-) hold. Now we shall prove that ¢ is not pseudomonotone. Indeed,

o(x,y) = lly — [, >0,
however,

ey, ) = [z —yll, > 0.
For all ¢ € [0, 1], we have

plr+ iy —x),x)

lim
t—0+ t
oty el
t—0+ t
= |ly—zllp
# —p(z,y),

which shows that the assumption (ii) is also not satisfied.
For any y1,y2 € K and any k € [0, 1], we have

o(x, kyr + (1 = k)yz2)
= |lkyr + (1= k)y2 — x|
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< kllz =yl + (1 = F)lle — g2l
= k(p(xayl) —+ (1 - k’)‘P(l’ay2)a

which implies that ¢(z,-) is convex and so quasiconvex.
Next we will verify that EP(p, K) is P-strictly feasible. Indeed, let x € K, for any y € K,

o(z,y) = lly — |, > 0> —o0,

which implies that Px # (. Obviously, the solution set of EP(p, K) is the unbounded set
K.

Remark 3.11. Example 3.10 turns out that the pseudomonotonicity and the assumption
(ii) of Theorem 3.4 is essential.

The following examples show that if ¢ is pseudomonotone, the P-strict feasibility is a
sufficient condition for S(p, K) to be nonempty and bounded.
Now let us consider another example in a Hilbert space £2.

Example 3.12. Let X = ¢2 and so X* = 2. Let K = {x = (21,22, ..., T, ...) € L2 1 |m,| <
n,Vn € N}. Define p : K x K — R by

QD(.T,y) = <1’,y—£17>, V%ZJGK-

It is easy to see that ¢(x,2) = 0 and the lower semicontinuity of ¢ hold. Now we shall show
that ¢ is pseudomonotone. Indeed,

(x,y —x) > 0.

Then ||y — z||3 = (y — z,y — ) > 0 implies that (y,y — ) > (z,y — x) and so {y,y —x) > 0.
Thus, we have
(y, 2 —y) <0.

Then, we will prove the condition (ii) is satisfied. For all ¢ € [0, 1],

L el iy = 2),7)
t—0+ t

gy &ty — o)t —y)
t—0+ t

= 1 t(y — _
J (@ + ¢y — 2),2 —y)

= —p(z,9).

For any y1,y2 € K and any k € [0, 1], we have

o(x, kyr + (1 = k)y2)

(T, kyr + (L = k)y2 — )

(z, k(y1 —2)) + (2, (1 = k)(y2 — 2))
= ko(z,y) + (1= k)o(z,y2),

which implies that (z,-) is convex and so quasiconvex. Next we will verify that EP (¢, K)
is quasi-strictly feasible. Indeed, for any y € K, we have

pler,y) = (e, y—e1)=y1 — 1> —-2> —o0,

which implies that 5; # (). Moreover, by a simple deduction, it yields that the solution set
is the bounded single-point set {0}.
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Conclusions

We first presented the P-strict feasibility for EP(p, K) is equivalent to its strict feasibility
if the bifunction satisfies some conditions. We studied that the P-strict feasibility is a
sufficient condition for S(y, K) to be nonempty and bounded if the bifunction ¢ enjoys
pseudomonotonicity assumption in reflexive Banach spaces. We found that the P-strict
feasibility is weaker than the assumption that o(,-) is proper, so the stronger condition of
Theorem 3.1 in [11] can be realxed. Further research works should be carried out to study
the various strict feasibility for some other kinds of optimization problems.
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