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Early contributions owe to [5, 8, 26, 31]. The problems enjoy great importance in physics,
engineering, statistics, and finance; see, e.g., composite materials [6], experimental design
[29], optimal system design [1,17,19,21,30,33,34], shape optimization [7], robust optimization
[9,14–16,18,32], relaxations of combinatorial optimization problems [10] and so on. A good
recent survey on this topic with numerous references therein is [13]. One of the main
difficulties with numerical analysis of such problems is that the eigenvalues, considered as
functions of a symmetric matrix, are not smooth at those points where they coalesce. This
causes that the problems are typically nondifferentiable.

The algorithms for optimization of nonsmooth functions applied to eigenvalue optimiza-
tion problems could be traced back to 1970’s and 1980’s, where the methods were mainly
the first-order form. At the same time various attempts were made to develop second-order
theoretical analysis for nonsmooth optimization problems. As far as the second-order anal-
ysis is concerned, Shapiro and Fan [27], as well as Overton and Womersley [23, 25], have
considered the problem from an algorithmic point of view and their independent searches
have led to two algorithms that use second-order information. Overton et al studied the
following particular eigenvalue problem

(P ) min
A∈Sn

λ1(A),

where λ1(·) is the maximum eigenvalue function. If the multiplicity r of λ1(A
∗) at an optimal

pointA∗ is known, then the approach consists of minimizing the maximum eigenvalue subject
to the constraint whose multiplicity is r. A local C2-parametrization of (P ) is then used to
develop a successive quadratic programming method.

The VU-decomposition theory was firstly developed in 2000’s [12]. Lemaréchal, Ous-
try, and Sagastizábal created VU-decompositions, and proposed the notions of “smooth fast
tracks” and “primal-dual gradient structures” which have their roots in “VU-decompositions”
and the “U-Lagrangian”. They examined methods to create second-order expansions for
non-smooth functions. These decompositions separate the domain of a convex function into
directions along which it behaves smoothly (U), and directions perpendicular to smooth be-
haviour (V). Using these subspaces they defined the U-Lagrangian, a smooth estimate of
the function along the U subspace which can be used to create the desired second-order
expansion.

Here we apply the VU-decomposition theory to more general case: the function of arbi-
trary eigenvalues, This kind of functions has smooth substructure, which is worth of explor-
ing more fast algorithm. Its form is as follows

(P1) min
A∈Sn

λr(A), (1.1)

where λr(·) is the eigenvalue function and here we denote that these eigenvalues satisfy the
decreasing order of λ1(·) ≥ λ2(·) ≥ · · · ≥ λn(·). In fact, the arbitrary function λr(A) can be
written as

λr(A) = ϕ1(A)− ϕ2(A),

where ϕ1(A) := λ1(A) + λ2(A) + · · · + λr(A) =
r∑

i=1

λi(A), and ϕ2(A) := λ1(A) + λ2(A) +

· · · + λr−1(A) =
r−1∑
i=1

λi(A). In Ref. [24] Overton and Womersley showed that the function

of the sum of the largest eigenvalues is convex. So ϕ1(A) and ϕ2(A) are both convex.
Their difference is called the difference of convex functions, i.e., D.C. for short. Eigenvalue
programs (P1) have been intensely studied since 1990s. They arise in many applications,
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such as in automatic control, finance, statistics and design engineering. The readers can see
the references [2,13,28] for detail. Here we suppose the function ϕ1(A) is smooth, i.e., λr(A)
ranks the last of the equal eigenvalues. Such problems involve many practical applications,
including minimum eigenvalue ( a concave programming actually), the second minimum
eigenvalue, etc.

Because λr is not convex anymore, the corresponding U-Lagrangian cannot be directly
applied. Our contribution is mainly stated as follows: from a theoretical point of view, we
will use a new U-Lagrangian function to derive an explicit expression for a second-order
operator in the case of the arbitrary eigenvalues: U-Hessian. The U-Lagrangian function is
D.C. form instead of convex. The resulting VU-decomposition algorithms make a step in
the V-subspace, followed by a U-Newton move in order to obtain superlinear convergence.
As far as I know, no existing algorithms in the literature is given to compute this problem.
This is the first superlinear algorithm to study the arbitrary eigenvalue.

The layout of the paper is as follows. In Section 2, we outline the notation used in
this paper and provide the precise definitions from VU space decomposition theory. Section
3 presents the U-Lagrangian of the arbitrary eigenvalue λr. Meantime, the second-order
derivatives can be explicitly computed. A conceptual space-decomposition algorithm is
proposed, and the corresponding superlinear convergence is proven in Section 4. Finally, in
Section 5, we summarize the obtained results, and discuss several questions arising from this
paper.

2 Preparation and Preliminary Results

In this section, we recall some classical notions and basic results from nonsmooth analysis
and VU-decomposition needed in what follows. Our notation is basically standard.

Let Sn be the space of n × n symmetric matrices, S+
n stands for the cone of n × n

positive semidefinite symmetric matrices. Define projU : Sn 7→ U is a projection operator
onto the subspace U of Sn, proj

∗
U : U 7→ Sn is the canonical injection U ∋ u 7→ u⊕ 0 ∈ Sn.

Define X · Y := trXY as Fröbenius scalar product of X,Y ∈ Sn, and X† indicates Moore-
Penrose inverse of X. Suppose X lies on the submanifold M(p, q) := {X ∈ Sn : λp(X) >
λp+1(X) = · · · = λk(X) = · · · = λq(X) > λq+1(X)}, where M(p, q) is a C∞-submanifold of
Sn, then the multiplicity of k-th largest eigenvalue λk(X) of X is q − p ≥ 1. Let Ep,q(X)
be the eigenspace associated with λp+1, . . . , λq, Qp,q(X) := Q1(X) be an orthonormal basis
of Ep,q(X), TM(X) and NM(X) are respectively the tangent and normal spaces to the
manifold M at X ∈ M. Denote the relative interior of the set S as riS, and the interior of
the set S as int S. The trace of a matrix A is written as trA.

We recall the definition of VU-decomposition and the U-Lagrangian for a convex function.

Definition 2.1. Let f be a convex function which is finite at the point x̄ ∈ Rn. For a
subgradient g ∈ ri∂f(x̄), we define the VU-decomposition as the subspaces

U := N∂f(x̄)(g) and V := T∂f(x̄)(g).

We have noticed that U = V⊥. These spaces represent the directions from x̄ for which
f behaves nonsmoothly (V) and smoothly (U). The goal is then to find a smooth function
which describes f in the directions of U . For any point x ∈ Rn, we may express x via its
projections onto U and V. We use the compact notation ⊕ for such decomposition, and
write Rn = U ⊕ V, i.e.,

Rn ∋ x = projU (x) + projV(x) = xU ⊕ xV ∈ U × V.
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From Definition 2.1, the relative interior of ∂f(x̄), denoted by ri∂f(x̄), is the interior of
∂f(x̄) relative to its affine hull, a manifold that is parallel to V. Accordingly,

ḡ ∈ ri∂f(x̄) ⇒ ḡ + (B(0, η) ∩ V) ⊂ ∂f(x̄) for some η > 0,

where B(0, η) denotes a ball in Rn centered at 0, with radius η. An extremely useful theorem
on alternate definitions of VU-decompositions follows, which is stated in [12].

Proposition 2.2. Let f be a convex function, which is finite at the point x̄ ∈ Rn. Then the
VU-decomposition of f is independent of the subgradient g ∈ ri∂f(x̄) chosen. Moreover, the
following subspaces are equal to U :

(i) The subspace perpendicular to the affine plane of ∂f(x̄),

(ii) {d ∈ Rn : sup
g∈∂f(x̄)

⟨g, d⟩ = inf
g∈∂f(x̄)

⟨g, d⟩},

(iii) {d ∈ Rn : f ′(x̄; d) = −f ′(x̄;−d)},

(iv) {d ∈ Rn : ⟨g, d⟩ = ⟨g, d⟩ for all g ∈ ∂f(x̄)}.

Next we are ready to define the U-Lagrangian function, whose solution mapping is key
in defining smooth trajectories.

Definition 2.3. For a convex function f on Rn, which is finite at the point x̄, given a
subgradient ḡ ∈ ∂f(x̄) with V-component ḡV , the U-Lagrangian of f , depending on ḡV , is
defined by

U(x̄) ∋ u 7→ LU (u; ḡV) = min
v∈V(x̄)

{f(x̄+ u⊕ v)− ⟨ḡV , v⟩V}, (2.1)

where V(x̄) and U(x̄) are the VU-decomposition subspaces, and ⟨·, ·⟩V denotes a scalar
product induced in the subspace V. When the infimum in (2.1) is attained, the set of
corresponding V-space minimizers is defined by

W (u; ḡV) = {v ∈ V(x̄) : LU (u; ḡV) = f(x̄+ u⊕ v)− ⟨ḡV , v⟩V}. (2.2)

A point to notice is that, the vector ḡV in our notation LU (u; ḡV) plays the roles of a
multiplier vector, such as one that occurs in a Lagrangian from constrained optimization,
because multipliers coming from the V-subspace minimization in (2.1) hinge on ḡV .

When W (u; ḡV) is nonempty, the associated U-Lagrangian is a convex function that is
differentiable at u = 0, with

∇LU (0; ḡV) = ḡU = gU = projU(x̄)g for all g ∈ ∂f(x̄). (2.3)

For u ̸= 0, the subdifferential of LU (u; ḡV) can be written as

∂LU (u; ḡV) = projU(x̄)[∂f(x̄+ u⊕ v) ∩ (g + U(x̄))]
= {gU : gU ⊕ ḡV ∈ ∂f(x̄+ u⊕ v)}, (2.4)

where v is taken arbitrary in W (u; ḡV); in addition, the multifunction u 7→ ∂LU (u; ḡV) is
continuous at u = 0:

lim
u→0

∂LU (u; ḡV) = ∇LU (0; ḡV). (2.5)

Furthermore, if g ∈ ri ∂f(x̄), then W (u; ḡV) is nonempty, with each v ∈ W (u; ḡV) is
o(∥u∥), i.e.,

sup
v∈W (u;ḡV)

∥v∥ = o(∥u∥), (2.6)
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and the multifunction u 7→ W (u; ḡV) is continuous at u = 0:

lim
u→0

W (u; ḡV) = {0}. (2.7)

When u = 0, we have W (0; ḡV) = {0} and LU (0; ḡV) = f(x̄).
Let f : Rn → R be a lower semicontinuous function so that its epigraph, denoted and

defined by epif := {(x, β) ∈ Rn × R : β ≥ f(x)}, is a closed set in Rn+1. Take x ∈ Rn,
where f is finite-valued, and consider the Clarke cone normal to epigraph of f at (x, f(x)).
The set of Clarke subgradients of f at x is denoted and defined by

∂Cf(x) := {g : (g,−1) ∈ N̄epif (x, f(x))},

where N̄epif (x, f(x)) is the Clarke normal cone of epif at (x, f(x)). When f is Lipschitz
around x, from [3], ∂Cf(x) is the convex hull of all possible limits of gradients at points of
differentiability of f in sequences converging to x.

3 VU-Space Decomposition

This section is devoted to the main results in this paper. Here we compute VU-space
decomposition based on VU theory. Next, a new U-Lagrangian function is introduced for
deducing the corresponding second-order terms. Furthermore, the second-order expansion
of λr(A) along some smooth trajectory is presented.

In order to give the explicit structure of our VU-space decomposition, we need the fol-
lowing subdifferential results.

Proposition 3.1. For the function λr defined in (P1) and Ā ∈ Sn, we have

(i) λ′
r(Ā;H) = ϕ′

1(Ā;H)−ϕ′
2(Ā;H) = ⟨∇ϕ1(Ā),H⟩−ϕ′

2(Ā;H) = λmin(Q
T
1 HQ1), ∀H ∈

Sn;

(ii) G ∈ ∂Cλr(Ā) ⇔ G ∈ ∇ϕ1(Ā)− ∂ϕ2(Ā) ⇔ ∇ϕ1(Ā)−G ∈ ∂ϕ2(Ā); where

∂Cλr(Ā)

= ∇ϕ1(Ā)− ∂ϕ2(Ā)

= P1P
T
1 +Q1Q

T
1 − {U ∈ Sn : 0 ⪯ Ũ ⪯ I, trŨ = r − 1− l, U = P1P

T
1 +Q1ŨQT

1 }
= {Q1ŨQT

1 : 0 ⪯ Ũ ⪯ I, trŨ = 1}.

Proof. (i) It is obvious from the structure of the function in (P1).
(ii) In view of Proposition 2.11 of [4], we have

∂Cλr(Ā) ⊆ ∇h1(Ā)− ∂h2(Ā).

To complete the proof, it suffices to show that the opposite inclusion relation is true. Taking
any Ξ ∈ ∇ϕ1(Ā) − ∂ϕ2(Ā), one has ∇ϕ1(Ā) − Ξ ∈ ∂ϕ2(Ā). For the subdifferential of λr,
according to [24], we can easily deduce the corresponding results.

Remark 3.2. Because λr ranks last in a group of equal eigenvalues, λ′
r(Ā;H) is the smallest

eigenvalue of QT
1 HQ1; one can say that λr imitates the smallest eigenvalue λn. This is a

situation where λ′
r(Ā; ·) is concave.
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In Ref. [20], Mifflin and Sagastizábal studied explicitly the VU-decomposition of a special
class of the nonconvex lower semi-continuous functions, whose definition is stated as follows:

Definition 3.3. Given an lower semi-continuous function f , a point x̄ ∈ Rn, where f(x̄)
is finite and ∂Cf(x̄) is nonempty, and arbitrary subgradient g ∈ ∂Cf(x̄), the orthogonal
subspaces

V := lin(∂Cf(x̄)− g) and U := V⊥ (3.1)

define the VU-space decomposition; in other words, V is the subspace parallel to the affine
hull of ∂Cf(x̄).

Evidently, the structure is similar to (i) of Proposition 2.2. It is not hard to obtain that
the results are still satisfied when the function is lower semi-continuous.

Now we are ready to establish our VU-decomposition structure for λr.

Proposition 3.4. (i) Suppose the function λr is defined in (P1). The VU-space decom-
positions U(Ā) and V(Ā) are, respectively, written as in the following way:

U(Ā) = {H ∈ Sn : QT
1 HQ1 =

1

r − l
tr(QT

1 HQ1)Ir−l}, (3.2)

V(Ā) = {Q1ZQT
1 : Z ∈ S+

r−l, trZ = 0}. (3.3)

(ii) If p+ 1 = q, then U(Ā) = Sn, and V(Ā) = {0}.

(iii) If int ∂Cλr(Ā) ̸= ∅, then we have U(Ā) = {0}, and V(Ā) = Sn.

Proof. According to the item (ii) of Proposition 2.2, we have U(x) = {d ∈ Rn : f ′(x; d) =
−f ′(x;−d)}, V(x) = U(x)⊥, so we only compute D ∈ Sn which satisfies

U(Ā) = {D : λ′
r(Ā;D) = −λ′

r(Ā;−D)}
= {D : max

G∈∂Cλr(Ā)
⟨G,D⟩ = min

G∈∂Cλr(Ā)
⟨G,D⟩}

= {D : max
Ũ

⟨Ũ , QT
1 DQ1⟩ = min

Ũ
⟨Ũ , QT

1 DQ1⟩}

= {D : QT
1 DQ1 =

1

r − l
tr(QT

1 DQ1)Ir−l}.

Therefore the above equation gives (3.2). The remaining equality follows directly from
the definition of V(Ā), V(Ā) = U(Ā)⊥.

For the item (ii), when p + 1 = q, the multiplicity of λr is single. The function λr is a
differentiable function at Ā, and U(Ā) = Sn, and V(Ā) = {0}.

If int ∂Cλr(Ā) ̸= ∅, then ∂λr(Ā) has full dimension. So U(Ā) = {0}, and V(Ā) = Sn.
This gives item (iii).

Next we present the U-Lagrangian function of the function λr.
Let ∇ϕ1(Ā) := G̃ = G̃U ⊕ G̃V = projU(Ā)G̃ ⊕ projV(Ā)G̃ and H1 := ∇2ϕ1(Ā). Because

ϕ1(·) is a convex function, H1 is actually positive semi-definite. Denote Ū and V̄ respectively
as the basis matrix of the subspace U and V. Associated with Ḡ = ḠU ⊕ ḠV ∈ ∂ϕ2(Ā),
define the U-Lagrangian of λr as

LU (U ; Ḡ) = (ϕ1(Ā) + ⟨G̃U , U⟩U +
1

2
⟨ŪTH1Ū U,U⟩U )− ( inf

V ∈V
{ϕ2(Ā+ U ⊕ V )− ⟨ḠV , V ⟩V}),

(3.4)
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and the set of minimizers in V-spaces is stated as

W (U) = arg min
V ∈V

{ϕ2(Ā+ U ⊕ V )− ⟨ḠV , V ⟩V}. (3.5)

Denote L2
U (U ; Ḡ) := infV ∈V{ϕ2(Ā+ U ⊕ V )− ⟨ḠV , V ⟩V}.

Remark 3.5. In fact, the function L2
U (U ; Ḡ) is exactly the same as the classical U-Lagrangian

(2.1). But LU (U ; Ḡ) is different from (2.1), because the function LU (U ; Ḡ) is usually not
convex (the following item (i) of Proposition 3.6). In order to be formally consistent with
(2.1) in the appellation, we still call (3.4) the U-Lagrangian function of λr. When l+1 = r,
i.e., the multiplicity of λr is single, λr reduces to the smooth function, and (3.4) coincides
with the second-order expansion of λr.

The first part of LU (U ; Ḡ), ϕ1(Ā)+⟨G̃U , U⟩U + 1
2 ⟨Ū

TH1Ū U,U⟩U , is actually the second-
order expansion of ϕ1(·) along the U-subspace.

We see presently how the following proposition formulates the properties for LU (U ; Ḡ)
and the set of minimizers W (U).

Proposition 3.6. Let the function λr is defined in (P1). We have the following assertions:

(i) The function LU (U ; Ḡ) defined in (3.4) is a finite-valued D.C. function.

(ii) A minimum point W ∈ W (U) in (3.5) is characterized by the existence of some G ∈
∂Cλr(Ā+ U ⊕W ) such that GV = G̃V − ḠV .

(iii) In particular, 0 ∈ W (0) and LU (0; Ḡ) = λr(Ā).

(iv) If Ḡ ∈ ri∂ϕ2(Ā), then W (U) is nonempty for each U ∈ U(Ā) and W (0) = {0}.

Proof. (i) By Theorem 3.2 (i) in [12], the function L2
U (U ; Ḡ) defined in (3.4) is convex and

finite everywhere. Because ϕ1(Ā) is convex, ϕ1(Ā) + ⟨G̃U , U⟩U + 1
2 ⟨Ū

TH1Ū U,U⟩U as the
second-order expansion of ϕ1(·) along the U-subspace is actually also convex. Therefore,
LU (U ; Ḡ) which is difference of two convex functions is finite everywhere, i.e., it is just a
D.C. function.

(ii) Denote the inner function as h(·) = ϕ2(Ā + U ⊕ ·) − ⟨ḠV , ·⟩V for infimum of (3.4).
By convex analysis we have

W ∈ W (U) ⇔ 0 ∈ ∂h(W ) = ∂ϕ2(Ā+ U ⊕W ) ∩ V − ḠV
⇔ ḠV ∈ ∂ϕ2(Ā+ U ⊕W ) ∩ V
⇔ ḠV − G̃V ∈ ∂ϕ2(Ā+ U ⊕W ) ∩ V − G̃V
⇔ ∃G = GU ⊕GV ∈ ∂Cλr(Ā+ U ⊕W ), s.t. GV = G̃V − ḠV .

So item (ii) follows.
(iii) For U = 0, take W = 0 and G = G̃− Ḡ ∈ ∂Cλr(Ā) = ∂Cλr(Ā+ 0⊕ 0) in (ii), so we

have 0 ∈ W (0) and LU (0; Ḡ) = λr(Ā).
(iv) By Theorem 2.4 in [12], it is easy to know that the function h(·) which is inner

infimum function is inf-compact in V and the set W (U) is nonempty. When U = 0,

ϕ2(Ā+ 0⊕ V )− ⟨ḠV , V ⟩ ≥ ϕ2(Ā) + η∥V ∥V ,

for V ̸= 0, that is to say, ∥V ∥ ̸= 0, the above inequality become

ϕ2(Ā+ 0⊕ V )− ⟨ḠV , V ⟩ > ϕ2(Ā) = ϕ2(Ā+ 0⊕ 0)− ⟨ḠV , 0⟩,

which implies that V = 0 is the unique minimizer.
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Property 1. (i) If W (U) ̸= ∅, then

∂CLU (U ; Ḡ) = {GU : GU ⊕ (G̃V − ḠV) ∈ ∂Cλr(Ā+ U ⊕W ),W ∈ W (U)}. (3.6)

(ii) If Ḡ ∈ ri∂ϕ2(Ā), then W (U) = o(∥U∥U ).

(iii) For U ∈ U satisfying W (U) ̸= ∅, we have

λr(Ā+ U ⊕W ) = λr(Ā) + ⟨G̃− Ḡ, U ⊕W ⟩+ o(∥U∥U ), ∀W ∈ W (U). (3.7)

Proposition 3.7. The convex function L2
U (U, Ḡ) is differentiable at U = 0 and its gradient

is written as
∇L2

U (0, Ḡ) = projU(Ā)Ḡ = ḠU . (3.8)

Moreover, the D.C. function LU (U ; Ḡ) is also differentiable at U = 0,

∇LU (0, Ḡ) = G̃U − ḠU . (3.9)

Proof. We can directly apply (2.3) in matrix form for the first development. The second
development can be obtained by adopting the composite chain rule.

We have the following second-order expansion of λr:

Theorem 3.8. Let D ∈ Sn, Ḡ ∈ ri∂ϕ2(Ā) and ∥D∥ → 0, then

λr(Ā+D) = λr(Ā) + ⟨G̃− Ḡ,D⟩+ 1

2
projU D · (ŪTH1Ū−H2)(projU D) + o(∥D∥2), (3.10)

where H2 = ∇2L2
U (0, Ḡ) is defined by

∇2L2
U (0, Ḡ) = projU(Ā) ◦H(Ā, Ḡ) ◦ projU(Ā)

∗, (3.11)

and H(Ā, Ḡ) is the symmetric operator defined by

H(Ā, Ḡ) · Y = (Ḡ− P1(Ā)P1(Ā)
T
)Y [λ∗

l+1In − Ā]† + [λ∗
l+1In − Ā]†Y (Ḡ− P1(Ā)P1

(Ā)
T
) + P1(Ā)P1(Ā)

T
Y [λ∗

1In − Ā]† + [λ∗
1In − Ā]†Y P1(Ā)P1(Ā)

T
,
(3.12)

and here we assume at Ā, λ1(Ā) = · · · = λl(Ā).

Proof. Denote D = U ⊕ V ∈ Sn. In view of (3.4) and the definition of L2
U (U ; Ḡ), LU (U ; Ḡ)

can be written as LU (U ; Ḡ) = (ϕ1(Ā)+⟨G̃U , U⟩U+
1
2 ⟨Ū

TH1Ū U,U⟩U )−L2
U (U ; Ḡ). According

to Theorem 4.11 in [22], L2
U (U ; Ḡ) is C∞, so is LU (U ; Ḡ). On the basis of Theorem 4.12

therein, we obtain

∇2L2
U (0, Ḡ) = projU(Ā) ◦H(Ā, Ḡ) ◦ projU(Ā)

∗,

where H(Ā, Ḡ) is defined by (3.12), so (3.11) holds.
Let D small enough such that Ā + D ∈ Mr−l, and set U = projU(Ā)D, V = V (U) =

projV(Ā)D, apply the second-order Taylor expansion with the item (iii) of Proposition 3.6:

LU (U ;G) = (ϕ1(Ā) + ⟨G̃U , U⟩U +
1

2
⟨ŪTH1ŪU,U⟩U )− L2

U (U ; Ḡ)

= (ϕ1(Ā) + ⟨G̃U , U⟩U +
1

2
⟨ŪTH2ŪU,U⟩U )
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−L2
U (0; Ḡ) + ⟨∇L2

U (0;G);U⟩U +
1

2
⟨U,H1U⟩U + o(∥U∥2)

= λr(Ā) + ⟨G̃U − ḠU , U⟩U +
1

2
⟨U, (ŪTH1Ū−H2)U⟩U + o(∥U∥2),

on the other hand, because W (U) = V (U), so we get

LU (U ;G) = (ϕ1(Ā) + ⟨G̃U , U⟩U +
1

2
⟨ŪTH1ŪU,U⟩U )− (ϕ2(Ā+ U ⊕ V )− ⟨ḠV , V ⟩V)

= λr(Ā+ U ⊕ V )− ϕ1(Ā+ U ⊕ V ) + ϕ1(Ā)

+
1

2
⟨ŪTH2ŪU,U⟩U + ⟨G̃U ⊕ ḠV , U ⊕ V ⟩

= λr(Ā+ U ⊕ V )− {ϕ1(Ā) + ⟨G̃, U ⊕ V ⟩+ o(∥U ⊕ V ∥)}+ ϕ1(Ā)

+
1

2
⟨ŪTH1ŪU,U⟩U + ⟨G̃U ⊕ ḠV , U ⊕ V ⟩

= λr(Ā+ U ⊕ V )− ⟨G̃V − ḠV , U ⊕ V ⟩+ o(∥U∥2).

Finally, recall Theorem 3.4 in [22], we have V = O(∥U∥2) = O(∥D∥2), Combine the
above two formulas, we obtain (3.10).

4 A Fast VU-Decomposition Algorithm

Suppose Ā is the minimizer of (P1), and the initial point is close to the minimizer Ā. the VU-
decomposition of the function λr(Ā) at Ā has been completed, U-Hessian HUλr(Ā) exists.
Along these lines the conceptual D.C. VU-decomposition algorithm for solving (P1) given
below contains the elements essential for obtaining superlinear convergence.

Algorithm 1. D.C. VU-decomposition algorithm: solving (P1).
Step 0. (Initialization)
Given the initial point A0 ∈ Sn close to the minimizer Ā, set k = 0.
Step 1. (V-Step)

Vk ∈ ArgminV ∈Vλr(Ak + 0⊕ V ).

Compute Ac
k = Ak + 0 ⊕ Vk, Ḡc ∈ ∂ϕ2(A

c
k) satisfies Ḡc

V = G̃c
V , where G̃c = ∇ϕ1(A

c
k),

Gc = G̃c − Ḡc = (G̃c
u − Ḡc

u)⊕ 0 ∈ ∂Cλr(A
c
k).

If Ḡc
u = G̃c

u, then stop, and Ac
k is the approximated minimizer. Otherwise, go to Step 2.

Step 2. (U-Step)
Solving

HUλr(Ā) U = −(G̃c
u − Ḡc

u), (4.1)

and obtain the solution U = Uk.
Step 3. (Corrector)
Compute Ak+1 = Ac

k + Uk ⊕ 0 = Ak + Uk ⊕ Vk, replace k by k + 1, and go to Step 1.
Now we give the convergence of D.C. VU-decomposition algorithm.

Theorem 4.1. Suppose the following conditions holds:

1. Ā is the minimizer of (P1);
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2. U-Hessian HU (λr(Ā)) is positive-definite;

3. G̃ = ∇ϕ1(Ā) ∈ ri∂(ϕ2(Ā)) and G̃V = 0.
Then the sequence {Ac

k}
∞
k=1 produced by the Algorithm 1 converge to Ā superlinearly,

i.e.,
∥Ac

k+1 − Ā∥ = o(∥Ac
k − Ā∥).

Proof. We first show that ∥(Ac
k+1 − Ā)U∥U = o(∥(Ac

k − Ā)U∥U ). Since Ā is a minimizer of

(P1), one has G̃ = ∇ϕ1(Ā) ∈ ∂(ϕ2(Ā)). Taking Ḡ = G̃ in (3.4), we have ḠU − G̃U = 0. For
U ∈ U small enough, it follows from (3.6) that

{G̃c
u − Ḡc

u|(G̃c
u − Ḡc

u)⊕ (G̃V − ḠV) ∈ ∂Cλr(Ā+ U ⊕W ),W ∈ W (U)}
⊂ G̃U − ḠU +HUλr(Ā)U + o(∥U∥U )BU
= HUλr(Ā)U + o(∥U∥U )BU .

(4.2)

Because Uk is a solution of (4.1) in Step 2, one has from Ḡc
V = G̃c

V in Step 1 that

−HUλr(Ā)Uk = G̃U − ḠU ∈ HUλr(Ā)(Ac
k − Ā)U + o(∥(Ac

k − Ā)U∥U )BU ,

and hence
−HUλr(Ā)(Uk + (Ac

k − Ā)U ) ∈ o(∥(Ac
k − Ā)U∥U )BU .

The equality, ∥Uk + (Ac
k − Ā)U∥ = o(∥(Ac

k − Ā)U∥U ), holds by the positive definiteness of
HUλr(Ā). In consequence, for Ac

k+1 = Ak+1 + 0 ⊕ Vk+1 = Ac
k + Uk ⊕ Vk+1, the following

equalities hold,

∥(Ac
k+1 − Ā)U∥U = ∥(Ac

k − Ā+ Uk ⊕ Vk+1)U∥U
= ∥Uk + (Ac

k − Ā)U∥U
= o(∥(Ac

k − Ā)U∥U ).
(4.3)

We now show that ∥(Ac
k+1 − Ā)V∥V = o(∥(Ac

k − Ā)U∥U ). Because

Ak+1 + (0⊕ V ) = Ā+ ((Ac
k − Ā)U + Uk)⊕ ((Ac

k − Ā)V + V ),

and
Vk+1 ∈ argminV ∈V λr(Ak+1 + (0⊕ V ))

= argminV ∈V λr(Ā+ ((Ac
k − Ā)U + Uk)⊕ ((Ac

k − Ā)V + V )),

one has

Vk+1 + ((Ac
k − Ā)V) ∈ argminV ∈V λr(Ā+ ((Ac

k − Ā)U + Uk)⊕ V )
= argminV ∈V{λr(Ā+ ((Ac

k − Ā)U + Uk)⊕ V )− ⟨ḠV , V ⟩V},

where ḠV = G̃V = 0. Thus,

Vk+1 + (Ac
k − Ā)V ∈ W ((Ac

k − Ā)U + Uk).

According to the assumptions and nonempty property of W (U), one has

Vk+1 + (Ac
k − Ā)V = o(∥(Ac

k − Ā)U + Uk∥U ). (4.4)

It follows from (Ac
k+1 − Ā)V = (Ac

k − Ā)V + Vk+1, combining (4.3) and (4.4), that

∥(Ac
k+1 − Ā)V∥V = (Ac

k − Ā)V + Vk+1

= o(∥(Ac
k − Ā)U + Uk∥U )

= o(∥(Ac
k+1 − Ā)U∥U )

= o(∥(Ac
k − Ā)U∥U ).

(4.5)
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Futhermore, by (4.2) and (4.5) we have

∥Ac
k+1 − Ā∥ = ∥(Ac

k+1 − Ā)U∥U + ∥(Ac
k+1 − Ā)V∥V = o(∥Ac

k − Ā∥U ) = o(∥Ac
k − Ā∥).

The proof is complete.

Remark 4.2. Our technique above is highly conceptual, because we need to generate con-
vergent estimates of V, U and a positive definite U-Hessian HUλr(Ā) with relation to an
optimal solution and a zero subgradient.

5 Concluding Remarks

In this paper, we have discussed the VU-decomposition technique for a class of eigenvalues
functions. For the nonconvex eigenvalue with ranking last in the group of equal eigenval-
ues, the VU-space decomposition approaches are presented. Nonconvex eigenvalue function
mentioned in this paper is actually a class of D.C. functions (difference of convex functions).
By introducing a new U-Lagrangian function, the first- and second-order derivatives of the
U-Lagrangian function can be obtained by U-Lagrangian theory. In addition, a conceptual
VU-decomposition algorithm is proposed.

Only the conceptual algorithm for solving such special class of eigenvalue optimization is
presented. Is it can be operated in practical application? This is our subsequent work: we
will consider to investigate the performance of its rapidly convergent executable algorithm
for solving combinatorial optimization problems and optimal control problem, and study how
to use bundle techniques to approximate proximal points and other VU-related quantities.
In addition, the eigenvalue optimization problem we studied only ranks the last of the
equal ones. When it ranks other positions, this case appears much trickier in view of its
subdifferential structure. Then, how is the VU-decomposition and U-Lagrangian? It is also
a meaningful topic and worth studying deeply in later work.
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