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The set of solutions of GVLIw(T, η,K) is denoted by SOLw(T, η,K). If T is single-valued,
then GVLIw(T, η,K) coincides with GVLI(T, η,K), which was introduced by Parida et
al [26] in Euclidean spaces Rn.

For convenience, GVLI(T, η,K) (resp. GVLIw(T, η,K)) in the case when η(y, x) = y−x
is denoted by GVI(T,K) (resp. GVIw(T,K)), which has been extensively studied, see for
example [12,22,28].

Existence of solutions is one of basic problems in the theory of variational inequalities.
Parida et al. [26] obtained some existence results of solutions for variational-like inequalities
involving a single-valued mapping in Euclidean space Rn. In most of cases it is difficult to
model exactly a natural or social phenomenon because of existence of various of perturbation
factors. Therefore, it is interesting to study the perturbation behavior of variational inequal-
ities [5]. Recently, Li and He [22] introduced a perturbation way for GVI(T,K) in Euclidean
spaces, that is, the mapping T is perturbed by a nonlinear continuous mapping, which is not
necessarily monotone. Under suitable conditions, the authors obtained an existence result
of solutions for GVI(T,K).

In this paper, following the idea of Li and He [22], a new perturbation way for
GVLI(T, η,K) is introduced and studied. In reflexive Banach spaces, when the constraint
set K is weakly compact, we deduce an existence theorem for GVLI(T, η,K). In finite di-
mensional spces, using this result, when the constraint set K is unbounded, we obtain an
existence theorem for GVLI(T, η,K), where the mapping T and the constraint set K are
simultaneously perturbed. Moreover, we show that there is a solution of GVLI(T, η,K) in
Kr.

2 Preliminaries

Let B be a real Banach space with dual space B∗, K be a nonempty, closed and convex
subset in B. The symbols → and ⇀ denote the strong convergence and weak convergence,
respectively. For r > 0, denote Kr := {x ∈ K : ∥x∥ ≤ r}. Let B(θ, r) := {x ∈ B : ∥x∥ < r}
and B̄(θ, r) := {x ∈ B : ∥x∥ ≤ r}. Assume that X and Y are two Hausdorff topological
spaces and T : X ⇒ Y is a set-valued mapping with nonempty values.

Definition 2.1. A set-valued mapping T is said to be upper continuous if, for any x0 ∈ X
and for each open set U containing T (x0), there is a neighborhood V of x0 such that
T (x) ⊆ U for all x ∈ V .

Lemma 2.2 ( [21, Lemma 2.1]). If T is compact-valued, then T is upper semicontinuous if
and only if for every net {xi} ⊂ X such that xi → x0 ∈ X and for every zi ∈ T (xi), there
exist z0 ∈ T (x0) and a subnet {zij} of {zi} such that zij → z0. If X and Y are metric
spaces, instead of nets one consider sequences.

In the sequel, we recall the upper semicontinuity of the marginal function associated
with a set-valued mapping on topological spaces due to Aliprants and Border (see Lemma
17.30 of [1]). The same result on metric spaces can be found in the monograph of Aubin
and Frankowska (see Definition 1.4.15 and item (ii) of Theorem 1.4.16 of [3]).

Definition 2.3. Let X and Y be two topological spaces. Given a set-valued mapping
T : X ⇒ Y and a function f : Graph(T ) → R, the function g : X → R ∪ {+∞} defined by

g(x) := sup
y∈T (x)

f(x, y)

is called the marginal function associated with T and f .
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Lemma 2.4. Let X and Y be two topological spaces. Let T : X ⇒ Y be a set-valued
mapping with nonempty compact values, and f : Graph(T ) → R be a function. If f and T
are both upper semicontinuous, then the marginal function associated with T and f is also
upper semicontinuous.

Lemma 2.5 ( [21, Lemma 2.2]). If P ⊂ Q ⊂ X, where Q is weakly compact and P is weakly
sequently closed, then P is weakly compact.

Definition 2.6. Let X be a Hausdorff topological real linear space and M ⊂ X. A set-
valued mapping G : M ⇒ X is called to be a KKM mapping if, for every finite number of
elements x1, x2, . . . , xn ∈ M one has co{x1, x2, . . . , xn} ⊂ ∪n

i=1G(xi).

The following two lemmas are due to Ky Fan, which will be used in the next section.

Lemma 2.7 ((Fan-KKM lemma) [11, Lemma 1]). Let X be a Hausdorff topological real
linear space, let M ⊂ X be a nonempty set, and let G : M ⇒ X be a KKM mapping. If
G(x) is closed for every x ∈ M , and there exists x0 ∈ M such that G(x0) is compact, then
∩x∈MG(x) ̸= ∅.

Lemma 2.8 ( [10, Theorem 2]). Let X be a compact space, Y a set, and h : X × Y → R a
function that is concave on Y , convex on X, and for each y ∈ Y , the function x 7→ h(x, y)
is lower semicontinuous on X. Then

sup
y∈Y

min
x∈X

h(x, y) = min
x∈X

sup
y∈Y

h(x, y).

3 Existence Theorems for GVLI(T, η,K) in Banach Spaces

In this section, when the constraint setK is weakly compact, we deduce an existence theorem
for GVLI(T, η,K), which is used in proving the main theorem in the next section. In the
sequel, we may use the following assumptions:

(HK) Let K be a nonempty, bounded, closed and convex subset of a reflexive Banach
space B.

(HT ) Let T : K ⇒ B∗ be a weak to norm upper semicontinuous mapping with nonempty,
compact and convex values.

(Hη) Let η : K ×K → B be such that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ K;

(ii) for all x, y ∈ K and all z∗ ∈ B∗, the mapping y 7→ ⟨z∗, η(y, x)⟩ is convex;
(iii) for all y ∈ K , the mapping x 7→ η(y, x) is continuous from the weak topology

to weak topology.

Remark 3.1. These assumptions were extensively used in the literature. For the reader’s
convenience, we list some references as follows:

(i) Condition (HT ) was used in Theorem 3.4 of László [21];
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(ii) Item (i) of condition (Hη) is the same as item (2) of Assumption 2.1 of Huang and
Deng [18] (see also condition (H2

η) of Costea et al. [8], the condition of Theorem 2.2 of
Fang and Huang [13], the condition of Theorem 3.2 of Bai et al. [4]). From item (i) of
(Hη), it is easy to see that η(x, x) = 0 for each x ∈ K. Item (ii) of condition (Hη) is
similar to item (3) of Assumption 2.1 of Huang and Deng [18] and the corresponding
item in references mentioned above. Item (iii) of (Hη) is the same as item (iv) of
Assumption 1.1 of Zeng et al. [31]. A similar version of condition (Hη) was been used
in Corollary 1 of Ceng and Yao [6].

The proof of the following theorem follows the idea of Theorems 3.1 and 3.4 of László [21].

Theorem 3.2. Assume that conditions (HK), (HT ) and (Hη) hold. Then GVLI(T, η,K)
admits a solution.

Proof. Define a set-valued mapping G : K ⇒ K as follows:

G(y) := {x ∈ K : ∃x∗ ∈ T (x) such that ⟨x∗, η(y, x)⟩ ≥ 0}.

We first show thatG is a KKMmapping. In fact, if not, then there is {y1, y2, . . . , yn} ⊂ K
such that co{y1, y2, . . . , yn} ̸⊂ ∪n

i=1G(yi), i.e., there exists z =
∑n

i=1 λiyi ∈
co{y1, y2, . . . , yn} with λi ≥ 0 for each i and

∑n
i=1 λi = 1 such that z /∈ ∪n

i=1G(yi). Thus,
for every i = 1, 2, . . . , n, we have z /∈ G(yi) and so

⟨z∗, η(yi, z)⟩ < 0, ∀z∗ ∈ T (z). (3.1)

For any fixed z∗ ∈ T (z), by summing the multiplication of (3.1) by a scalar λi from i = 1
to n, we get that

0 >

n∑
i=1

λi⟨z∗, η(yi, z)⟩ ≥

⟨
z∗, η

(
n∑

i=1

λiyi, z

)⟩
= ⟨z∗, η(z, z)⟩ = 0,

where the first inequality follows from (3.1), the second inequality follows from item (ii) of
condition (Hη), and the last equality follows from η(z, z) = 0 (see item (ii) of Remark 3.1).
This observation is a contradiction.

We next show that G(y) is weakly compact for all y ∈ K. It is easy to see that y ∈ G(y)
for each y ∈ K, and so G(y) ̸= ∅. For y ∈ K, let us consider a sequence {xn} ⊂ G(y)
satisfying xn ⇀ x ∈ K. Thus, we know that there is x∗

n ∈ T (xn) such that

⟨x∗
n, η(y, xn)⟩ ≥ 0. (3.2)

Since T is weak to norm upper semicontinuous on K, by Lemma 2.2, we deduce that there
are x∗ ∈ T (x) and a subsequence {x∗

nk
} of {x∗

n} such that x∗
nk

→ x∗. By item (i) of condition
(Hη), (3.2) is equivalent to

⟨x∗
n, η(xn, y)⟩ ≤ 0. (3.3)

Taking the limit in (3.3) for the subsequence {xnk
}, we have

⟨x∗, η(x, y)⟩ ≤ lim inf
k→∞

⟨x∗
n, η(xn, y) ≤ 0,

which can be written as
⟨x∗, η(y, x)⟩ ≥ 0
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by again item (i) of condition (Hη). Hence, x ∈ G(y), which implies that G(y) is weakly
sequentially closed for all y ∈ K. Since G(y) ⊂ K and K is weakly compact, by Lemma 2.5,
we know that G(y) is weakly compact for all y ∈ K, which implies that it is weakly closed
as well. Consequently, it follows from Lemma 2.7 that ∩y∈KG(y) ̸= ∅. That is to say, there
is x ∈ K such that for each y ∈ K, there is x∗ ∈ T (x) satisfying

⟨x∗, η(y, x)⟩ ≥ 0.

This observation shows that x ∈ SOLw(T, η,K )̸= ∅.
In order to obtain the conclusion, we only need to show that SOLw(T, η,K) ⊂

SOL(T, η,K). Let x ∈ K be an element of SOLw(T, η,K). If x /∈ SOL(T, η,K), then for
each x∗ ∈ T (x), there exists y ∈ K such that ⟨x∗, η(y, x)⟩ < 0 and so min

y∈K
⟨x∗, η(y, x)⟩ < 0.

Since T (x) is compact, one has

max
x∗∈T (x)

min
y∈K

⟨x∗, η(y, x)⟩ < 0. (3.4)

Define a bi-function h : K × T (x) → R by h(y, x∗) = ⟨x∗, η(y, x)⟩. Then, it is easy to see
that, for every y ∈ K, h(y, ·) : T (x) → R is concave. Using items (ii) and (iii) of condition
(Hη) and applying Lemma 2.8 for the bi-function h in the weak×norm topology, we have

max
x∗∈T (x)

min
y∈K

h(y, x∗) = min
y∈K

max
x∗∈T (x)

h(y, x∗). (3.5)

This, together with (3.4), implies that

min
y∈K

max
x∗∈T (x)

h(y, x∗) < 0. (3.6)

On the other hand, it follows from x ∈ SOLw(T, η,K) that, for every y ∈ K,

max
x∗∈T (x)

h(y, x∗) = max
x∗∈T (x)

⟨x∗, η(y, x)⟩ ≥ 0,

which leads to
min
y∈K

max
x∗∈T (x)

h(y, x∗) ≥ 0. (3.7)

This observation contradicts (3.6). Therefore, we have SOLw(T, η,K) ⊂ SOL(T, η,K).
This, together with SOLw(T, η,K) ̸= ∅, implies that SOL(T, η,K) ̸= ∅. This completes the
proof.

Remark 3.3. From the proof of Theorem 3.2, we have that SOLw(T, η,K) ⊂ SOL(T, η,K),
provided that the conditions of Theorem 3.2 hold. Moreover, the inclusion relation
SOL(T, η,K) ⊂ SOLw(T, η,K) is always true. Therefore, SOLw(T, η,K) coincides with
SOL(T, η,K) under the assumptions of Theorem 3.2.

4 Existence Results for GVLI(T, η,K) with Perturbation in Finite
Dimensional Spaces

In this section, let B be a finite dimensional space. For convenience, let B = Rn. When the
constraint setK is unbounded, we will investigate the existence of solutions for GVLI(T, η,K),
in which the mapping T and the constraint set K are simultaneously perturbed. To this
end, we need to introduce the following coercivity conditions, which will be used in Theorem
4.2.
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(A1) There exists r > 0 such that, for every x ∈ K \Kr, there is y ∈ K with ∥y∥ < ∥x∥
satisfying

sup
x∗∈T (x)

⟨x∗, η(y, x)⟩ ≤ 0;

(A2) There exists r > 0 such that for every x ∈ K \Kr, there is y ∈ K with ∥y∥ < ∥x∥
satisfying

sup
x∗∈T (x)

⟨x∗, η(y, x)⟩ < 0.

Remark 4.1. If T is single-valued, then coercivity condition (A2) is equivalent to condition
(iii) of Theorem 3.4 of Parida et al. [26]. If η(y, x) = y − x, then conditions (A1) and (A2)
becomes, respectively, to the following conditions:

(A1’) There exists r > 0 such that for every x ∈ K \Kr, there is y ∈ K with ∥y∥ < ∥x∥
satisfying

sup
x∗∈T (x)

⟨x∗, y − x⟩ ≤ 0;

(A2’) There exists r > 0 such that for every x ∈ K \Kr, there is y ∈ K with ∥y∥ < ∥x∥
satisfying

sup
x∗∈T (x)

⟨x∗, y − x⟩ < 0,

which have been used extensively when GVI(T,K) is considered (see, for example, [17,22]).

It is easy to see that condition (A2) implies (A1), while the converse is not true. The
following example shows that condition (A1) is strictly weaker than (A2) even in the case
when η(y, x) ̸= y − x and T is single-valued.

Example 4.1. Let us consider the Euclidean space R2 with x = (x1, x2)
T . Let

K := {x ∈ R2 : x1 − 2 ≤ x2 ≤ x1, x1 ≥ 0, x2 ≥ 0}.

Define

T (x) := (−x1(−x1 + x2 + 2),−x1 + x2 + 2)T

and

η(y, x) := (y21 − x2
1, y

2
2 − x2

2)
T .

Then we can check that condition (A1) holds, while condition (A2) does not hold.

Indeed, take r = 1. For any x ∈ K with ∥x∥ > r = 1, let t ∈ (0, 1) be a constant small
sufficiently and set

y =

{
(x1, (1− t)x2)

T , if x2 > x1 − 2,

((1− t)x1, x2)
T , if x2 = x1 − 2.

(4.1)

Then we have y ∈ K with ∥y∥ < ∥x∥, and so

η(y, x) =

{
(0,−t(2− t)x2

2)
T , if x2 > x1 − 2,

(−t(2− t)x2
1, 0)

T , if x2 = x1 − 2.
(4.2)
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Consequently,

⟨T (x), η(y, x)⟩ =

{
−t(2− t)x2

2(−x1 + x2 + 2), if x2 > x1 − 2,

0, if x2 = x1 − 2.
(4.3)

It is easy to check that ⟨T (x), η(y, x)⟩ ≤ 0. This observation shows that condition (A1)
holds.

For every r > 0, take x̄ = (x1, x2)
T = (r + 2, r)T . Then, clearly, x̄ ∈ K \Kr. For each

y ∈ K with ∥y∥ < ∥x̄∥, we have

⟨T (x̄), η(y, x̄)⟩ = (−x1 + x2 + 2)[−x1(y1 + x1)(y1 − x1) + (y2 + x2)(y2 − x2)] = 0.

This observation shows that condition (A2) is not true.

Let K ⊂ Rn be a nonempty, closed and convex set, and D ⊂ Rn be a bounded, closed
and convex set containing origin θ. Denote K(α) = K + αD for any α ≥ 0. For ε > 0 and
m > 0, define a continuous mapping p : K(α) → Rn such that

∥p(x)∥ ≤ ε, ∀x ∈ K(α)m.

We denote the set of all such functions by A(ε;K(α)m).

Theorem 4.2. Let K ⊂ Rn be a nonempty, closed and convex set, and for some µ >
0, T : K(µ) ⇒ Rn be an upper semicontinuous mapping with nonempty compact convex
values. Suppose that η satisfies condition (Hη), in which K is replaced by K(µ). If coercivity
condition (A2) holds, then for every m > r, there exists ε ∈ (0, µ) such that

SOL(T + p, η,K(α)) ∩ B̄(θ,m) ̸= ∅, ∀α ∈ [0, ε),∀p ∈ A(ε;K(α)m). (4.4)

Proof. Suppose by contradiction that there exists m > r such that, for every ε > 0, there
exist αε ∈ [0, ε) and pε ∈ A(ε;K(αε)m) satisfying

SOL(T + pε, η,K(αε)) ∩ B̄(θ,m) = ∅. (4.5)

By the definition of K(αε)m, we know that K(αε)m = {x ∈ K(αε) : ∥x∥ ≤ m} and so it is a
bounded, closed and convex set. It follows from Theorem 3.2 that GVLI(T +pε, η,K(αε)m)
admits a solution. Take xε ∈ SOL(T + pε, η,K(αε)m). Then, there exists x∗

ε ∈ T (xε) such
that

⟨x∗
ε + pε(xε), η(y, xε)⟩ ≥ 0, ∀y ∈ K(αε)m. (4.6)

Since xε ∈ K(αε)m, we have ∥xε∥ ≤ m. In what follows, let us consider two possible cases:
(Case 1) Suppose that there is some ε > 0 such that ∥xε∥ < m. We claim that

xε ∈ SOL(T + pε, η,K(αε)).

Indeed, for each y ∈ K(αε), there exists t ∈ (0, 1) such that zt = xε + t(y − xε) ∈ K(αε)m.
It follows from (4.6) that

0 ≤ ⟨x∗
ε + pε(xε), η(zt, xε)⟩

≤ t⟨x∗
ε + pε(xε), η(y, xε)⟩+ (1− t)⟨x∗

ε + pε(xε), η(xε, xε)⟩
= t⟨x∗

ε + pε(xε), η(y, xε)⟩, (4.7)

where the first inequality follows from the fact that zt ∈ K(αε)m, the second inequality
follows from the item (ii) of condition (Hη) for replacing K by K(µ), and the equality
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follows from η(xε, xε) = 0 (see item (ii) of Remark 3.1). By the fact that t ∈ (0, 1) and the
arbitrariness of y ∈ K(αε), it follows from (4.7) that xε ∈ SOL(T + pε, η,K(αε)). Thus,

xε ∈ SOL(T + pε, η,K(αε)) ∩ B̄(θ,m) ̸= ∅.

(Case 2) Suppose that ∥xε∥ = m for any ε > 0. Without loss of generality, assume that
lim

ε→0+
xε = d, where ∥d∥ = m > r. Since for any ε > 0, xε ∈ K(αε) = K + αεD, there exists

x′
ε ∈ K such that lim

ε→0+
∥xε − x′

ε∥ = 0. Thus, we get that lim
ε→0+

x′
ε = d and d ∈ K by the

closedness of the set K. It follows from d ∈ K \Kr and coercivity condition (A2) that there
exists y0 ∈ K with ∥y0∥ < ∥d∥ = m satisfying

sup
d∗∈T (d)

⟨d∗, η(y0, d)⟩ < 0. (4.8)

By item (iii) of condition (Hη) and xε → d, we have η(y0, xε) → η(y0, d). Since xε ∈ K(αε) ⊂
K(ε) and ∥xε∥ = m, we have xε ∈ K(ε)m. This, together with sup

x∈K(ε)m

∥pε(x)∥ ≤ ε, implies

that
lim

ε→0+
⟨pε(xε), η(y0, xε)⟩ = 0. (4.9)

Let f : Graph(T ) → R be defined by

f(x, x∗) := ⟨x∗, η(y0, x)⟩, where x∗ ∈ T (x).

Then applying Lemma 2.4, we deduce that

g(x) := sup
x∗∈T (x)

f(x, x∗) = sup
x∗∈T (x)

⟨x∗, η(y0, x)⟩

is upper semicontinuous. Consequently, we have

lim sup
ε→0+

[
sup

x′∗
ε ∈T (xε)

⟨x′∗
ε , η(y0, xε)⟩+ ⟨pε(xε), η(y0, xε)⟩

]
≤ lim sup

ε→0+
sup

x′∗
ε ∈T (xε)

⟨x′∗
ε , η(y0, xε)⟩+ lim

ε→0+
⟨pε(xε), η(y0, xε)⟩

≤ sup
d∗∈T (d)

⟨d∗, η(y0, d)⟩+ 0

< 0, (4.10)

where the first inequality is obvious, the second inequality follows from the upper semicon-
tinuity of g and (4.9), and the last inequality follows from (4.8). Thus, there is a constant
δ > 0 such that

sup
x′∗
ε ∈T (xε)

⟨x′∗
ε , η(y0, xε)⟩+ ⟨pε(xε), η(y0, xε)⟩ < 0, ∀ε ∈ (0, δ). (4.11)

Since ∥y0∥ < m, for any given y ∈ K(αε), there is t ∈ (0, 1) such that z′t = y0 + t(y − y0) ∈
K(αε)m. For any ε ∈ (0, δ), by the fact that xε ∈ SOL(T + pε, η,K(αε)m), there exists
x∗
ε ∈ T (xε) such that (4.6) holds. Thus,

0 ≤ ⟨x∗
ε + pε(xε), η(z

′
t, xε)⟩

≤ t⟨x∗
ε + pε(xε), η(y, xε)⟩+ (1− t)⟨x∗

ε + pε(xε), η(y0, xε)⟩
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≤ t⟨x∗
ε + pε(xε), η(y, xε)⟩, (4.12)

where the first inequality follows from the fact that z′t ∈ K(αε)m, the second inequality
follows from item (ii) of condition (Hη) for replacing K by K(µ), and the last inequality
follows from (4.11). Since t ∈ (0, 1) and y ∈ K(αε) is arbitrary, we have

⟨x∗
ε + pε(xε), η(y, xε)⟩ ≥ 0, ∀y ∈ K(αε).

Thus, we conclude that

⟨x∗
ε + pε(xε), η(y, xε)⟩ ≥ 0, ∀y ∈ K.

This observation shows that xε ∈ SOL(T + pε, η,K(αε)) and so

xε ∈ SOL(T + pε, η,K(αε)) ∩ B̄(θ,m) ̸= ∅.

In either case, we get a contradiction. This completes the proof.

Remark 4.3. If η(y, x) = y − x, then Theorem 4.2 reduces to Theorem 1 of Wang and
He [29]. Compared with Theorem 3.1 of Li and He [22], we not only generalize Theorem 3.1
of Li and He [22] from the generalized variational inequality to the generalized variational-
like inequality, but also simultaneously consider the perturbation behavior of the mapping
T and the constraint set K in Theorem 4.2.

Taking p(x) = θ for all x ∈ K and α = 0 in (4.4), we obtain the following existence
result for GVLI(T, η,K).

Corollary 4.4. Let K ⊂ Rn be a nonempty, closed and convex set, and T : K ⇒ Rn be
an upper semicontinuous mapping with nonempty compact convex values. If condition (Hη)
and coercivity condition (A2) hold, then for every m > r, we have

SOL(T, η,K) ∩ B̄(θ,m) ̸= ∅.

We would like to mention that Corollary 4.4 can be further improved (see Theorem 4.6
below). As a preliminary, we give the following proposition.

Proposition 4.5. Let K ⊂ Rn be a nonempty, closed and convex set, and T : K ⇒ Rn

be an upper semicontinuous mapping with nonempty compact convex values. If condition
(Hη) and coercivity condition (A2) hold, then the set of solutions for GVLI(T, η,K), i.e.,
SOL(T, η,K), is nonempty and closed.

Proof. Nonemptyness of SOL(T, η,K) follows from Corollary 4.4. In order to show that
SOL(T, η,K) is closed, let us consider a convergent sequence {xn} in SOL(T, η,K), i.e.,
xn → x0. It follows from xn ∈ SOL(T, η,K) that there is x∗

n ∈ T (xn) such that, for any
y ∈ K,

⟨x∗
n, η(y, xn)⟩ ≥ 0. (4.13)

Without loss of generality, applying Lemma 2.2 and condition (HT ), we conclude that there
is x∗

0 ∈ T (x0) such that x∗
n → x∗

0. It follows from item (iii) of condition (Hη) that for given
y ∈ K, η(y, xn) → η(y, x0). Letting n → ∞ in (4.13), we have ⟨x∗

0, η(y, x0)⟩ ≥ 0. By the
arbitrariness of y ∈ K, we know that x0 ∈ SOL(T, η,K). This completes the proof.

Theorem 4.6. Let K ⊂ Rn be a nonempty, closed and convex set, and T : K ⇒ Rn be
an upper semicontinuous mapping with nonempty compact convex values. If condition (Hη)
and coercivity condition (A2) hold, then there is a solution of GVLI(T, η,K) in Kr.
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Proof. Suppose on the contrary that x /∈ Kr for any x ∈ SOL(T, η,K). Then, for any n ∈ N,
it follows from Corollary 4.4 that there is xn ∈ SOL(T, η,K) satisfying r < ∥xn∥ ≤ r + 1

n .
Letting n tend to infinity in this inequality, we get

lim
n→∞

∥xn∥ = r. (4.14)

Since {xn} is a bounded sequence (because of ∥xn∥ ≤ r + 1 for any n ∈ N), there is a
subsequence {xnk

} of {xn} such that xnk
→ x0. By the lower semicontinuity of ∥ · ∥, we

have lim inf
k→∞

∥xnk
∥ ≥ ∥x0∥. Combining (4.14), we know that ∥x0∥ ≤ r. By the closedness of

SOL(T, η,K), we conclude that x0 ∈ SOL(T, η,K). This completes the proof.

If η(y, x) = y − x, then we get the following corollary, which is an existence result of
solutions for GVI(T,K).

Corollary 4.7. Let K ⊂ Rn be a nonempty, closed and convex set, and T : K ⇒ Rn be an
upper semicontinuous mapping with nonempty compact convex values. If coercivity condition
(A2’) holds, then there is a solution of GVI(T,K) in Kr.

5 Concluding Remarks

In the present paper, we mainly concern the existence results of GVLI(T, η,K). When the
constraint set is bounded, we obtain an existence theorem for GVLI(T, η,K) in reflexive
Banach spaces. When the constraint set is not necessarily bounded, we investigate the
existence of solutions for GVLI(T, η,K) where the mapping T and the constraint set K are
simultaneously perturbed in finite dimensional spaces. We would like to point out that the
following issues are interesting in this topic.

Problem 1: Whether Theorem 4.2 remains true or not in reflexive (not necessarily finite
dimensional) Banach spces?

Problem 2: As mentioned in the previous section, coercivity condition (A1) is strictly
weaker than (A2), we want to know whether coercivity condition (A2) in Theorem 4.2 can
be replaced by the weaker condition (A1) or not.

Acknowledgments

The authors are grateful to the editor and the reviewer for their comments and encourage-
ments, which have improved the presentation of the paper.

References

[1] C.D. Aliprants and K.C. Border, Infinite Dimensional Analysis, Springer, Berlin, 2006.

[2] Q.H. Ansari and J.C. Yao, Iterative schemes for solving mixed variational-like inequal-
ities, J. Optim. Theory Appl. 108 (2001) 527–541.

[3] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Springer, Boston, 2009.

[4] M.R. Bai, S.Z. Zhou and G.Y. Ni, Variational-like inequalities with η-α relaxed pseu-
domonotone mappings in Banach spaces, Appl. Math. Lett. 19 (2006) 547–554.



EXISTENCE RESULTS FOR GENERALIZED VARIATIONAL-LIKE INEQUALITIES 153

[5] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization, Springer-Verlag,
New York, 2000.

[6] L.C. Ceng and J.C. Yao, On generalized variational-like inequalities with generalized
monotone multivalued mappings, Appl. Math. Lett. 22 (2009) 428–434.

[7] G.Y. Chen, X.X. Huang and X.Q. Yang, Vector Optimization: Set-Valued and Varia-
tional Analysis, Springer, New York, 2005.

[8] N. Costea, D.A. Ion and C. Lupu, Variational-like inequality problems involving set-
valued maps and generalized monotonicity, J. Optim. Theory Appl. 155 (2012) 79–99.

[9] F. Facchinei and J.S. Pang, Finite-dimensional Variational Inequalities and Comple-
mentary Problems, Springer-Verlag, New York, 2003.

[10] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. USA 39 (1953) 42–47.

[11] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142 (1961)
305–310.

[12] J.H. Fan and R.Y. Zhong, Stability analysis for variational inequality in reflexive Banach
spaces, Nonlinear Anal. TMA 69 (2008) 2566–2574.

[13] Y.P. Fang and N.J. Huang, Variational-like inequalities with generalized monotone
mappings in Banach spaces, J. Optim. Theory Appl. 118 (2003) 327–338.

[14] A.P. Farajzadeh, A. Amini-Harandi, D. O’Regan and R.P. Agarwal, New kinds of gen-
eralized variational-like inequality problems in topological vector spaces, Appl. Math.
Lett. 22 (2009) 1126–1129.

[15] F. Giannessi, A. Maugeri, Variational Inequalities and Network Equilibrium Problems,
Springer, New York, 1995.

[16] A. Jayswal, S. Singh and A. Kurdi, Multitime multiobjective variational problems and
vector variational-like inequalities, Eur. J. Oper. Res. 254 (2016) 739–745.

[17] Y.R. He, The Tikhonov regularization method for set-valued variational inequalities,
Abst. Appl. Anal. 2012, Article ID 172061, 10 pages.

[18] N.J. Huang and C.X. Deng, Auxiliary principle and iterative algorithms for generalized
set-valued strongly nonlinear mixed variational-like inequalities, J. Math. Anal. Appl.
256 (2001) 345–359.

[19] D. Inoan, An existence result for a variational-like inequality, Bull. Aust. Math. Soc. 90
(2014) 319–326.

[20] A. Jayswal and S. Jha, Well-posedness for generalized mixed vector variational-like
inequality problems in Banach space, Math. Commun. 22 (2017) 287–302.
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