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a special case, which has a large amount of applications in engineering, economics, finance,
and robust optimization, e.g., see [9, 10,34,38] and the references therein.

In the past decade, it has been well documented that tensor, which is a natural ex-
tension of matrix, is a powerful tool for the treatment of many real-world problems, such
as the biomedical data processing [2, 4, 27, 39], higher-order Markov chains [23], n-person
noncooperative games (also named as multilinear games) [14], best-rank one approximation
in data analysis [26], hypergraphs [6], to name just a few. Therefore, the complementar-
ity problem with tensors, which is called tensor complementarity problem (TCP) in the
seminal works [31, 32], also have attracted a lot of considerable attention in optimization
community, e.g., see [1, 5, 8, 12, 29, 30, 35] and the references therein. For given positive in-
tegers m and n, we call A = (aj1j2...jm), where aj1j2...jm ∈ R for 1 ≤ j1, j2, . . . , jm ≤ n,
an m-th order n-dimensional real square tensor and denote by Tm,n the space of m-th or-
der n-dimensional real square tensors. For a tensor A = (aj1j2...jm) ∈ Tm,n and a vector
x = (x1, x2, . . . , xn)

⊤ ∈ Rn, we define Axm−1 being a vector whose j-th component is given
by

(Axm−1)j =

n∑
j2,...,jm=1

ajj2...jmxj2 . . . xjm , j = 1, 2, . . . , n.

With the above notation, the concrete form of TCP is specified as F (x) := Axm−1+q with a
vector q ∈ Rn, G(x) := x and K := Rn

+ in (1.1), denoted by TCP(A, q). When the order of
A is m = 2, TCP(A, q) immediately reduces to the deeply developed linear complementarity
problem (LCP). Here, we only refer to the monograph [7] for more information on LCPs.

It is well known that every polynomial H : Rn → Rn of degree (s− 1) can be expressed
in the form of

H(x) :=

s−1∑
k=1

C(k)xs−k + q,

where C(k) ∈ Ts−k+1,n for k = 1, 2, . . . , s − 1, and q ∈ Rn. In this situation, we say that
the polynomial H is defined by (∆, q) :=

(
C(1), . . . , C(s−1), q

)
. Most recently, Gowda [11]

introduced an interesting model named by polynomial complementarity problem (PCP),
which is a specialized NCP with F being a polynomial defined by (Λ,a), where Λ :=(
A(1), . . . ,A(m−1)

)
∈ Fm,n := Tm,n×· · ·×T2,n and a ∈ Rn. As mentioned in [11], the PCP

appears in polynomial optimization (where a real valued polynomial function is optimized
over a constraint set defined by polynomials) and includes the well studied TCPs as its spe-
cial case. By fully exploiting the polynomial nature of PCPs, some interesting specialized
results, which seem better than the results obtained by applying the theory of NCPs to
PCPs directly, have been developed, e.g., see [11,21,37].

In this paper, we consider an extension of PCPs, namely, the generalized polynomial
complementarity problem (GPCP), which is a special kind of GCPs with two polynomials
F (x) and G(x). More specifically, both F (x) and G(x) in (1.1) are defined by (Λ,a) and
(Θ, b), respectively, where{

Λ :=
(
A(1), . . . ,A(m−1)

)
∈ Fm,n := Tm,n × · · · × T2,n , a ∈ Rn;

Θ :=
(
B(1), . . . ,B(l−1)

)
∈ Fl,n := Tl,n × · · · × T2,n , b ∈ Rn,

that is,

F (x) :=

m−1∑
k=1

A(k)xm−k + a and G(x) :=

l−1∑
p=1

B(p)xl−p + b. (1.2)
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In what follows, we use GPCP(Λ,a,Θ, b,K) to represent the specialized (1.1) with F (x)
and G(x) given in (1.2). Although the entire theory of GCPs is applicable to GPCPs, one
may be interested in the specialized structure-exploiting results. In fact, the appearance of
polynomials F (x) and G(x) makes the problem under consideration more challenging than
the ones in PCPs and TCPs. Hence, by making use of the polynomial nature (structure
of tensors) of (1.2), we have a threefold contribution on the problem under consideration.
(i) To the best of our knowledge, this is the first work on GPCPs. Therefore, we give an
affirmative answer showing that the solution set of GPCP(Λ,a,Θ, b,K) is nonempty and
compact when a pair of leading tensors is cone ER. (ii) Under the condition that a pair
of leading tensors is cone R0, we obtain some topological properties on the solution set of
GPCP(Λ,a,Θ, b,K). (iii) We prove a remarkable global Lipschitzian error bound of the
solution set of GPCP(Λ,a,Θ, b,K). Such a result has an important role in the study of
unbounded asymptotics and provides valuable quantitative information about the iterates
obtained at the termination of iterative algorithms for computing solutions of GPCPs. More-
over, it is noteworthy that our global error bound is better in the sense that the assumptions
of our result are weaker than the ones assumed in the current PCPs and TCPs literature.

The rest of the paper is organized as follows. In Section 2, we recall some definitions
and basic facts that will be used in the subsequent analysis. In Section 3, we obtain a
sufficient condition relying on a cone ER-tensor pair condition (see (2.9)) to guarantee the
nonemptiness and compactness of the solution set of GPCP(Λ,a,Θ, b,K). Note that such
a condition reduces to the condition of the ER-tensor in the case of TCPs. In Section 4, we
study some more topological properties of the solution set of GPCP(Λ,a,Θ, b,K). In Section
5, we present a notable global Lipschitzian error bound result for GPCP(Λ,a,Θ, b,K) with
K := Rn

+ under appropriate conditions. Finally, we complete this paper with drawing some
concluding remarks in Section 6.

Notation. Throughout this paper, for given positive integer n ≥ 2, let Rn denote the
real Euclidean space of column vectors of length n, and let [n] be the index set {1, 2, . . . , n}.
The small letters x, y, u, . . . , and small bold letters x,y,u, . . . represent scalars and vectors,
respectively. In particular, 0 is the column vector in Rn, whose all entries are zeros. For
a given vector x = (x1, x2, . . . , xn)

⊤ ∈ Rn, ∥x∥ denotes the Euclidean norm of x, and x+

denotes the orthogonal projection of x on Rn
+, that is, (x+)i := max{xi, 0} for i ∈ [n]. For

a given tensor A = (aj1j2...jm) ∈ Tm,n, the (squared) Frobenius norm of A is defined by

∥A∥F :=

√√√√ n∑
j1,j2,...,jm=1

a2j1j2...jm .

In addition, denote by I = (δj1j2...jm) the unit tensor, where δj1j2...jm is the Kronecker
symbol

δj1j2...jm =

{
1, if j1 = j2 · · · = jm,
0, otherwise,

In particular, we denote by I the identity matrix when m = 2. Given a tensor A =
(aj1j2...jm) ∈ Tm,n and a vector x ∈ Rn, we define Axm = ⟨x,Axm−1⟩ being the value
at x of a homogeneous polynomial. If F : Rn → Rn is a vector valued function, its j-th
component function is denoted by Fj .
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2 Preliminaries

In this section, we introduce some basic definitions and properties that will be used in the
sequels.

For a given closed convex cone K in Rn, it is well known from [19] that the projection
operator onto K, denoted by PK , is well-defined for every x ∈ Rn. Moreover, we know that
PK(x) is the unique element in K such that ⟨PK(x)−x, PK(x)⟩ = 0 and ⟨PK(x)−x,y⟩ ≥ 0
for all y ∈ K.

We now recall the concept of exceptional family of elements for a pair of functions with
respect to a given closed convex cone, which plays an important role in the existence analysis
of solutions of NCPs and GCPs, e.g., see [15–17].

Definition 2.1. Let F,G : Rn → Rn be two given continuous functions. A set of points
{x(i)} ⊂ Rn is called an exceptional family of elements for the pair (F,G) with respect to
the cone K, if the following conditions are satisfied:

(i) ∥x(i)∥ → ∞ as i → ∞;

(ii) for every i, there exists a real number µi > 0 such that s(i) = µix
(i) + F (x(i)) ∈ K,

v(i) = µix
(i) +G(x(i)) ∈ K∗, and ⟨s(i),v(i)⟩ = 0.

Using the notion mentioned above, we have the following result (see the proof in [17]).
Here, for the sake of completeness, we prove it again in a similar way used for proving [16,
Theorem 1].

Lemma 2.2. For two given continuous mappings F,G : Rn → Rn and a closed convex
cone K in Rn, there exists either a solution of the problem GCP(F,G,K) or an exceptional
family of elements for the pair (F,G).

Proof. Consider the function defined by

Φ(x) := F (x)− PK(F (x)−G(x))

for all x ∈ Rn. It is easy to show that the problem GCP(F,G,K) has a solution if and only
if the equation Φ(x) = 0 is solvable. For any given ϵ > 0, denote

Sϵ := {x ∈ Rn | ∥x∥ = ϵ} and Bϵ := {x ∈ Rn | ∥x∥ < ϵ}.

Consider the homotopy defined by

H(x, t) := tx+ (1− t)Φ(x), 0 ≤ t ≤ 1. (2.1)

From the definition of Φ, we have

H(x, t) = tx+ (1− t)F (x)− (1− t)PK(F (x)−G(x)), 0 ≤ t ≤ 1. (2.2)

We apply the topological degree theory and the Poincaré-Böhl Theorem in [22] for y = 0
and Bϵ (∂Bϵ = Sϵ). We have the following two situations:

Case (i). There exists ϵ > 0 such that H(x, t) ̸= 0 for any x ∈ Sϵ and t ∈ [0, 1].
In this case, by Poincaré-Böhl Theorem, we have that deg(Φ,Bϵ,0) = deg(I,Bϵ,0). Since
deg(I,Bϵ,0) = 1, we obtain deg(Φ,Bϵ,0) = 1, which means that equation Φ(x) = 0 has a
solution in Bϵ, and hence the problem GCP(F,G,K) has a solution.
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Case (ii). For any ϵ > 0 there exist x(ϵ) ∈ Sϵ and tϵ ∈ [0, 1] such that

H(x(ϵ), tϵ) = 0. (2.3)

We first claim that tϵ must be different from 1. Indeed, if tϵ = 1 for some ϵ, then by (2.1)
and (2.3), we deduce that x(ϵ) = 0, which is impossible since x(ϵ) ∈ Sϵ. Secondly, if tϵ = 0
for some ϵ, then (2.3) becomes Φ(x(ϵ)) = 0, which means that the problem GCP(F,G,K)
has a solution.

Hence, we can say that either the problem GCP(F,G,K) has a solution, or for any ϵ > 0
there exist x(ϵ) ∈ Sϵ and tϵ ∈ (0, 1) such that H(x(ϵ), tϵ) = 0. If GCP(F,G,K) has no
solution, then from (2.2), we have

tϵ
1− tϵ

x(ϵ) + F (x(ϵ)) = PK(F (x(ϵ))−G(x(ϵ))). (2.4)

Consequently, by the basic properties of PK mentioned at the beginning of this section, it
holds that⟨

tϵ
1− tϵ

x(ϵ) + F (x(ϵ))− (F (x(ϵ))−G(x(ϵ))),y

⟩
≥ 0, for all y ∈ K (2.5)

and ⟨
tϵ

1− tϵ
x(ϵ) + F (x(ϵ))− (F (x(ϵ))−G(x(ϵ))),

tϵ
1− tϵ

x(ϵ) + F (x(ϵ))

⟩
= 0. (2.6)

By putting µϵ = tϵ/(1− tϵ) in (2.5) and (2.6), we deduce

⟨µϵx
(ϵ) +G(x(ϵ)),y⟩ ≥ 0, for all y ∈ K (2.7)

and
⟨µϵx

(ϵ) +G(x(ϵ)), µϵx
(ϵ) + F (x(ϵ))⟩ = 0. (2.8)

From (2.7), we know that µϵx
(ϵ) +G(x(ϵ)) ∈ K∗, which, together with (2.4), (2.8) and the

fact that ∥x(ϵ)∥ = ϵ for any ϵ > 0, implies that {x(ϵ)} is an exceptional family of elements
for the pair (F,G).

Remark 2.3. For Lemma 2.2, if S(K) ⊂ K holds, where S(x) := x−F (x) for any x ∈ Rn,
then we know that the problem GCP(F,G,K) has either a solution in K, or an exceptional
family of elements {x(i)} in K for (F,G), see [17].

Motivated by the concept of exceptionally regular tensor (ER-tensor for short) introduced
in [35], we now define a new class of structured tensor pair that will play a key role in
analyzing properties of GPCP(Λ,a,Θ, b,K) .

Definition 2.4. Let K be a closed convex cone in Rn and (A,B) ∈ Tm,n × Tl,n. We say
that (A,B) is

(i) an ERK-tensor pair, if there exists no (x, v, t) ∈ (Rn\{0})× R+ × R+ such that
Axm−1 + vx ∈ K,
Bxl−1 + tx ∈ K∗,⟨
Axm−1 + vx,Bxl−1 + tx

⟩
= 0.

(2.9)

(ii) an RK
0 -tensor pair, if there exists no x ∈ Rn\{0} such that

Axm−1 ∈ K, Bxl−1 ∈ K∗, and
⟨
Axm−1,Bxl−1

⟩
= 0. (2.10)
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In particular, when K := Rn
+, we say simply that ERK-tensor pair and RK

0 -tensor pair are
ER-tensor pair and R0-tensor pair, respectively.

From the definitions above, we can see that an ERK-tensor pair must be an RK
0 -tensor

pair. If K = Rn
+ and B is an n×n identity matrix, then the above concept of ER-tensor pair

reduces to the concept of ER-tensor introduced in [35]. Furthermore, it is easy to see that,
if (A, I) ∈ Tm,n × Tl,n is an ER-tensor pair, then A is an ER-tensor; conversely, if A is an
ER-tensor and l is even, then (A, I) must be an ER-tensor pair. In [35], it has been proved
that the class of strictly semi-positive tensors [29] is a subset of the class of ER-tensors, and
the class of weak P-tensors [35] is also a proper subset of the class of ER-tensors.

Example 2.1. Let K = R2
+ and A = (ai1i2i3i4) ∈ T4,2 with a1111 = 1, a2111 = −1, a2222 = 1

and elsewhere zeros. Let B = (bi1i2i3i4) ∈ T4,2 with b1111 = 1, b2122 = −1, b2222 = 1 and
elsewhere zeros. In this case, (2.9) is specified as

0 ≤
(

x3
1 + vx1

x3
2 − x3

1 + vx2

)
⊥
(

x3
1 + tx1

x3
2 − x1x

2
2 + tx2

)
≥ 0, (2.11)

where x ∈ Rn and v, t ∈ R+. For any v, t ∈ R+, from the first component in (2.11), we
have x2

1(x
2
1 + v)(x2

1 + t) = 0, which implies that x1 = 0. Consequently, from the second
component in (2.11), we have x2

2(x
2
2 + v)(x2

2 + t) = 0, which implies that x2 = 0. From the
discussion above, we know that there exists no (x, v, t) ∈ (R2\{0}) × R+ × R+ such that
(2.11) holds. Hence, (A,B) is an ER-tensor pair.

3 Nonemptiness and Compactness of the Solution Set

In this section, we mainly study the nonemptiness and compactness of the solution set of
GPCP(Λ,a,Θ, b,K) with structured tensors. Throughout, we denote by SOL(Λ,a,Θ, b,K)
the solution set of GPCP(Λ,a,Θ, b,K) for notational convenience.

Theorem 3.1. Let Λ =
(
A(1), . . . ,A(m−1)

)
∈ Fm,n, Θ =

(
B(1), . . . ,B(l−1)

)
∈ Fl,n, and

K ⊂ Rn a closed convex cone. Suppose that (A(1),B(1)) is an ERK-tensor pair. If either
(i) m = l or (ii) m ̸= l, but the one of A(1) and B(1), whose order is even and is larger
than another, is positive definite (see [24]), then for any given vectors a, b ∈ Rn, the set
SOL(Λ,a,Θ, b,K) is nonempty and compact.

Proof. We first prove the nonemptiness of the solution set SOL(Λ,a,Θ, b,K). Suppose,
on the contrary, that SOL(Λ,a,Θ, b,K) = ∅. Then, it follows from Lemma 2.2 that there
exists an exceptional family of elements for the pair (F,G), i.e., there exists a sequence
{x(i)}∞i=1 ⊂ Rn satisfying ∥x(i)∥ → ∞ as i → ∞ and, there exists a scalar µi > 0 for each i
such that

m−1∑
k=1

A(k)(x(i))m−k + a+ µix
(i) ∈ K,

l−1∑
p=1

B(p)(x(i))l−p + b+ µix
(i) ∈ K∗,

hi :=

⟨
m−1∑
k=1

A(k)(x(i))m−k + a+ µix
(i),

l−1∑
p=1

B(p)(x(i))l−p + b+ µix
(i)

⟩
= 0.

(3.1)
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From the third expression in (3.1), it is clear that hi/∥x(i)∥m+l−2 = 0 for every i, which
shows

0 =
hi

∥x(i)∥m+l−2

=

⟨∑m−1
k=1 A(k)(x(i))m−k + a,

∑l−1
p=1 B(p)(x(i))l−p + b

⟩
∥x(i)∥m+l−2

+
ti

⟨
x(i),

∑m−1
k=1 A(k)(x(i))m−k +

∑l−1
p=1 B(p)(x(i))l−p + a+ b

⟩
∥x(i)∥m

+
t2i

∥x(i)∥m−l
, (3.2)

where ti = µi/∥x(i)∥l−2. We claim that {ti}∞i=1 is bounded. Suppose that {ti}∞i=1 is un-
bounded. Without loss of generality, we assume that ti → +∞ as i → ∞.

Case (i). When m = l, by (3.2), it holds that

0 =

⟨∑m−1
p=1 A(p)(x(i))m−p + a,

∑m−1
p=1 B(p)(x(i))m−p + b

⟩
t2i ∥x(i)∥2(m−1)

+

⟨
x(i),

∑m−1
p=1 (A(p) + B(p))(x(i))m−p + a+ b

⟩
ti∥x(i)∥m

+ 1. (3.3)

Let x̄(i) = x(i)/∥x(i)∥. Since ∥x̄(i)∥ = 1 for any i, without loss of generality, we assume that
x̄(i) → x̄ as i → ∞. Consequently, it is easy to see that

lim
i→∞

⟨∑m−1
p=1 A(p)(x(i))m−p + a,

∑m−1
p=1 B(p)(x(i))m−p + b

⟩
∥x(i)∥2(m−1)

=
⟨
A(1)x̄m−1,B(1)x̄m−1

⟩
and

lim
i→∞

⟨
x(i),

∑m−1
p=1 (A(p) + B(p))(x(i))m−p + a+ b

⟩
∥x(i)∥m

= (A(1) + B(1))x̄m,

which, together with (3.3), implies that 0 = 1. It is a contradiction.
Case (ii). When m ̸= l, without loss of generality, we assume that m > l. Since A(1) is

positive definite and x̄ ∈ Rn\{0}, it holds that

lim
i→∞

⟨
x(i),

∑m−1
k=1 A(k)(x(i))m−k +

∑l−1
p=1 B(p)(x(i))l−p + a+ b

⟩
∥x(i)∥m

= A(1)x̄m > 0.

Consequently, from (3.2), we obtain

0 ≥

⟨∑m−1
k=1 A(k)(x(i))m−k + a,

∑l−1
p=1 B(p)(x(i))l−p + b

⟩
∥x(i)∥m+l−2

+
ti

⟨
x(i),

∑m−1
k=1 A(k)(x(i))m−k +

∑l−1
p=1 B(p)(x(i))l−p + a+ b

⟩
∥x(i)∥m

→ +∞, (3.4)

which is also a contradiction.
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Since {ti}∞i=1 is bounded, without loss of generality, we assume limi→∞ ti = t̄. It is clear
that t̄ ≥ 0. By the first two expressions in (3.1), we know that, if m = l, then

A(1)x̄m−1 + t̄x̄ ∈ K, B(1)x̄l−1 + t̄x̄ ∈ K∗,
⟨
A(1)x̄m−1 + t̄x̄,B(1)x̄l−1 + t̄x̄

⟩
= 0,

and if m ̸= l, then{
A(1)x̄m−1 ∈ K, B(1)x̄l−1 + t̄x̄ ∈ K∗,

⟨
A(1)x̄m−1,B(1)x̄l−1 + t̄x̄

⟩
= 0, if m > l;

A(1)x̄m−1 + t̄x̄ ∈ K, B(1)x̄l−1 ∈ K∗,
⟨
A(1)x̄m−1 + t̄x̄,B(1)x̄l−1

⟩
= 0, otherwise.

From the discussion above, we know that there exists (x̂, v̂, t̂) ∈ (Rn\{0}) × R+ × R+

satisfying the system (2.9), which contradicts the condition that (A(1),B(1)) is an ERK-
tensor pair. Thus, SOL(Λ,a,Θ, b,K) is nonempty.

Secondly, we prove that SOL(Λ,a,Θ, b,K) is compact. Since K and K∗ are closed,
it is easy to see that SOL(Λ,a,Θ, b,K) is closed. We now prove the boundedness of
SOL(Λ,a,Θ, b,K). Suppose that SOL(Λ,a,Θ, b,K) is unbounded. Then there exists a
sequence {x(i)}∞i=1 ⊆ SOL(Λ,a,Θ, b,K) such that ∥x(i)∥ → ∞ as i → ∞. Without loss of
generality, we assume that x(i)/∥x(i)∥ → x̄ as i → ∞. It is clear that x̄ ̸= 0. Furthermore,
it follows from the definition of GPCP(Λ,a,Θ, b,K) that

a

∥x(i)∥m−1
+

m−1∑
k=1

1

∥x(i)∥k−1
A(k)(x(i)/∥x(i)∥)m−k ∈ K,

b

∥x(i)∥l−1
+

l−1∑
p=1

1

∥x(i)∥p−1
B(p)(x(i)/∥x(i)∥)l−p ∈ K∗

and ⟨∑m−1
k=1 A(k)(x(i))m−k + a,

∑l−1
p=1 B(p)(x(i))l−p + b

⟩
∥x(i)∥m+l−2

=
0

∥x(i)∥m+l−2
= 0.

Consequently, by letting i → ∞, we have

A(1)x̄m−1 ∈ K, B(1)x̄l−1 ∈ K∗, and
⟨
A(1)x̄m−1,B(1)x̄l−1

⟩
= 0. (3.5)

This means that x̄ ∈ Rn\{0} satisfies the system (2.10), which further contradicts the
fact that (A(1),B(1)) is an RK

0 -tensor pair, since (A(1),B(1)) is an ERK-tensor pair. Thus
SOL(Λ,a,Θ, b,K) is compact.

Remark 3.2. When m > l, if S(K) ⊂ K where S(x) := x − F (x) for any x ∈ Rn,
then by Remark 2.3 and a similar way to that used in Theorem 3.1, we can obtain that
SOL(Λ,a,Θ, b,K) is nonempty and compact, provided A(1) is strictly K-positive, i.e.,
A(1)xm > 0 for any x ∈ K\{0}. Notice that, in this case, m is not necessarily even.

4 Some Basic Topological Properties of the Solution Set

In this section, we further study some topological properties of SOL(Λ,a,Θ, b,K). It is
obvious that Fm,n is a linear space for any given positive integers m and n. The distance

between two elements Λi = (A(1)
i ,A(2)

i , . . . ,A(m−1)
i ) ∈ Fm,n (i = 1, 2) is measured by means

of the expression

∥Λ1 − Λ2∥F =

√√√√m−1∑
k=1

∥∥∥A(k)
1 −A(k)

2

∥∥∥2
F
.
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Denote by C (Rn) the set of nonzero closed convex cones in Rn, which is associated with
the natural metric defined by

δ(K1,K2) := sup
∥z∥≤1

|dist(z,K1)− dist(z,K2)|,

where dist(z,K) := infu∈K∥z−u∥ stands for the distance from z to K. An equivalent way
of defining δ is

δ(K1,K2) = haus(K1 ∩Bn,K2 ∩Bn),

where Bn is the closed unit ball in Rn, and

haus(C1, C2) := max

{
sup
z∈C1

dist(z, C2), sup
z∈C2

dist(z, C1)

}
stands for the Hausdorff distance between the compact sets C1, C2 ⊂ Rn (see [3, pp. 85-
86]). General information on the metric δ can be consulted in the book by Rockafellar
and Wets [28]. According to [33], the operation δ : K → K∗ is an isometry on the space
(C (Rn), δ), that is to say,

δ(K∗
1 ,K

∗
2 ) = δ(K1,K2), for all K1,K2 ∈ C (Rn).

The basic topological properties of the mapping SOL(·) : Fm,n×Rn×Fl,n×Rn×C (Rn) → 2R

are listed in the following propositions. These propositions are some GPCP versions of
the results presented in [20]. As far as semicontinuity concepts are concerned, we use the
following terminology (see [3, Section 6.2]).

Definition 4.1. Let W and Y be two topological spaces and w̄ ∈ W . The mapping
Ψ : W → 2Y is said to be upper semicontinuous at w̄, if for every open set U with Ψ(w̄) ⊂ U ,
there exists an open neighborhood V of w̄ such that Ψ(w) ⊂ U for each w ∈ V .

Proposition 4.2. The following two statements are true:

(i) The set Σ := {(Λ,a,Θ, b,K,x) ∈ Fm,n × Rn × Fl,n × Rn × C (Rn) × Rn | x ∈
SOL(Λ,a,Θ, b,K)} is closed in the product space Fm,n ×Rn ×Fl,n ×Rn ×C (Rn). In
particular, for any Ξ̄ := (Λ̄, ā, Θ̄, b̄, K̄) ∈ Fm,n × Rn × Fl,n × Rn × C (Rn), SOL(Ξ̄) is
a closed subset of Rn;

(ii) Let Ξ̄ := (Λ̄, ā, Θ̄, b̄, K̄) ∈ Fm,n ×Rn ×Fl,n ×Rn ×C (Rn). If the leading tensor pair

(Ā(1), B̄(1)) in (Λ̄, Θ̄) is an RK̄
0 -tensor pair, then the mapping SOL(·) is locally bounded

at Ξ̄, i.e., ∪
(Λ,a,Θ,b,K)∈N

SOL(Λ,a,Θ, b,K)

is bounded for some neighborhood N of Ξ̄.

Proof. Item (i). The closedness of Σ amounts to saying that

Ξi := (Λi,a
(i),Θi, b

(i),Ki) → Ξ̄ := (Λ̄, ā, Θ̄, b̄, K̄)
x(i) → x̄

x(i) ∈ SOL(Ξi)

⇒ x̄ ∈ SOL(Ξ̄).
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Since x(i) ∈ SOL(Ξi) for every i, we have

Ki ∋

(
m−1∑
k=1

A(k)
i (x(i))m−k + a(i)

)
⊥

(
l−1∑
p=1

B(p)
i (x(i))l−p + b(i)

)
∈ K∗

i . (4.1)

Consequently, since x(i) → x̄ as i → ∞ and δ(K∗
1 ,K

∗
2 ) = δ(K1,K2) for anyK1,K2 ∈ C (Rn),

by passing to the limit in (4.1), one gets

K̄ ∋

{
m−1∑
k=1

Ā(k)x̄m−k + ā

}
⊥

{
l−1∑
p=1

B̄(p)x̄l−p + b̄

}
∈ K̄∗,

which implies x̄ ∈ SOL(Ξ̄). We proved the first part (i) of this proposition.
Item (ii). Suppose that the map SOL(·) is not locally bounded at Ξ̄. Then there exists

sequences {Ξi = (Λi,a
(i),Θi, b

(i),Ki)} and {x(i)} satisfying

∥Λi − Λ̄∥F → 0, ∥a(i) − ā∥ → 0, ∥Θi − Θ̄∥F → 0, ∥b(i) − b̄∥ → 0, δ(Ki, K̄) → 0,

and ∥x(i)∥ → +∞ such that x(i) ∈ SOL(Ξi), i.e., (4.1) holds for any i = 1, 2, . . .. Without
loss of generality, we assume that x(i)/∥x(i)∥ → x̄ as i → ∞. It is obvious that ∥x̄∥ = 1,
which means x̄ ∈ Rn\{0}. Furthermore, by (4.1), we have

a(i)

∥x(i)∥m−1
+

m−1∑
k=1

1

∥x(i)∥k−1
A(k)

i (x(i)/∥x(i)∥)m−k ∈ Ki,

b(i)

∥x(i)∥l−1
+

l−1∑
p=1

1

∥x(i)∥p−1
B(p)
i (x(i)/∥x(i)∥)l−p ∈ K∗

i

and ⟨∑m−1
k=1 A(k)

i (x(i))m−k + a(i),
∑l−1

p=1 B
(p)
i (x(i))l−p + b(i)

⟩
∥x(i)∥m+l−2

= 0.

By passing to the limit in the above expression, it holds that

Ā(1)x̄m−1 ∈ K̄, B̄(1)x̄l−1 ∈ K̄∗, and
⟨
Ā(1)x̄m−1, B̄(1)x̄l−1

⟩
= 0.

It contradicts the condition that (Ā(1), B̄(1)) is an RK̄
0 -tensor pair, because x̄ ∈ Rn\{0}.

Proposition 4.3. Let (Λ̄, Θ̄, K̄) ∈ Fm,n×Fl,n×C (Rn). If the leading tensor pair (Ā(1), B̄(1))

in (Λ̄, Θ̄) is an RK̄
0 -tensor pair, then the set DSOL := {(a, b) ∈ Rn×Rn | SOL(Λ̄,a, Θ̄, b, K̄) ̸=

∅} is closed.

Proof. Take any sequence {(a(i), b(i))} ⊂ DSOL with (a(i), b(i)) → (ā, b̄) as i → ∞. Then,
we just need to prove (ā, b̄) ∈ DSOL. Since SOL(Λ̄,a(i), Θ̄, b(i), K̄) ̸= ∅, let us pick up x(i) ∈
SOL(Λ̄,a(i), Θ̄, b(i), K̄) for every i. It follows immediately from Item (ii) of Proposition 4.2
that {x(i)} is bounded. Without loss of generality, we assume that x(i) → x̄ as i → ∞.
Consequently, by Item (i) of Proposition 4.2, we know that x̄ ∈ SOL(Λ̄, ā, Θ̄, b̄, K̄), which
implies SOL(Λ̄, ā, Θ̄, b̄, K̄) ̸= ∅. Therefore, we obtain (ā, b̄) ∈ DSOL and complete the
proof.

From Theorem 3.1 and Proposition 4.2, we immediately have the following corollary.
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Corollary 4.4. Let (Λ̄, ā, Θ̄, b̄, K̄) ∈ Fm,n ×Rn ×Fl,n ×Rn ×C (Rn). If the leading tensor

pair (Ā(1), B̄(1)) in (Λ̄, Θ̄) is an RK̄
0 -tensor pair, then SOL(Λ̄, ā, Θ̄, b̄, K̄) is compact.

Proposition 4.5. Let Ξ̄ := (Λ̄, ā, Θ̄, b̄, K̄) ∈ Fm,n×Rn×Fl,n×Rn×C (Rn). If the leading

tensor pair (Ā(1), B̄(1)) in (Λ̄, Θ̄) is an RK̄
0 -tensor pair, then the mapping SOL(·) is upper

semicontinuous at Ξ̄.

Proof. Suppose, on the contrary, that the mapping SOL(·) is not upper semicontinuous at
Ξ̄. Then we could find an open set Ū ⊂ Rn with SOL(Ξ̄) ⊂ Ū and a sequence {Ξi :=
(Λi,a

(i),Θi, b
(i),Ki)} satisfying Ξi → Ξ̄, such that SOL(Ξi) ∩ (Rn\Ū) ̸= ∅ for any i =

1, 2, . . . . Now, for each i, pick up x(i) ∈ SOL(Ξi) ∩ (Rn\Ū). It follows from Item (ii) of
Proposition 4.2 that the sequence {x(i)} admits a converging subsequence. By Item (i) of
Proposition 4.2, the corresponding limit must be in SOL(Ξ̄) ∩ (R\Ū), which, together with
SOL(Ξ̄) ⊂ Ū , leads to a contradiction.

5 Error Bound Analysis

Among all the useful tools for theoretical and numerical treatment to NCPs, the global error
bound, i.e., an upper bound estimation of the distance from a given point in Rn to the solu-
tion set of the problem in terms of some residual functions, is an important one. In this sec-
tion, we focus on studying the global error bound of the solution set of GPCP(Λ,a,Θ, b,K)
with K := Rn

+, and in particular, we denote the resulting model by GPCP(Λ,a,Θ, b) for
simplicity. Moreover, we use Ω to represent the solution set of GPCP(Λ,a,Θ, b). Let
r(·) : Rn → R. We say that r(x) is a residual function of GPCP(Λ,a,Θ, b), if r(x) ≥ 0,
and r(x) = 0 if and only if x ∈ Ω. For the two polynomials F,G given in (1.2), let
min{F (x), G(x)} denote the vector in Rn whose j-th component is min{Fj(x), Gj(x)} for
j ∈ [n]. Obviously, the function r(x), defined by

r(x) = ∥min{F (x), G(x)}∥, (5.1)

provides a residual function of GPCP(Λ,a,Θ, b), and it is called the natural residual for
GPCP(Λ,a,Θ, b) (see [18]).

Definition 5.1. Let r(x) be a residual function of GPCP(Λ,a,Θ, b). We say r(x) is a local
error bound for GPCP(Λ,a,Θ, b), if there exist three constants c > 0, τ ∈ (0, 1] and ε > 0
such that

dist(x,Ω) ≤ c r(x)τ (5.2)

holds for any x ∈ Rn with r(x) ≤ ε, where dist(x,Ω) denotes the distance between the point
x and the set Ω. Furthermore, if (5.2) holds for any x ∈ Rn, then r(x) is called as a global
error bound for GPCP(Λ,a,Θ, b). If (5.2) holds for τ = 1, r(x) is called as a Lipschitzian
error bound.

Below, we first list the fundamental assumption used in [36] for the analysis of the global
error bound of GCP(F,G,Rn

+).

Assumption 5.1. (i) There exists a constant ρ > 0 such that

max
j∈[n]

[Fj(x)− Fj(y)][Gj(x)−Gj(y)] > ρ∥x− y∥2, for all x,y ∈ Rn. (5.3)

(ii) There exists a constant µ > 0 such that

[F (x)− F (y)]⊤[G(x)−G(y)] > µ∥x− y∥2, for all x,y ∈ Rn. (5.4)
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It is easy to see that a pair of functions (F,G) satisfying (5.4) must meet (5.3). In [18],
the authors proved that the natural residual r(x) defined by (5.1) provides a global error
bound for GCP(F,G,Rn

+) under Item (i) of Assumption 5.1. Unfortunately, Assumption 5.1
often does not hold when we discuss GCP(F,G,Rn

+), especially in the case where the related
functions F and G are both polynomials with high degree. To overcome this inadequacy,
we now introduce the following assumption, which is slightly weaker than [13, Assumption
5.1].

Assumption 5.2. For any sequence {x(i)} in Rn with x(i) → x̄ ∈ Ω as i → ∞ and x(i) ̸= x̄,
there exist a subsequence {x(ij)} of {x(i)} and an index j0 ∈ [n] such that

lim
ij→∞

min
{
Fj0(x

(ij)), Gj0(x
(ij))

}
∥x(ij) − x̄∥

̸= 0. (5.5)

Below, we use an example to illustrate that satisfying Assumption 5.2 does not necessarily
mean satisfying Assumption 5.1.

Example 5.1. We still consider the tensor pair (A,B) in Example 2.1. Let F (x) = Ax3+a
and G(x) = Bx3 + b, with a = (−1, 0)⊤ and b = (1, 0)⊤. We first claim that (F (x), G(x))
does not satisfy (5.3). Suppose that the pair (F (x), G(x)) satisfies (5.3), i.e., there exists a
number ρ > 0 such that (5.3) holds. Let x = (ε, ε/2)⊤ and y = (ε, ε)⊤ with ε > 0. Then,
by (5.3) and the fact that ε > 0, we have 7ε4 ≥ 16ρ. Consequently, by letting ε → 0, we
obtain a contradiction, since ρ > 0.

We now can claim that Assumption 5.2 holds for (F,G). First, it is easy to see that the
solution set Ω = {x̄ = (1, 1)⊤}. For any sequence {x(i)} in R2 with x(i) → x̄ as i → ∞ and
x(i) ̸= x̄, let us write x(i) = (1 + τi, 1 + εi)

⊤, where (τi, εi)
⊤ → (0, 0)⊤ as i → ∞. For the

considered pair (A,B), we have

min{F1(x
(i)), G1(x

(i))} = F1(x
(i)) = τ3i + 3τ2i + 3τi

and

min{F2(x
(i)), G2(x

(i))} =

{
ε3i + 3ε2i + 3εi − τ3i − 3τ2i − 3τi, if τi ≥ εi,
(1 + εi)

2(εi − τi), if τi < εi.

It is obvious that, if τi = 0 for any i, then εi ̸= 0 for any i, and

lim
i→∞

min
{
F2(x

(i)), G2(x
(i))
}

∥x(i) − x̄∥
=

{
− lim

i→∞
ε2i + 3εi + 3 = −3, if 0 ≥ εi,

lim
i→∞

(1 + εi)
2 = 1, if 0 < εi.

Hence, (5.5) holds for i0 = 2. Similarly, if εi = 0 for any i, then we can obtain that (5.5)
holds for i0 = 1. Now we discuss the case where {τi} includes a subsequences {τij} with
τij ̸= 0 for any j, and {εi} includes a subsequences {εis} with εis ̸= 0 for any s. Without loss

of generality, we assume that τi, εi ̸= 0 for any i. In this case, if limi→∞
min{F1(x

(i)),G1(x
(i))}

∥x(i)−x̄∥
does not exist, or exists but equals to nonzero, then (5.5) holds for i0 = 1. Now we assume

that limi→∞
min{F1(x

(i)),G1(x
(i))}

∥x(i)−x̄∥ = 0, which means

lim
i→∞

3 + 3τi + τ2i√
1 + (εi/τi)2

= 0. (5.6)
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Since τi → 0 as i → ∞, by (5.6) we know limi→∞ εi/τi = ∞. Thus, we have

lim
i→∞

min
{
F2(x

(i)), G2(x
(i))
}

∥x(i) − x̄∥
=



lim
i→∞

ε3i + 3ε2i + 3εi − τ3i − 3τ2i − 3τi√
τ2i + ε2i

= ± lim
i→∞

ε2i + 3εi + 3√
(τi/εi)2 + 1

= ±3,
if τi ≥ εi,

± lim
i→∞

(1 + εi)
2(1− τi/εi)√

(τi/εi)2 + 1
= ±1, if τi < εi,

Therefore, (5.5) holds for i0 = 2. From the discussion above, we know that (F,G) satisfies
Assumption 5.2.

Now we further assume the following conditions.

Condition 5.1. Given Λ =
(
A(1), . . . ,A(m−1)

)
∈ Fm,n, Θ =

(
B(1), . . . ,B(l−1)

)
∈ Fl,n and

a, b ∈ Rn. If there exists a sequence {x(i)} satisfying ∥x(i)∥ → ∞ such that[
−
(∑m−1

k=1 A(k)(x(i))m−k + a
)]

+

∥x(i)∥
→ 0,

[
−
(∑l−1

p=1 B(p)(x(i))l−p + b
)]

+

∥x(i)∥
→ 0, (5.7)

as i → ∞, then there exists an index j0 ∈ [n] such that

lim sup
i→∞

min

{(∑m−1
k=1 A(k)(x(i))m−k + a

)
j0
,
(∑l−1

p=1 B(p)(x(i))l−p + b
)
j0

}
∥x(i)∥

> 0. (5.8)

Then, we have the following lemma.

Lemma 5.2. Given Λ =
(
A(1), . . . ,A(m−1)

)
∈ Fm,n, Θ =

(
B(1), . . . ,B(l−1)

)
∈ Fl,n and

a, b ∈ Rn. If (A(1),B(1)) is an R0-tensor pair, then Condition 5.1 holds.

Proof. We prove that Condition 5.1 holds by contradiction. Suppose there exists a sequence
{x(i)} ⊂ Rn satisfying (5.7), such that (5.8) does not hold. Then for every given j̄ ∈ [n], it
holds that

lim sup
i→∞

min

{(∑m−1
k=1 A(k)(x(i))m−k + a

)
j̄
,
(∑l−1

p=1 B(p)(x(i))l−p + b
)
j̄

}
∥x(i)∥

≤ 0. (5.9)

Since the sequence
{
x(i)/∥x(i)∥

}
is bounded, without loss of generality, we assume

x(i)/∥x(i)∥ → x̄ as i → ∞. It is obvious that x̄ ∈ Rn\{0}. Hereafter, we claim that
A(1)x̄m−1 ≥ 0 and B(1)x̄l−1 ≥ 0. In fact, for every given j̄ ∈ [n], if there exists a subse-
quence {x(ij)} of {x(i)} so that(

m−1∑
k=1

A(k)(x(ij))m−k + a

)
j̄

≤ 0 for every ij .

Then, we have

0 = lim
ij→∞

[
−
(∑m−1

k=1 A(k)(x(ij))m−k + a
)
j̄

]
+

∥x(ij)∥
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= lim
ij→∞

−
(∑m−1

k=1 A(k)(x(ij))m−k + a
)
j̄

∥x(ij)∥m−1

= −(A(1)x̄m−1)j̄ ;

otherwise, we obtain

0 ≤ lim
ij→∞

(∑m−1
k=1 A(k)(x(ij))m−k + a

)
j̄

∥x(ij)∥m−1

= lim
ij→∞

(
A(1)(x(ij))m−1

)
j̄

∥x(ij)∥m−1

= (A(1)x̄m−1)j̄ .

By combining the two situations above together, we obtain that (A(1)x̄m−1)j̄ ≥ 0 for every

j̄ ∈ [n]. Similarly, we also can obtain that (B(1)x̄l−1)j̄ ≥ 0 for every j̄ ∈ [n].

On the other hand, if there exists a subsequence {x(ij)} of {x(i)} such that(
m−1∑
k=1

A(k)(x(ij))m−k + a

)
j̄

≤

(
l−1∑
p=1

B(p)(x(ij))l−p + b

)
j̄

, ∀ ij , (5.10)

then by (5.9), we obtain

lim sup
ij→∞

(∑m−1
k=1 A(k)(x(ij))m−k + a

)
j̄

∥x(ij)∥
≤ 0.

Consequently, we know that

(A(1)x̄m−1)j̄ = lim
ij→∞

(∑m−1
k=1 A(k)(x(ij))m−k + a

)
j̄

∥x(ij)∥m−1
≤ 0,

which, together with the obtained result that (A(1)x̄m−1)j̄ ≥ 0, implies that (A(1)x̄m−1)j̄ =

0. If (5.10) does not hold, then in a similar way, we may know that (B(1)x̄l−1)j̄ ≤ 0, and

hence we have (B(1)x̄l−1)j̄ = 0.
From the discussion above, we know that x̄ ∈ Rn\{0} satisfies the system (2.10) with

K = Rn
+, which contradicts the condition that (A(1),B(1)) is an R0-tensor pair. Thus

Condition 5.1 holds.

We now present the main result in this section, which shows that the natural residual
function r(x) defined in (5.1) is a global Lipschitzian error bound for GPCP(Λ,a,Θ, b)
under some appropriate conditions.

Theorem 5.3. Given Λ =
(
A(1), . . . ,A(m−1)

)
∈ Fm,n, Θ =

(
B(1), . . . ,B(l−1)

)
∈ Fl,n and

a, b ∈ Rn. Suppose that Condition 5.1 holds and Ω is nonempty. If Assumption 5.2 holds,
then r(x) is a global Lipschitzian error bound for GPCP(Λ,a,Θ, b).

Proof. The proof is divided into two parts. Concretely, we first prove that r(x) is a lo-
cal Lipschitzian error bound for GPCP(Λ,a,Θ, b). Then, we prove that r(x) is a global
Lipschitzian error bound for GPCP(Λ,a,Θ, b).
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Part (i). Suppose, on the contrary, that r(x) is not a local Lipschitzian error bound for
GPCP(Λ,a,Θ, b). It then follows from Definition 5.1 that there is a sequence {x(i)} ⊂ Rn

satisfying r(x(i)) ≤ ε such that

r(x(i))

dist(x(i),Ω)
=

∥∥∥min
{∑m−1

k=1 A(k)(x(i))m−k + a,
∑l−1

p=1 B(p)(x(i))l−p + b
}∥∥∥

dist(x(i),Ω)
→ 0 (5.11)

as i → ∞. We now show that the sequence {x(i)} is bounded. Assume that {∥x(i)∥} → ∞
as i → ∞, we will derive a contradiction. Obviously, it follows that either {x(i)} satisfies
(5.7) or {x(i)} does not satisfy (5.7). Therefore, we consider the following two cases.

Case (a). If {x(i)} satisfies (5.7), it follows from Condition 5.1 that there is an index
i0 ∈ [n] such that

lim sup
i→∞

min

{(∑m−1
k=1 A(k)(x(i))m−k + a

)
i0
,
(∑l−1

p=1 B(p)(x(i))l−p + b
)
i0

}
∥x(i)∥

> 0,

which implies that exists a subsequence {x(ij)} of {x(i)} such that

min


(

m−1∑
k=1

A(k)(x(ij))m−k + a

)
i0

,

(
l−1∑
p=1

B(p)(x(ij))l−p + b

)
i0

→ ∞

as ij → ∞. By the definition of r(x) we further obtain that r(x(ij)) → ∞ as ij → ∞, which
is a contradiction with r(x(ij)) ≤ ε.

Case (b). If {x(i)} does not satisfy (5.7), then we have either[
−
(∑m−1

k=1 A(k)(x(i))m−k + a
)]

+

∥x(i)∥
↛ 0, (5.12)

or [
−
(∑l−1

p=1 B(p)(x(i))l−p + b
)]

+

∥x(i)∥
↛ 0. (5.13)

When (5.12) holds, there exist an index j0 ∈ [n] and a subsequence {x(ij)} of {x(i)}, such
that (

m−1∑
k=1

A(k)(x(ij))m−k + a

)
j0

→ −∞ as ij → ∞.

Consequently, we have

min


(

m−1∑
k=1

A(k)(x(ij))m−k + a

)
j0

,

(
l−1∑
p=1

B(p)(x(ij))l−p + b

)
j0

→ −∞

and hence r(x(ij)) → ∞ as ij → ∞, which is a contradiction. Similarly, when (5.13)
holds, there must be an index j0 ∈ [n] and a subsequence {x(is)} ⊂ {x(i)} such that(∑l−1

p=1 B(p)(x(is))l−p + b
)
j0

→ −∞ as is → ∞. Hence we obtain that r(x(is)) → ∞ as

is → ∞, which is also a contradiction.
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Both Cases (a) and (b) indicate that the sequence {x(i)} is bounded. Without loss of
generality, we assume x(i) → x̄ as i → ∞. From (5.11), we have

r(x(i)) =

∥∥∥∥∥min

{
m−1∑
k=1

A(k)(x(i))m−k + a,

l−1∑
p=1

B(p)(x(i))l−p + b

}∥∥∥∥∥→ 0

as i → ∞. Thus, r(x̄) = 0, and hence x̄ is a solution of GPCP(Λ,a,Θ, b), i.e., x̄ ∈ Ω.
Furthermore, by Assumption 5.2, we know that there exists a subsequence {x(ij)} of {x(i)}
such that

r(x(ij))

dist(x(ij),Ω)
↛ 0 as ij → ∞,

which contradicts (5.11). This indicates that r(x) is a local Lipschitzian error bound for
GPCP(Λ,a,Θ, b).

Part (ii). In terms of the result ofPart (i), we now show that r(x) is a global Lipschitzian
error bound for GPCP(Λ,a,Θ, b). Suppose, on the contrary, that the result does not hold.
Then it follows from Definition 5.1 that for each positive integer i, there exists an x(i) ∈ Rn

such that
∥x(i) − x̄∥ ≥ dist(x(i),Ω) > i · r(x(i)) (5.14)

where x̄ is a fixed solution of GPCP(Λ,a,Θ, b). Since r(x) is a local Lipschitzian error
bound for the problem GPCP(Λ,a,Θ, b) by Part (i), there exists a positive integer i0 and
a constant ε > 0 such that r(x(i)) > ε for all i > i0, which, together with (5.14), implies
that ∥x(i)∥ → ∞ as i → ∞. Obviously, we have either {x(i)} satisfies (5.7) or {x(i)} does
not satisfy (5.7). If {x(i)} satisfies (5.7), then (5.8) holds by Condition 5.1. Consequently,
by the definition of r(x), we have

lim sup
i→∞

r(x(i))

∥x(i)∥
> 0. (5.15)

If {x(i)} does not satisfy (5.7), then since ∥x(i)∥ → ∞ as i → ∞, we have either (5.12) or
(5.13) holds. If (5.12) holds, then there exist positive number ε̄, an index j0 ∈ [n] and a
subsequence {x(ij)} of {x(i)} such that(

m−1∑
k=1

A(k)(x(ij))m−k + a

)
j0

≤ −ε̄∥x(ij)∥

for every ij , which implies r(x(ij)) ≥ ε̄∥x(ij)∥ for every ij . Hence, (5.15) holds. Similarly,
when (5.13) holds, we also can claim that (5.15) holds.

Take any given positive number M . Considering (5.14) with i ≥ M and (5.15), by letting
i → ∞, we have

1 = lim
i→∞

∥x(i) − x̄∥
∥x(i)∥

≥ lim sup
i→∞

i
r(x(i))

∥x(i)∥
≥ M lim sup

i→∞

r(x(i))

∥x(i)∥
,

which means 1 ≥ +∞ from the arbitrariness of M . A contradiction yields and the proof is
complete.

From Theorem 3.1, Lemma 5.2, and Theorem 5.3, we immediately obtain the following
global Lipschitzian error bound.
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Theorem 5.4. Let Λ =
(
A(1), . . . ,A(m−1)

)
∈ Fm,n, Θ =

(
B(1), . . . ,B(l−1)

)
∈ Fl,n. Suppose

that the leading tensor pair (A(1),B(1)) in (Λ,Θ) is an ER-tensor pair. If either (a) m = l
or (b) m ̸= l, but the one of A(1) and B(1), whose order is even and is larger than another,
is positive definite, then for any given vectors a, b ∈ Rn such that Assumption 5.2 holds,
r(x) is a global Lipschitzian error bound for GPCP(Λ,a,Θ, b).

Similarly, based upon Remarks 2.3 and 3.2, we obtain the following theorem.

Theorem 5.5. Let Λ =
(
A(1), . . . ,A(m−1)

)
∈ Fm,n, Θ =

(
B(1), . . . ,B(l−1)

)
∈ Fl,n. Suppose

that the leading tensor pair (A(1),B(1)) in (Λ,Θ) is an ER-tensor pair. If m > l and A(1)

is strictly copositive (see [25]), then for any given vectors a, b ∈ Rn satisfying Assumption
5.2 and the function F in (1.2) satisfying S(Rn

+) ⊂ Rn
+, where S is same to that in Remark

3.2, r(x) is a global Lipschitzian error bound for GPCP(Λ,a,Θ, b).

Now we complete this section by considering the TCPs introduced in [32], i.e., the model
TCP(A, q). In this situation, we may prove that, for a given A ∈ Tm,n and q ∈ Rn, if A is
an R0-tensor, then Condition 5.1 holds. Furthermore, by [35, Theorem 4.2], we know that
if A ∈ Tm,n is an ER-tensor and q ∈ Rn is given, then the solution set of TCP(A, q) is
nonempty and compact. By [29, Theorem 3.2], we know that if A ∈ Tm,n is an R-tensor
(see [29, Definition 2.2]) and q ∈ Rn is given, then the solution set of TCP(A, q) is nonempty.
Therefore, by Theorem 5.3, we have the following result.

Theorem 5.6. Given A ∈ Tm,n and q ∈ Rn. Suppose that A is an ER-tensor (or R-
tensor). If Assumption 5.2 with F (x) = Axm−1 + q and G(x) = x holds, then r(x) is a
global Lipschitzian error bound for TCP(A, q).

Note that the result in Theorem 5.6, to our knowledge, is not discussed in the current
TCPs and PCPs literature (e.g., see [11,21,37]). On the other hand, our Assumption 5.2 is
weaker than the conditions assumed in previous papers. Therefore, our result is better.

6 Conclusion

The GPCP under consideration is a natural generalization of TCPs and PCPs, and a special
case of GCPs, but with more favorable polynomial nature that we could explore to derive
interesting specialized results than the general nonlinear functions in GCPs. In this paper,
we obtain some new results on GPCPs, which include the nonemptiness and compactness
of the solution set, basic topological properties, and global Lipschitzian error bounds of
solutions of GPCP(Λ,a,Θ, b) with structured (e.g., ER-) tensor pair. In the future, we will
pay attention to designing some structure-exploiting algorithms for GPCPs.
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