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A robust and highly reliable control system of the quadrotor must have the following
characteristics:
1. The flight control system must have good robustness to deal with the uncertainty of the
quadrotor model’s parameters and external disturbance.
2. The flight control system can ensure flight safety by corrections of control inputs when
the quadrotor has actuator faults.

The researchers use sliding mode disturbance observer (SMC-SMDO) to design a robust
flight controller when the quadrotor faces with the external disturbances and model uncer-
tainties in [3]. Backstepping based control method is proposed in [12] to design a nonlinear
adaptive controller which can compensate for the mass uncertainty of the quadrotor. Re-
searchers have done a lot of research on how to achieve a robust and highly reliable quadrotor
flight control system. However, there is few work which considers both the disturbance and
actuator faults at the same time. Therefore, a LADRC fault tolerant control system is
developed for this situation.

Active disturbance rejection control(ADRC) proposed by Jingqing Han [21] is an effective
nonlinear control algorithm which combines the advantages of the traditional PID algorithm
and the analysis method of modern control theory. ADRC has attracted extensive attention
from experts and scholars in the field of control since it was proposed. ADRC has been
proven as a robust control method for the quadrotor which can estimate the disturbances
and eliminate the effects in time [16, 18, 22, 30]. But the main drawback of the ADRC that
is many parameters need to be tuned. Then, Dr. Gao Zhiqiang proposes the linear active
disturbance rejection control (LADRC) [9,10] which inherits the strong robustness of ADRC
and has fewer parameters to be chosen. These advantages make the algorithm easy to be
implemented in engineering applications.

Fault tolerant control technology is a kind of advanced control method that can au-
tomatically compensate for the impact of faults when the system has a certain degree of
faults [24]. Many fault tolerant control methods of the quadrotor require estimating the
failure information on-line and in real time [6, 23, 29]. However, due to the existence of
various noise, the fault information estimated by the observer may not be correct during the
actual process, which may reduce the system performance and even result unstable. This
paper designs the LADRC fault tolerant controller that combines time-delay control (TDC)
and LADRC method. The method uses LADRC to estimate the inertia uncertainty and
external disturbance with the help of the extended state observer. At the same time, the
time-delay control [5,32] is used to compensate for the actuator faults. The proposed method
does not require on-line fault detection and separation. The unknown actuator faults are
estimated by using one-step iteration of the previous state information and canceled out by
the estimated values. This designed control algorithm can not only eliminate the effects of
disturbances but also ensure the safety of the quadrotor in the event of actuators faults.

The structure of this paper is organized as follows. In section 2, the mathematical
model of the quadrotor is established and is linearized respectively for the altitude model,
the attitude model and the planar motion model. In section 3, the robust fault tolerant
control strategy of the quadrotor is developed which combines robust flight control algorithm
LADRC and passive fault tolerant algorithm TDC. In Section 4, simulation studies are
carried out to verify the effectiveness of the proposed algorithm.

2 Quadrotor Dynamic Model

The structure of oblique cross quadrotor is presented as Figure 1. As the design of the
quadrotor has ensured that its structure is basic symmetry, the quadrotor can be regarded
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as a rigid body when the flight speed and wind speed are low. The dynamic model of the
quadrotor can be obtained by using Lagrangian equation and Newton’s second law, which
is described by the nonlinear system of twelve ordinary differential equations [17,20,27]:

Figure 1: The structure of oblique cross quadrotor

Ẋ = f(X,U) +W (2.1)

where X = (x1 · · ·x12)T ∈ ℜ12 is the state vector including the rotational components(
ϕ, ϕ̇, θ, θ̇, ψ, ψ̇

)T
( ϕ-roll angle, θ-pitch angle, ψ-yaw angle) and the translational compo-

nents (x, ẋ, y, ẏ, z, ż)
T

of the quadrotor; U = (U1, U2, U3, U4) is the control input vector;

W = [0,W1 · · · 0,W6]
T

is the disturbance vector caused by the aerodynamic forces. The
equation (2.1) can be expressed as:
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(2.2)

a1 = (Jy − Jz)/Jx, a3 = (Jz − Jx)/Jy, a5 = (Jx − Jy)/Jz,
a2 = Jrz/Jx, a4 = Jrz/Jy, a6 = Jrz/Jz,

b1 = 1/Jx, b2 = 1/Jy, b3 = 1/Jz,
Ωr = ω1 − ω2 + ω3 − ω4,

ux = cosx1 sinx3 cosx5 + sinx1 sinx5,
uy = cosx1 sinx3 sinx5 − sinx1 cosx5.

(2.3)

Here ωi, i = 1, 2, 3, 4 are the revolutions of four rotors respectively; Jx, Jy, Jz denote the
moment of inertia of three-axis in the body coordinate system; Jrz is the inertia of rotors;
Ωr is the overall residual rotors angular speed;the control input U1 is the total lift force
produced by the rotors and the control inputs U2, U3, U4 are the torque of the quadrotor
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about the three axis which are given below:
U1

U2

U3

U4

 =


F
τϕ
τθ
τψ

 =


b b b b
bl −bl −bl bl
−bl −bl bl bl
−d d −d d




ω2
1

ω2
2

ω2
3

ω2
4

 = PAω (2.4)

where parameter l expresses the distance between the rotor and the centre of the quadrotor;
the parameters b and d are the lift coefficient and the torque coefficient of four rotors
respectively.

To facilitate the description of the fault-tolerant algorithm mentioned in the next section,
we need to decouple and linearize the model of the quadrotor. Since the angles ϕ, θ, ψ are
independent of the translational components, the system’s attitude dynamics in (2.2) can
be decoupled from the translational ones as in [1]. As shown in (2.2) altitude and planar
motions can also be decoupled. Thus three different system models will be derived which
are the attitude model, the altitude model and the planar motion model.

The attitude model can be obtained as:
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where ϕ̃, θ̃, ψ̃ express the quadrotor’s attitude angles with small attitude disturbance around
the operating points.

The altitude model (XEz =
(
z̃(t),

˜̇
z(t),

∫
z̃(t)dt

)T
) can be obtained by transforming the

altitude dynamics into error dynamics and discretizing it with a Ts sampling time:

XEz (k + 1) =

 1 Ts 0
1 1 0
Ts 1 1

XEz (k) +

 0
Ts

m cos θ̃ cos ϕ̃
0

 (δU1) (2.6)

Similar to the altitude model, the planar motion model XExEy =

(x̃(t),
˜̇
x(t),

∫
x̃(t)dt, ỹ(t),

˜̇
y(t),

∫
ỹ(t)dt)T can be obtained as:

XExEy(k + 1) =
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The parameters of quadrotor model are shown in Table I [7,26]. We can use the param-
eters CT and CM to figure out the lift coefficient b and the torque coefficient d.

Table 1 THE QUADROTOR MODEL PARAMETERS

Parameter Value Unit

m 1.731 Kg

g 9.7913 m
/
s2

l 0.225 m
CT 1.0792× 10−5 N · s2

/
rad2

CM 1.8992× 10−7 N ·m · s2
/
rad2

Jx 9.5065× 10−3 Kg ·m2

Jy 1.0000× 10−2 Kg ·m2

Jz 1.6580× 10−2 Kg ·m2

Jrz 6.0000× 10−5 Kg ·m2

Ts 0.01 s

From (2.2), we notice that there are some unknown parameters in the model of the
quadrotor, where measurement errors will be brought when measuring these parameters.
In addition, the disturbance vector caused by the aerodynamic forces will also affect the
accuracy of the model. Furthermore, the four control inputs of the quadrotor will change
when the quadrotor has actuator faults. Therefore, it is necessary to develop a reliable
control system ensuring the safe flight of the quadrotor.

3 Robust Fault Tolerant Control System

In this section, the robust fault tolerant control strategy is used to design the flight controller
of the quadrotor. The goal of the control strategy is to develop a robust fault tolerant
system that can not only reject the uncertainty and external disturbance but also ensure
flight safety. The robust fault tolerant control system mainly includes two parts: the robust
control module and the fault processor module. The structural diagram of the robust fault
tolerant control system of the quadrotor is shown in the figure below, in which the control
inputs and outputs are position and attitude references.

Figure 2: The structure of the robust fault tolerance control system

Here U is the control variable which is the output of the robust flight controller and the
input of the actuator; U ′ is the output of U through the faulty actuators; UA is the control
variable to the quadrotor which is obtained by the robust fault tolerant control system.
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3.1 Robust control module

In this module, a robust controller based on the LADRC is introduced to ensure stable flight
of the quadrotor with the uncertainty of the model’s parameters and external disturbance.
We apply the LADRC in both the position control and the attitude control at the same
time. The structure of the robust fault tolerant system is shown below:

Figure 3: The structure of robust fault tolerant system based on LADRC

As shown in figure 3, the LADRC is applied to each loop separately. The linear extended
state observer can estimate and compensate for the overall disturbance of the system in real
time [8]. Considering that yaw angle ψ is generally maintained in a small range close to zero,
we regard pitch angle θ as the attitude control input of the position x and roll angle ϕ as the
attitude control input of the position y . In order to achieve better control performance, the
designed LADRC position controller is divided into two loops: the outer loop controls the
position and the inner loop controls the speed. Here the speed control can prevent excessive
overshoot.

Each LADRC controller is composed of a linear extended state observer (LESO) and
a linear controller. For brevity, we only show the design process of the LADRC controller
for pitch channel. From the model equation (2.2), we can see the pitch channel is a second
order system. We rearrange this second order system as follows:

ż1 = z2
ż2 = z3 + b0u
ż3 = h
y = z1

(3.1)

where z1 denotes pitch angle θ and z2 denotes θ̇. h denotes the total disturbance including
parameter uncertainty and the impact of the aerodynamic forces. The LADRC controller is
divided into the following two parts.

(1) The linear extended state observer (LESO) is expressed as:
e = ẑ1 − y
˙̂z1 = ẑ2 − β1e
˙̂z2 = ẑ3 − β2e+ b0u
˙̂z3 = −β3e

(3.2)
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where ẑ = [ẑ1, ẑ2, ẑ3] is the estimated state vector of the state vector z = [z1, z2, z3] . b0 is

the estimation value of b. Since b is unknown, b0 needs to be tuned. L = [β1, β2, β3]
T

is
the observer gain vector which can be selected appropriately by using the pole-placement
method. In addition, to simplify the process of tuning parameter, we assume that the
characteristic polynomial of (3.2) is

λ (s) = s3 + β1s
2 + β2s+ β3 = (s+ ω0)

3
(3.3)

Hence, the observer gains are parameterized as β1 = 3ω0

β2 = 3ω2
0

β3 = ω3
0

(3.4)

where ω0 is related to the observer bandwidth.
(2) Then, the control system is reduced to a cascaded integrator by using the following

simple PD control law:
u0 = kp (r − z1)− kdz2 − z3 (3.5)

The value of the gains kp and kd can be tuned by placing all the closed-loop poles at
−ωc, where ωc is derived by the bandwidth of the feedback control system. Furthermore,
we can obtain kp = ω2

c , kd = 2ωc [10].

3.2 Parameter optimization of the control system

According to the previous section, we need to adjust three parameters of the LADRC con-
troller: the controller bandwidth ωc, the observer bandwidth ω0, and the compensation
factor b0. If the structure of the control system keeps unchanged, its control performance
generally depends on the choice of parameters. Therefore, we need to optimize the param-
eters to achieve a better performance. The particle swarm optimization (PSO) [2, 15, 31]
technique is used for parameters tuning. Considering that the standard PSO has some
shortcomings such as easily falling into the local extremum point, slow convergence speed
at the end of the algorithm iteration and low accuracy [28,33], this paper introduces a new
intelligent hybrid algorithm combining the PSO algorithm with the effective steepest descent
method. Taking the channel x− θ as an example, the parameters of the LADRC controller
of the position x, the LADRC controller of the velocity vx and the LADRC controller of the
pitch are jointly adjusted by the hybrid PSO. The process is shown in figure 4.

The LADRC parameters optimization process is shown in figure 5.
The steps of the hybrid optimization algorithm proposed in this paper is as follows:
(1) Initialize the population and set the maximum number of iterations of the particle

swarm, the maximum iteration number of steepest descent or the iterative accuracy of
steepest descent.

(2) Use particle swarm algorithm to generate population and calculate the best historical
point of each particle Pbest and the best point of the entire population Pg.

(3) The steepest descent method is used to search the extreme point P ′
g with the best

point Pg of the entire population. And then regard this extreme point as Pg (As Pg may
not be updated in many generations, we can set the flag that Pg has been updated in the
program design, and the fastest search only done for the updated Pg).

(4) Update the speed Vid according to the velocity update formula of particle swarm
optimization.

(5) Update the position Xid according to Xk+1
id = Xk

id + V k+1
id , return to step (2) and

continue the PSO iteration until the given number of iterations is reached.
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Figure 4: The structure of the parameters optimization

Figure 5: The process of the parameters optimization

3.3 Fault processor module

We apply the time-delay control algorithm to design the fault tolerant controller which
enable the quadrotor to maintain stable flight when the quadrotor has actuator faults.
Time-delay control is an effective method to deal with system faults [33]. It can approach
fault information through one-step state iteration. This section discusses the impact on the
quadrotor when a single actuator loses its thrust partially, where the fault of the actuator is
within an acceptable range. When the actuator of the quadrotor loses its thrust partially,
the actuators motor voltage output becomes lower, and the input of the system will change.
However, the other structure of the system maintains the same. The actuator faults do not
affect the mathematical model established in section II.

Here we use the attitude model as an example to introduce the fault tolerant control
algorithm. When the quadrotor has actuator faults, the inputs of the quadrotor will change.
According to the equation (2.4), the inputs with the actuator faults can be expressed as:

U ′ = PU = PPAω (3.6)
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where P = diag(α1, α2, α3, α4) is the fault coefficient matrix; αi is the effective factor of the
actuator.

According to the equation (2.5), the attitude model can be expressed as:
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= f +BPAPω

= f(x) +BU ′ (3.7)

Transform the above formula as follows:

Ẋ = f +BUA+BU
′ −BUA (3.8)

Let
g = BU ′ −BUA (3.9)

Hence, the equation (3.8) can be expressed as:

Ẋ = f +BUA+g (3.10)

Considering the actuator fault, UA is designed as

UA=B
+(U − g) (3.11)

where B+ is the generalized inverse of the matrix B. When the actuator has no fault, the
fault coefficient matrix can be expressed as P = diag(1, 1, 1, 1). Thus, the fault tolerant
controller is automatically converted into the LADRC controller.

However, the value of the fault coefficient matrix P cannot be obtained when the actuator
is with fault, thus g cannot be determined. When the quadrotor has the actuator faults
during a stable flight, neither the revolutions of the rotor can not change suddenly nor the
attitude of the quadrotor. Therefore, the control law (3.11) can be implemented by using
the estimated value ĝ instead of g. ĝ is defined as:

ĝ = g(t− Ts) = ẋ(t− Ts)− f(t− Ts)−BUfd (t− Ts) (3.12)

So, the input of the quadrotor can be expressed as:

UA=B
+(U − ẋ(t− Ts) + f(t− Ts) +BUA(t− Ts)) (3.13)

where

ẋ(t− T ) =
x(t− T )− x(t− 2T )

T
(3.14)

Remark 3.1. When the fault tolerant control algorithm is applied to the altitude model
or the planar motion model, according to the formulas (2.6) and (2.7), we can see that

B =

 0
Ts

m cos θ̃ cos ϕ̃
0

 or B =
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0
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0
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4 Simulation Analysis

In this section, simulation studies are carried out to verify the effectiveness of the designed
LADRC fault tolerant control system of the quadrotor.

4.1 The attitude and position control simulation experiments without actuator
faults

In attitude and position control tests, the control parameters of the LADRC controller
can be obtained using the parameter optimization method discussed in section 3. The
initial parameters of HPSO are set as shown in Table 2 and the final determined LADRC
parameters are shown in Table 3.

TABLE 2 INITIALIZATION PARAMETERS SETTING FOR HPSO

TABLE 3 PARAMETERS OPTIMIZATION RESULT FOR LADRC

Channel
LADRC

b ω0 ωc

Position Z 2.24 1.56 5.06
vz 0.05 12.96 3.08

x− vx− θ
y − vy − ϕ

1.56 0.65 109.86
49.65 21.23 3.58
0.89 0.76 23.42

Yaw 0.08 0.85 2.87

Through the optimization of the hybrid particle swarm optimization algorithm, the three
parameters of each LADRC controller are optimized, which achieve the purpose of optimiza-
tion the system performance. The figure 6 shows the yaw angle response curve before and
after the optimization. The blue curve represents the yaw angle response curve before pa-
rameters optimization, and the red represents the curve of the yaw angle response curve
after parameters optimization. It can be seen from the figure that the rate of convergence
becomes faster and the fluctuating range becomes smaller after the parameters optimization.

The initial values of pitch angle, roll angle and yaw angle are set to 0 rad. We send the
reference inputs, which are rectangular wave signals, to yaw angles, roll angles and pitch
angles respectively at 3 s, 6 s, and 9 s. The output curves of the system are shown in the
figure below. The results are compared with the PID controller.

Fig. 7(a) presents the simulation results of the LADRC fault tolerant controller. Fig.
4(b) presents the simulation results of PID controller. From the results, the attitude response
curve of the LADRC controller can track the expectation smoothly with fast response and
small overshoot which are respectively 10.02%, 7.56%, and 7.48%. Compared with PID,
it can also be seen that when the three attitude angles change, there is almost no effect
on other angles. This is because that the LESO of the LADRC controller can treat the
coupling between the three angle channels as the internal disturbances of the system and
compensates for the disturbances in real time.

Furthermore, we add 5% Gaussian white noise to the state feedback variables of the
attitude angles. Then, we simulate the noise disturbance in the position control tests to
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Figure 6: The yaw angle response curve before and after the optimization

Figure 7: Attitude angle response curves
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Figure 8: Position response curves with noise

verify the robustness of the controller. The tests make the quadrotor hover at position (2,
-2) and reach a height of 1m. The system output curve is shown in Figure 8.

Fig. 8(a) presents the simulation results of the LADRC fault tolerant controller. Fig.
8(b) presents the simulation results of PID controller. From the results, the double closed-
loop position control of LADRC can achieve hover control with fast response and small
overshoot and has good robustness to overcome the effect of noise disturbance.

The following tests will analyze and verify the disturbance rejection and robustness of
LADRC.

1) Analysis of disturbance rejection

5% Gaussian white noise and transient signals are added to the system’s feedback state
variables to test the disturbance rejection ability of the control system. Take the yaw angle
as an example to analyze the system output.

Fig. 9(a) presents the simulation results of the LADRC fault tolerant controller. Fig.
9(b) presents the simulation results of PID controller. Fig. 9(c) presents the total distur-
bance estimated by the LESO. From the above figures, we can see that the quadrotor can
return to stable state within 2s and can control the error below 0.07 rad when there exists
disturbance. Compared with PID, LADRC fault tolerant control has better anti-disturbance
ability.

2) Analysis of robustness

The mass of the quadrotor is firstly increased by 30%, and then the moment of inertia
is reduced by 30%. The LADRC parameters are kept constant to test the robustness of
the control system. Take the yaw angle as an example to show the tracking response under
different parameters.

From the fig. 10, we can see that the three tracking curves basically coincide when the
model parameters of the quadrotor change by 30%. Therefore, when the model parameters
cannot be determined, the parameters of LADRC fault tolerant controller do not need to
be adjusted significantly and the controller has strong robustness.
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Figure 9: Outputs of attitude angel yaw and LESO

Figure 10: Outputs of attitude angel yaw with different parameters
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4.2 The attitude and position control simulation experiments with actuator
faults

The simulation experiment is carried out to verify the effectiveness of the fault tolerant
control system with 20% loss failure of No.1 actuator. According to the previous analysis,
α1

′ = 0.8α1 when the No.1 actuator has 20% loss failure. When the quadrotor is affected by
5% Gaussian white noise and has actuator failure at 20s, the system attitude and position
outputs are shown in Figure 11.

Figure 11: Attitude angle(a) and position(b) response curves with actuator faults and noise

The simulation results show that the LADRC fault tolerant controllers can effectively
deal with actuator faults in attitude control and position control. From the figures, when
the actuator fault occurs, fault tolerant control can make the system reach stable flight
state within 8s. Although the adjustment time is slightly longer, the adjustment process is
smooth, which can ensure that the quadrotor hover smoothly to the stable point.

After the quadrotor can achieve stabilized flight with an actuator fault when it is hover-
ing, the tracking ability of fault tolerant control is further analyzed. Set the target tracking
trajectory as an ellipse, which can be expressed by the following formula: xd = 12 sin (0.5t)

yd = 6 cos (0.5t)
zd = 10

(4.1)

Noise and actuator faults are the same as previous tests. The tracking performance and
the control inputs of the quadrotor are shown in Figure 12 and Figure 13.

In figure 12, the blue curve presents the flight path with LADRC fault tolerant control
and the green curve presents the flight path without fault tolerant control. Fig 13(a) presents
the control inputs of the quadrotor with LADRC fault tolerant controller. Fig 13(b) presents
the control inputs of the quadrotor with PID controller. Comparison of these two flight
trajectories shows that the fault tolerance control based on LADRC and TDC can make the
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Figure 12: The tracking performance with actuator faults and noise

Figure 13: The control inputs of the quadrotor
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quadrotor track the desired path accurately and smoothly. Even if an actuator loses part of
lift force, the fault tolerant control can still ensure that the quadrotor can fly back to the
steady value in a small deviation. In general, the fault tolerance control based on LADRC
and TDC has good control performance.

5 Conclusion

In this paper, a fault tolerant control method based on LADRC and TDC is introduced to
design the attitude and position controller of the quadrotor, which solves the robust and
highly reliable flight issue of the quadrotor. The main contribution of this paper is that
the design of the control method fully considers the system disturbances and actuator faults
which occur frequently during the actual flight task. Based on this, the designed controller
is more practical to actual flight. Moreover, the quadrotor model is linearized into three
models, thus the fault tolerant control method is used in not only the attitude control but
also the position control, which can make the control effect of the quadrotor more intuitively.
Simulation studies are carried out comparing with PID method. The results show that the
developed fault tolerant control method has a better control performance with or without
actuator faults.
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