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method [17], Tchebycheff approach [21,28], normal-boundary intersection method [4,23] and
Pascoletti-Serafini approach [6]. In a single run, direct methods can find an approximation
of the set of Pareto solutions, while indirect methods only get one Pareto solution. Hybrid
methods combine advantages of direct and indirect methods. They are based on scalar
transformation and take into account heuristic ideas at the same time. A typical hybrid
method is MOEA/D [38].

For indirect methods, previous research mainly focused on scalar techniques rather than
on how to find an approximation of the set of Pareto solutions. This paper tries to fill this gap
by extending the scalarization methods, such as the weighted sum method, to population-
based. An intuitive strategy is to run a scalarization method many times using different
parameters. For example, one can apply a set of different weights to the weighed sum
method, and each weight will end up with a Pareto solution. However, many difficulties exist,
such as how to choose weights in order to get uniformly and comprehensively distributed
Pareto solutions. Furthermore, the weighted sum method works well only on convex MOPs.
For nonconvex ones, nonlinear mechanisms have to be considered. Motivated by these issues,
in this paper, we are going to tackle the following topics:

(1) Extend the weighted sum method to population-based and apply it to convex MOPs;

(2) Design a population-based nonlinear scalarization method and apply it to nonconvex
MOPs;

(3) Study numerical performances of the proposed linear and nonlinear scalarization meth-
ods.

The rest of this paper is organized as follows: In Section 2, some basic definitions and
theories of multi-objective optimization are reviewed. In Section 3, we present an extended
weighted sum method. In Section 4, a nonlinear scalarization method for nonconvex MOP
is designed, and some theoretical analysis are also presented. In Section 5, some implemen-
tation details of the proposed algorithms are provided. In Section 6, numerical experiments
are considered. Section 7 concludes the paper.

2 Preliminaries

The general mathematical model of the constrained multi-objective optimization problem is
as follows,

(CMOP)


Minimize F (x )
Subject to gi(x ) ≤ 0, i = 1, . . . , p

hj(x ) = 0, j = 1, . . . , q
x ∈ X,

(2.1)

where F : Rn 7→ Rm (F (x ) = (f1(x ), f2(x ), . . . , fm(x ))T ) is a vector-valued function,
fi : Rn 7→ R, i = 1, . . . ,m; gi : Rn 7→ R, i = 1, . . . , p; hj : Rn 7→ R, j = 1, . . . , q are Lipschitz
continuous functions. X = {x ∈ Rn | li ≤ xi ≤ ui} ⊂ Rn is a box set, l = (l1, l2, . . . , ln)

T

and u = (u1, u2, . . . , un)
T are lower and upper bounds, respectively. Denote feasible set

Ω = {x ∈ X | gi(x ) ≤ 0, i = 1, . . . , p; hj(x ) = 0, j = 1, . . . , q},

then Problem (2.1) can be simplified as{
Minimize F (x )
Subject to x ∈ Ω.

(2.2)
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In multi-objective optimization, we call feasible set Ω as the decision variable space and its
image set F (Ω) = {y = F (x ) | x ∈ Ω} as the objective function value space. In the following,
some definitions and theorems are reviewed.

Given two vectors

y = (y1, y2, . . . , ym)T and z = (z1, z2, . . . , zm)T ∈ Rm,

then

y = z ⇔ yi = zi for all i = 1, 2, . . . ,m;

y ≤ z ⇔ yi ≤ zi for all i = 1, 2, . . . ,m;

y ≺ z ⇔ yi < zi for all i = 1, 2, . . . ,m;

y ⪯ z ⇔ yi ≤ zi for all i = 1, 2, . . . ,m, and y ̸= z .

“ ≥ ”, “≻” and “⪰” can be defined similarly. In this paper, if y ⪯ z , we say y dominates
z or z is dominated by y .

Definition 2.1. Suppose that y ⊆ Rm and y∗ ∈ Y . If y∗ ≤ y for any y ∈ Y , then y∗ is
called an absolutely minimal point of Y .

In the sense of minimization, absolutely minimal point is an ideal point but may not
exist.

Definition 2.2. Let y ∈ Rm and y∗ ∈ Y . If there is no y ∈ Y such that

y ⪯ y∗ (or y ≺ y∗),

then y∗ is called an efficient point (or weakly efficient point) of Y .

The sets of absolutely minimal points, efficient points and weakly efficient points of Y
are denoted as Yab, Yep and Ywp, respectively. Obviously, we have Yab ⊂ Yep ⊂ Ywp

Definition 2.3. Suppose that x∗ ∈ Ω. If F(x∗) ≤ F(x), for any x ∈ Ω, x∗ is called an
absolutely minimal solution of Problem (2.2). The set of absolutely minimal solution is
denoted as Ωas.

The concept of the absolutely minimal solution is a direct generalization of that in single-
objective optimization. It is an ideal solution but may not exist for most cases.

Definition 2.4. Suppose that x∗ ∈ Ω. If there is no x ∈ Ω such that F(x) ⪯ F(x∗) (or
F(x) ≺ F(x∗)), i.e. F(x∗) is an efficient point (or weakly efficient point) of the objective
function value space F(Ω), then x∗ is called an efficient solution (or weakly efficient solution)
of Problem (2.2). The sets of efficient solutions and weakly efficient solutions are denoted
as Ωes and Ωws, respectively.

Another name of the efficient solution is Pareto solution, which is introduced by T.C.
Koopmans in 1951 [14]. The meaning of Pareto solution is that, if x ∗ ∈ Ωes, then there is
no feasible solution x ∈ Ω, such that any fi(x ) of F (x ) is not worse than that of F (x ∗)
and there is at least one i0 ∈ {1, 2, . . . ,m} such that fi0(x ) < fi0(x

∗). In other words, x ∗ is
the best solution in the sense of “⪯”. Another intuitive interpretation of Pareto solution is
that it cannot be improved with respect to any objective without worsening at least one of
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the others. Weakly efficient solution is introduced by S. Karlin in 1960 [13], it means that
if x ∗ ∈ Ωws, then there is no feasible solution x ∈ Ω, such that any fi(x ) of F (x ) is strictly
better than that of F (x ∗). In other words, x ∗ is the best solution in the sense of “≺”. The
set of Pareto solutions is denoted by P∗. Its image set F (P∗) is called the Pareto frontier,
denoted by PF∗.

3 Extended Weighted Sum Method

In this section, we consider linear scalarization methods, more specifically, the weighted sum
method. Firstly, the relationship between optimal solutions of the scalarization problem and
(weakly) efficient solutions of the original MOP is theoretically reviewed, then an extended
weighted sum method is presented.

For Problem (2.2), consider the following scalar optimization problem

(SOP)

 Minimize
m∑
i=1

λifi(x )

Subject to x ∈ Ω,
(3.1)

where λ = (λ1, λ2, . . . , λm)T ∈ Λ+ (or Λ++) is a scalar vector. We call Problem (3.1) a
weighted sum scalarization of Problem (2.2). Here

Λ+ = λ = (λ1, λ2, . . . , λm)T | λi ≥ 0 and

m∑
i=1

λi = 1},

and

Λ++ = {λ = (λ1, λ2, . . . , λm)T | λi > 0 and

m∑
i=1

λi = 1}.

In the following, we theoretically analyze the relationship between Problem (2.2) and (3.1).
For the sake of convenience, denote

Φλ(x ) =
m∑
i=1

λifi(x ).

Definition 3.1. Suppose that Ω ∈ Rn is a convex set, F(x) = (f1(x), . . . , fm(x))T is a
vector-valued function, if all fi(x), i = 1, 2, . . . ,m, are (strictly) convex on Ω, then we call
F(x) an m-dimensional (strictly) convex vector-valued function on Ω.

Definition 3.2. If the feasible set Ω is convex, and the multi-objective function F(x) is a
convex vector-valued function on Ω, then we call Problem (2.2) a convex MOP.

It is clear that Φλ(x ) is convex if F (x ) is convex. Therefore, Problem (3.1) is a convex
problem if Problem (2.2) is a convex problem.

Theorem 3.3. For a given λ ∈ Λ++ (or Λ+), the optimal solution of Problem (3.1) is an
efficient (or weakly efficient) solution of Problem (2.2).

Theorem 3.4. If Problem (2.2) is convex, then for any efficient solution (or weakly efficient
solution) x ∗, there exist a λ ∈ Λ++ (or λ ∈ Λ+), such that x ∗ is an optimal solution of
Problem (3.1).
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Proofs of Theorems 3.3 and 3.4 can be found in the book written by Ehrgott [7]. These
two theorems reveal that for a convex MOP, there is an one-to-one relationship between the
weakly efficient solution of Problem (2.2) and the optimal solution of Problem (3.1). Based
on this sense, we design the following extended weighted sum method.

Algorithm 1: Extended weighted sum method (EWSM)

Input: Problem parameters: fi, gi, hi and X, number of solutions: N
Output: Pareto solutions: P, Pareto frontier: PF
// The main loops;

Step 1: Generate N weights λ ∈ Λ+, store them in Λ̄, so Λ̄ ⊂ Λ+.

Step 2: For each λ ∈ Λ̄, globally solve Problem (3.1), the obtained optimal solution
x ∗
λ is an weakly efficient solution of Problem (2.2), store x ∗

λ in P.

Step 3: Compute set FΛ̄ = {F (x ∗
λ) | λ ∈ Λ̄}, then FΛ̄ is an approximate Pareto

frontier of Problem (2.2), let PF = FΛ̄.

The following are some remarks about Algorithm 1:

(1) In Step 1, approaches to construct the finite subset Λ̄ are various. Two intuitive
approaches are presented here: (i) all λ ∈ Λ+ consist of a simplex, so λ can be
uniformly picked on this simplex; (ii) randomly pick finite number of λ ∈ Rm

+ , then
normalize them to construct Λ̄. More details about constructing Λ̄ refers to Section 6.

(2) In Step 2, a global optimization method is needed to solve Problem (3.1). If Problem
(2.2) is convex (so is Problem (3.1)), Problem (3.1) can be efficiently solved use any
convex optimization solver. If objective functions of Problem (2.2) are nonconvex and
complicated, which may lead a tough Problem (3.1), it will be not easy to solve this
problem using Algorithm 1.

(3) For different λ ∈ Λ̄, Problems (3.1) are independent with each other, so the parallel
computing mechanism can be introduced to Algorithm 1, which will dramatically
increase its efficiency. Section 6 will introduce more implementation details.

The geometrical explanation of the extended weighted sum method is given as follows.
As shown in Figure 1(b), F (Ω) is the image set of F (x ) on Ω ⊂ Rn. For λ ∈ Λ+,

Φλ(x ) =
m∑
i=1

λifi(x ) ≜
m∑
i=1

λifi = λT f

is a linear function of f = (f1, f2, . . . , fm)T , where fi = fi(x ), i = 1, 2, . . . ,m. Therefore,
solving Problem (2) equals to minimize a linear function on the image set F (Ω), i.e.,{

Minimize λT f
Subject to f ∈ F (Ω).

(3.2)

If f∗
λ solves Problem (3.2) for λ ∈ Λ+, then f∗

λ must be a point in the Pareto frontier.
Meanwhile, the corresponding x ∗

λ, i.e., f∗
λ = F (x ∗

λ), is an efficient solution. Although
Problem (3.2) is simpler than Problem (3.1), we cannot directly work on Problem (3.2)
because, first of all, the image set F (Ω) cannot be exactly calculated; and second of all,
even a solution f∗

λ is obtained, we have to solve the nonlinear equation F (x ) = f∗
λ to get

the corresponding efficient solution x ∗
λ, which is a complex or even impossible task.
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From the geometrical explanation, we can easily observe that the extended linear scalar-
ization method works only on the problem whose image set is convex on the Pareto frontier,
i.e.,

F (Ω)+ = {f + d | f ∈ F (Ω) and d ∈ Rm
+}

is convex. Here

Rm
+ = {x = (x1, x2, . . . , xm) | xi ≥ 0, i = 1, 2, . . . ,m}.

If F (Ω)+ is nonconvex (e.g., 1(b)), only the boundary point of Pareto frontier can be ob-
tained using Algorithm 1. However, inspired by Problem (3.2), we can nonlinearly scalarize
the multi-objective function.

Figure 1: Geometrical meaning of linear and nonlinear scalarization methods.

4 Nonlinear Scalarization Method

Nonlinear scalarization method is nothing but changing the linear objective function in
Problem (3.2) into nonlinear function. A naive thought is to use a quadratic function, more
specifically, m-dimensional sphere, as objective function. Therefore, we can construct the
following problem  Minimize

m∑
i=1

(fi − θi)
2

Subject to f ∈ F (Ω),
(4.1)

where f = (f1, f2, . . . , fm)T and θ = (θ1, θ2, . . . , θm)T ∈ Rm. The geometrical explanation
of Problem (4.1) is shown in Figure ??. From the figure, it is possible to solve nonconvex
MOPs using the nonlinear scalarization techniques. Like Problem (3.2), directly working on
Problem (4.1) is out of option, but taking into account fi = fi(x ) i = 1, 2, . . . ,m, it can be
transformed into the following problem, Minimize

m∑
i=1

(fi(x )− θi)
2

Subject to x ∈ Ω.
(4.2)



NONLINEAR SCALARIZATION FOR MULTI-OBJECTIVE OPTIMIZATION 45

In the following, we discuss the relationship between the efficient solution of Problem
(2.2) and the global optimal solution of Problem (4.2). For the sake of convenience, denote
the objective function of Problem (4.2) as

Ψθ(x ) =
m∑
i=1

(fi(x )− θi)
2.

Suppose that F̄ ∗ = (f̄∗
1 , f̄

∗
2 , . . . , f̄

∗
m)T , where

f̄∗
i = min

x∈Ω
fi(x ), i = 1, 2, . . . ,m.

In paper [4], F̄ ∗ is called a shadow minimum or utopia point. Construct a set as

Θ̄ = {θ = (θ1, θ2, . . . , θm)T | θi ≤ f̄∗
i },

the element of Θ̄ is called a referential point. We can have the following theorem.

Theorem 4.1. For a given θ ∈ Θ̄, if x ∗ is a global minimal solution of Problem (4.2), then
x ∗ must be an efficient solution of Problem (2.2).

Proof. Assume that x ∗ is a global minimal solution of Problem (4.2) but not an efficient
solution of Problem (2.2), then there exists x̄ ∈ Ω such that F (x̄ ) ⪯ F (x ∗), i.e.,

fi(x̄ ) ≤ fi(x
∗) i = 1, 2, . . . ,m; and ∃ i0 s.t. fi0(x̄ ) < fi0(x

∗).

So we have

(fi0(x̄ )− θi0)
2 < (fi0(x

∗)− θi0)
2,

which yields

m∑
i=1

(fi(x̄ )− θi)
2 <

m∑
i=1

(fi(x
∗)− θi)

2,

i.e.,

Ψθ(x̄ ) < Ψθ(x
∗).

This contradicts to x ∗ is globally minimal, which proves the theorem.

Remark 4.2. Theorem 4.1 can be taken as a generalization of Theorem 3.3 for nonlinear
scalarization. However, Theorem 3.4 cannot be generalized; we cannot obtain all efficient
solutions through picking θ all over Θ̄.

Based on Problem (4.2) and Theorem 4.1, we propose the following algorithm.
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Algorithm 2: Nonlinear scalarization method (NSM)

Input: Problem parameters: fi, gi, hi and X, number of solutions: N
Output: Pareto solutions: P, Pareto frontier: PF
// The main loops;

Step 1: Successively solve
f̄∗
i = min

x∈Ω
fi(x ), i = 1, 2, . . . ,m,

and then construct set

Θ̄ = {θ = (θ1, θ2, . . . , θm)T ∈ Rm | θi ≤ f̄∗
i }.

Step 2: Choose N referential points θ ∈ Θ̄, store in Θ̂, so Θ̂ ⊂ Θ̄.

Step 3: For each θ ∈ Θ̂, globally solve Problem (4.2), the global minimal solution
x ∗
θ is an efficient solution of Problem (2.2), store x ∗

θ in P.

Step 4: Compute FΘ̂ = {F (x ∗
θ) | θ ∈ Θ̂}, then FΘ̂ is an approximate Pareto

frontier of Problem (2.2), let PF = FΘ̂.

The following are some remarks of Algorithm 2:

(1) In Step 1, completely solving these global optimization problems is not necessary since
what we really need are just lower bounds of fi(x ), i = 1, 2, . . . ,m, so a reasonable
guess of their lower bounds is enough. More practically, assume that fi(x ) ≥ 0, i =
1, 2, . . . ,m (if any one of them is not satisfied, we can always move it parallel without
changing the efficient solutions of the original problem), then we can let Θ̄ = −Rm

++.

(2) In Step 2, Θ̄ is a lowerly unbounded set, so elements of Θ̂ should be chosen from its
upper boundary.

(3) In Step 3, a global optimization solver is needed as well as in Algorithm 1, so it could
be numerically difficult if the objective function of Problem (4.2) is complicated. In
this situation, the original MOP is not suitable to be solved by this algorithm.

In Step 1 of Algorithm 2, we restrict θ ∈ Θ̄ in order to guarantee that the global minimal
solution of Problem (4.2) is an efficient solution of Problem (2.1). However, based on Remark
4.2, if only choose θ ∈ Θ̄, we may never reach some parts of the Pareto frontier. Actually,
if θ /∈ Θ̄ but properly chosen, we can also obtain an efficient solution. This is analyzed as
follows.

Construct set

Θ̄′ = {θ = (θ1, θ2, . . . , θm) ∈ Rm | ∃ i0 ∈ {1, 2, . . . ,m}, s.t. θi0 < f̄∗
i0},

obviously Θ̄ ⊂ Θ̄′. For a given θ ∈ Θ̄′, assume we have i1 ∈ {1, 2, . . . ,m}, such that θi1 < f̄∗
i1
,

in the proof of Theorem 4.1, if we just have i0 = i1, i.e.,

θi0 < f̄∗
i0 ≤ fi0(x̄ ) < fi0(x

∗) (4.3)

and

(fi0(x̄ )− θi0)
2 − (fi0(x

∗)− θi0)
2 <

m∑
i=1,i̸=i0

(fi(x
∗)− θi)

2 −
m∑

i=1,i̸=i0

(fi(x̄ )− θi)
2, (4.4)
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we can still have

Ψθ(x̄ ) < Ψθ(x
∗),

which yields that x ∗ is an efficient solution. Of course, these conditions cannot be checked
in advance, if θ ∈ Θ̄′, but conditions (4.3) or (4.4) cannot be satisfied, the obtained global
minimal solution x ∗ may not be an efficient solution. But we can use a non-dominated
sorting [5] to exclude these points. Based on this observation, we propose the following
slack nonlinear scalarization method.

Algorithm 3: Slack nonlinear scalarization method (SNSM)

Input: Problem parameters: fi, gi, hi and X, number of solutions: N
Output: Pareto solutions: P, Pareto frontier: PF
// The main loops;

Step 1: Successively solve
f̄∗
i = min

x∈Ω
fi(x ) i = 1, 2, . . . ,m,

and then construct set

Θ̄′ = {θ = (θ1, θ2, . . . , θm) ∈ Rm | ∃ i0 ∈ {1, 2, . . . ,m}, s.t. θi0 < f̄∗
i0},

Step 2: Choose N referential points Θ̄′, store in Θ̂′, so Θ̂′ ⊂ Θ̄′.

Step 3: For each θ ∈ Θ̂′, globally solve the corresponding Problem (4.2), suppose
that x ∗

θ is the global minimal solution, store in SΘ̂′ .

Step 4: Compute FΘ̂′ = {F (x ∗
θ) | θ ∈ Θ̂′}.

Step 5: Successively check each y ∈ FΘ̂′ , if y is non-dominated , then store y in PF
and its corresponding x ∗

θ in P.

Step 5 of Algorithm 3 is actually a non-dominated ranking [5], here we pick the first
Pareto frontier. The numerical comparison of Algorithm NSM and SNSM is presented in
Section 6.1.

5 Implementation

In this section, we explain some implementation details of the proposed algorithms, including
generating weights λ in Algorithm EWSM, generating referential points θ in Algorithm NSM
and SNSM, and the global optimization solver for scalar optimization problems.

5.1 Generating λ in Algorithm EWSM

In Algorithm EWSM, all λ ∈ Λ+ consist of a unit simplex, so finite number of weights
should be uniformly generated in this unit simplex. The simplest strategy is to pick them
randomly. For example, randomly choose λ′ ∈ [a, b]m, and then normalize λ′ to be λ, i.e.,
λ = λ′/

∑m
k=1 λ

′
k. Random strategy is simple and easy to implement, but it cannot guarantee

uniformity, specially when ratio N/m is small.
In this paper, we apply a method called systematic approach to generate λ. This method

was first introduced by Das and Dennis [4] and then applied by Deb [5]. It picks points in a
normalized hyperplane (an (m−1)-dimensional unit simplex, which is equally inclined to all
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axis and has an intercept of one on each axis). If p divisions are considered along each axis,
the total number of different weights N for problem with m objective functions is given by

N =

(
m+ p− 1

p

)
.

Detial steps about the systematic approach can be found in the work of Das and Dennis [4],
here we give two examples. Figure 2(a) demonstrates weights when m = 2, p = 8, there
are N = 9 different weights; and Figure 2(b) demonstrates weights when m = 3, p = 9,
there are N = 55 different weights. It can be observe that all the weights are uniformly
distributed in the unit simplex.

Figure 2: Generating weights using systematic method.

5.2 Generating θ in Algorithm NSM and SNSM

In Algorithm NSM, θ is generated in Θ̄. Figure 4 illustrates two strategies to generate θ
when m = 2. Here, we have

x ∗
f1 = argmin

x∈Ω
f1(x ), f̄∗

1 = f1(x
∗
f1)

and
x ∗
f2 = argmin

x∈Ω
f2(x ), f̄∗

2 = f2(x
∗
f2),

so Θ̄ = (f̄∗
1 , f̄

∗
2 )−R2

++. In Figure 4(a), referential points are uniformly generated on segment
union [(f̄∗

1 −α1, f̄
∗
2 ), (f̄

∗
1 , f̄

∗
2 )]∪ [(f̄∗

1 , f̄
∗
2 −α2), (f̄

∗
1 , f̄

∗
2 )]. In Figure 4(b), referential points are

uniformly generated on segment [(f̄∗
1 − α1, f̄

∗
2 ), (f̄

∗
1 , f̄

∗
2 − α2)]. Here α1, α2 > 0 are proper

positive numbers.
In Algorithm SNSM, θ is generated in Θ̄′, Figure 4(a) depicts the strategy of generating

referential points on the upper boundary of Θ̄′, while Figure 4(b) depicts the referential
points generated on a random line segment in Θ̄′.

When m > 2, the line segment becomes simplex, we can use the systematic method
introduced in the previous subsection to generate referential points.
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Figure 3: Generating referential points θ for Algorithm NSM.

5.3 Global optimization solver

The global optimization solver plays an important role in the proposed algorithms. If Prob-
lem (2.1) is convex, which leads Problems (3.1) and (4.2) convex, then they can be efficiently
solved using local or global optimization solvers; otherwise, we have to use nonconvex solvers,
such as the global quasisecant method [27] and hybrid global optimization method [24], to
tackle them. In our implementation, we simply use functions in the MATLAB optimization
toolbox, such as fmincon, fminsearch and ga, to solve Problems (3.1) and (4.2).

6 Numerical Experiments

In this section, we first present some illustrative examples to demonstrate the numerical
performance of the proposed algorithms, then compare the proposed algorithms with two
typical heuristic multi-objective optimization solvers: NSGAII [5] and MOEA/D [38]. All
the numerical experiments are implemented in an environment of MATLAB(2010a) installed
on an ACER ASPIRE 4730Z laptop with a 2G RAM and a 2.16GB CPU.

6.1 Illustrative examples

Problem SCH [5] in Table 1 is a one dimensional convex multi-objective problem. Its efficient
solution set is [0, 2], Figure 5(a) shows its image set and Pareto frontier. Solving Problem
SCH using EWSM, we can obtain results showing in Figure 6. Among them, λ ∈ Λ̄ for Figure
6(a) is uniformly chosen on the line segment λ1+λ2 = 1 (λ1, λ2 ≥ 0); while λ ∈ Λ̄ for Figure
6(b) is randomly chosen. Note that λ and Pareto points are actually in different spaces,
but in Figure 6 (so as the following figures), we draw them together to demonstrate the
relationship between λ and Pareto frontier. From Figure 6, we can observe that Problem
SCH is perfectly solved by EWSM (the numerical performance of uniformly chosen Λ̄ is
better than the randomly chosen one), and each point in Pareto frontier corresponds to a
λ ∈ Λ̄.

Problem FON [5] (see Table 1 and Figure 5(b) is a three dimensional nonconvex problem,
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Figure 4: Generating referential points θ for Algorithm SNSM.

Table 1: Multi-objective test problems.

its Pareto solutions satisfy x1 = x2 = x3, where xi ∈ [−1/
√
3, 1/

√
3], i = 1, 2, 3. Figure 7

demonstrates Problem FON solved by NSM. Among them, in Figure 7(a), referential points
θ are uniformly generated on the upper boundary of Θ̄, i.e., [(−1, 0), (0, 0)]∪ [(0, 0), (0,−1)];
while in Figure 7(b), θ are uniformly generated on simplex [(−1, 0), (0,−1)]. Compare
both figures, one can observe that both strategies can obtain perfect approximation of the
Pareto frontier. Figure 8 demonstrates Problem FON solved by SNSM, two referential
points generating strategies are applied as well. Form Figure 8, SNSM can still get good
Pareto frontier approximation, but some non-efficient point appears at both ends of the
approximate Pareto frontier. These non-efficient points can be identified and removed using
Pareto sorting, which is then depicted in Figure 9.

Problem KUR [5] (see Table 1 and Figure 5(c)) is a three dimensional nonconvex problem,
its Pareto frontier is disconnected. Figure 10 demonstrates Problem KUR solved by NSM
and SNSM. From Figure 10(a), when solving by NSM, there are only a few efficient solutions
can be obtained, and different θ ∈ Θ̄ may end up with same efficient point. However, when
solving using SNSM, as illustrated in Figure 10(b), we can see that the disconnected Pareto
frontier of Problem KUR is perfectly simulated and most of the θ ∈ Θ̄′ are properly chosen.
This reveals that SNSM, although theoretically defective, could numerically performs better
than NSM.
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Figure 5: Objective function value set of Problems SCH, FON and KUR.

6.2 Comparison with MOEA/D and NSGAII

In this subsection, we first introduce MOGA/D [38] and NSGAII [5] as referential methods
and then analyze the complexity and numerical performance of EWSM and SNSM by com-
paring them with MOEA/D and NSGAII on a set of test instances. The reason to choose
MOEA/D and NSGAII as referential methods is that MOEA/D is one of the typical de-
composition methods for MOPs and NSGAII is the most successful multi-objective genetic
algorithm.

MOEA/D is a typical multi-objective optimization method based on evolutionary algo-
rithm and decomposition. It decomposes an MOP into a number of scalar optimization
subproblems and optimize them simultaneously. Paper [38] presented three strategies to
decompose MOPs: the weighted sum approach, Tchebycheff approach and boundary inter-
section approach. Our proposed methods are similar with MOEA/D in decomposing MOP
but different in treating the corresponding scalar (sigle-objective) optimization problems.
NSGAII is without any doubt one of the most successful multi-objective genetic algorithm
in the last decade. It introduced a nondominated sorting strategy, this strategy decreases
the complexity of nondominated sorting from O(MN3) to O(MN2) and proposes a good
approach to balance nonelitism and diversity of obtained solutions. In the last decade, NS-
GAII gains a large amount of citations and applications for its robustness and efficiency in
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Figure 6: Solving Problem SCH using Algorithm 1.

Figure 7: Problem FON solved by NSM.

solving MOPs.
Test instances used in this subsection are SCH, FON, KUR from [5] and ZDT1∼4,

ZDT6, DTLZ1, DTLZ2 from [38]. Codes for MOEA/D and NSGAII are taken from Yarpiz
(www.yarpiz.com). As well as MOEA/D [38] and NSGAII [5], the population size N is set
to be 100 for 2-objective test instances and 150 for 3-objective test instances. The maximal
number of generations is set to be 50 for 2-objective problems and 100 for 3-objective ones.
The comparison is respect to two factors: numerical performance and complexity. Numerical
performance is observed through depicting Pareto frontiers obtained by different methods
in one figure, and complexity is measured by number of function value evaluation and time
consumption.

Figure 11 depicts obtained approximate Pareto frontiers of 2-objectives Problems SCH,
FON, KUR, ZDT1∼4 and ZDT6 solved by SNSM, MOEA/D and NSGAII, respectively.
For Problem SCH (see Figure 11(a)), all the algorithms reach the real Pareto frontier, the
diversity of solutions obtained by NSGAII and SNSM is better than that of MOEA/D. For
Problem FON (see Figure 11(b)), Pareto frontier obtained by SNSM is much better than that
obtained by MOGA/D and NSGAII not only in elitism but also in diversity. For Problem
KUR (see Figure 11(c)), solutions obtained by SNSM perfectly simulated the disconnected
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Figure 8: Problem FON solved by SNSM.

Figure 9: Problem FON solved by SNSM with Pareto sorting.

Pareto frontier, while MOEA/D is not good at elitism and NSGAII only concentrate its
solutions in the middle section. For Problem ZDT1 (see Figure 11(d)), all three algorithms
performs evenly in elitism, but SNSM and NSGAII are better than MOEA/D in diversity.
For Problem ZDT2 (see Figure 11(e)), MOEA/D and SNSM are neck and neck both in di-
versity and elitism, but both perform better than NSGAII. For Problem ZDT3 (see Figure
11(f)), although MOEA/D and SNSM perform better than NSGAII in elitism, solutions
obtained by NSGAII simulate the Pareto frontier more comprehensively, and solutions ob-
tained by SNSM are extremely dense in some area. For Problem ZDT4 (see Figure 11(g)),
SNSM obtains solutions with better elitism, but MOEA/D and NSGAII obtain solutions
with better diversity and distributed more comprehensively. For Problem ZDT6 (see Figure
11(h)), NSGAII performs better than both SNSM and MOEA/D not only in elitism but
also in diversity, and again solutions obtained by SNSM concentrate in some points.

Figure 12 demonstrates numerical results of Problem DTLZ1 and DTLZ2 solved by
MOEA/D, NSGAII and SNSM, respectively. From Figure 12(a), 12(b) and 12(c), MOEA/D
and SNSM obtain solutions which can normally simulate the real Pareto frontier, while
NSGAII almost fail to solve this problem. Comparing with MOEA/D and SNSM, one
can observe that solutions obtained by SNSM are better in both diversity and elitism than
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Figure 10: Problem KUR solved by NSM and SNSM.

MOEA/D. From Figure 12(d),12(e) and 12(f), it is obviously to observe that SNSM performs
better than MOEA/D and NSGAII both in elitism and diversity.

Histogram 13 illustrates the complex comparison of SNSM, NSGAII and MOEAD for
solving these problems. For 2-objective problems, the number of function evaluations of
SNSM for most problems is larger than NSGAII and MOEAD, but it consumes less time
than the other two for all problems. This reveals that SNSM is more efficient than the other
two respect to number of function evaluations. For 3-objective problems, the number of
function evaluations of SNSM is larger than the other two algorithm, its time consumption
is only slightly larger. Actually, the reason for the number of function evaluations being large
is that we used genetic algorithm to solve the scalar problems for Problem ZDT1∼ZDT4,
ZDT6, DTLZ1 and DTLZ2, if one can substitute genetic algorithm by other more efficient
optimization solvers, the number of function evaluations could decrease dramatically.

To be summarized from Figure 11, 12 and Histogram 13, Algorithm SNSM (or EWSM for
convex problems) could performs not worse and even better than MOEA/D and NSGAII.
One reason for this advantage of SNSM is that its subproblem (Problem (3.1) or (4.2))
is solved using deterministic methods which is normally more accurate and faster than
metaheuristic methods, and for regular problems, uniformly generated parameters (λ for
EWSM or θ for SNSM) usually yield diversely distributed Pareto frontier. One may think
that globally solving the subproblem is already a difficult task, let alone there are many
subproblems need to be solved in SNSM. It is true that the problem is not suitable to be
solved by SNSM if its subproblems are difficult to be globally solved. Another doubt about
SNSM is that it should be inefficient because of these time consuming subproblems. This is
not the case, because subproblem of SNSM are solve using deterministic methods which are
quite efficient, so it will not take to much time for every subproblems. In fact, according to
our numerical tests, the time consumed by solving a single subproblem of SNSM is generally
less than that consumed by a generation of MOEA/D and NSGAII.

6.3 Numerical test and comparisons using CEC’09

In this subsection, we compare the numerical performance of SNSM with the methods pro-
posed in the special session on performance assessment of unconstrained/bound constrained
multi-objective optimization algorithms at CEC’09. There are 13 algorithms submitted to
the special session:
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(1) MOEAD [39];

(2) GDE3 [15];

(3) MOEADGM [3];

(4) MTS [35];

(5) LiuLiAlgorithm [18];

(6) DMOEADD [19];

(7) NSGAIILS [33];

(8) OWMOSaDE [12]

(9) ClusteringMOEA [36]

(10) AMGA [34]

(11) MOEP [30]

(12) DECMOSA-SQP [37];

(13) OMOEAII [9].

Test problems applied in this subsection are quoted from [40], they are used as benchmarks
in CEC’09. Figure 14 and 15 illustrate objective function value sets and real Pareto frontiers
of these test problems (the figure of Problem 2 is ignored here since it is similar to Problem
1). Among these test problems, Problems 1-7 have two objective functions, whereas Prob-
lems 8-10 have three objective functions. The Pareto solutions of Problem 5, 6 and 9 are
disconnected, while the others are connected.

In order to evaluate the numerical performance, we use the performance metric IGD
proposed in [40]. Suppose that P ∗ is a set of uniformly distributed points along the Pareto
frontier. Let A be a set of solutions obtained by a certain solver. Then, the average distance
from P ∗ to A is defined as

IGD(A,P ∗) =

∑
v∈P∗ d(v,A)

|P ∗|
,

where d(v,A) is the minimum Euclidean distance between v and the points in A, i.e.,

d(v,A) = min
y∈A

∥ v − y ∥ .

In fact, P ∗ represents a sample set of the real Pareto frontier, if |P ∗| is large enough to
approximate the Pareto frontier very well, IGD(A,P ∗) could measure both the diversity
and convergence of A. A smaller IGD(A,P ∗) means the set A is closer to the real Pareto
frontier and has better diversity.

In order to keep consistent with the final report of CEC’09 [41], in the implementation
of SNSM, we compute 100 efficient solutions for problems with two objectives and 150 for
problems with three objectives, the number of function evaluations is less than 300, 000.
The numerical performance evaluated by IGD are illustrated in Table 2.

From Table 2, for Problem 1, 2 and 3, IGD evaluations rank at first, fifth and first,
respectively. This means that SNSM performs better than other algorithms in solving Prob-
lem 1 and 3. When solving Problem 2, although the IGD evaluation of SNSM ranks at
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Table 2: The numerical performance evaluated by IGD.
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fifth, the difference with the first four algorithms are tiny, only in a precision of 10−3. Ad-
ditionally, the accuracy of IGD evaluations, which are 10−2, reveals that Problem 1, 2 and
3 are prefect solved by SNSM. Figure 16 illustrates the obtained Pareto frontier of Problem
1 and 3, comparing with the real Pareto frontiers illustrated in Figure 15, we can conclude
that these two problems are perfectly solved by SNSM.

For Problem 4, the IGD evaluation of SNSM ranks at the first, better than other refer-
ential algorithm. But its value is 0.01833 , only in a precision of 0.1, which is not perfect
good. This point is also illustrated in Figure 17(a), which shows that the obtained efficient
points are not extremely accurate and uniformly distributed.

SNSM is failed at solving Problem 5, one possible reason is that the Pareto frontier of
Problem 5 consists of some isolated points, which is not suitable for SNSM.

The Pareto frontier of Problem 6 is disconnected, consist of two line segments and a
point (See Figure 15). Figure 17(b) demonstrate the obtained Pareto frontier using SNSM,
from the figure, we can observe that the real Pareto frontier is well simulated, points at
the Pareto frontier have high accuracy and distribute evenly. In fact, from Table 2, IGD
evaluation of SNSM for Problem 6 is 0.00976, accurate to 10−2, ranks at the second.

For Problem 7 whose obtained Pareto frontier is illustrated in Figure 18(a), the IGD
evaluation is 0.1063, ranks at the fifth. One interesting phenomenon showed in Figure 18(b)
is that the lower part of the obtained Pareto frontier is very regular, but the upper part
looks disorder. This may relate to the objective functions and option of θ.

For Problem 8, 9 and 10, IGD evaluation for SNSM are 0.1707, 0.03393 and 0.2382, rank
at the seventh, first and second, respectively. The obtained Pareto frontier of Problem 9 is
presented in Figure 18(b), Problem 8 and 10 are not presented since they are almost failed
to simulate the real Pareto frontier. It is not uncommon that IGD evaluation for these three
problems are not as small as others, because they all have three objective functions, which
makes their Pareto frontiers surfaces. This not only increases the complexity of objective
function of Problem (4.2), but also dramatically increases the amount of calculation since
we have to work on much more points. In fact, even for the best MOEA, like MOEAD
for Problem 8 (0.0584), DMOEADD for Problem 9 (0.04896) and MTS for Problem 10
(0.15306), the IGD evaluation is far from good enough.

7 Conclusion

This paper proposed population-based linear and nonlinear scalarization methods for MOPs.
Scalarization is an important type of strategy to handle MOPs. The previous research
mainly focuses on scalar techniques, while this paper contributes to generalizing the scalar-
ization methods to population-based ones. We first extended the weighted sum method to
a population-based case which has good theoretical properties and numerical performances
for convex MOPs, but fails to solve nonconvex MOPs. In order to handle nonconvex MOPs,
we designed a nonlinear scalar technique which transforms an MOP to a nonlinear scalar
optimization problem. It can be proved that, in some conditions, the global optimal so-
lution of the nonlinear optimization problem must be an efficient solution of the original
multi-objective problem. Based on this property, a nonlinear scalarization method and a
slack variation of it were proposed. A wide range of numerical tests were presented. First
of all, numerical performance of the proposed methods were illustrated by some academic
multi-objective optimization benchmarks; then numerical comparisons among the proposed
methods and two typical multi-objective optimization methods MOEA/D and NSGAII were
made; finally the proposed method were applied to solve CEC’09 test instances and the re-
sults were compared with 13 referential algorithms proposed in CEC’09. Numerical tests
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show that methods proposed in this paper are able to solve MOPs with promising elitism
and diversity.

There are two critical points that need to be tackled in our future work on this subject.
First, a global optimization method plays a very important role in the proposed methods with
a fast deterministic global optimization method dramatically increasing efficiency. In this
paper, subproblems are solved directly using a global optimization method, but for MOPs
whose objective functions are extremely complicated, this strategy may not work. There-
fore, some metaheuristic strategies should be introduced to handle subproblems. Second,
the distribution of predetermined scalarization parameters corresponds to the distribution
of obtained solutions. For regular problems, uniformly generated scalarization parameters
usually yields a diverse distribution of solutions, but for irregular problems, many scalar-
ization parameters may correspond with one solution which destroys the diversity of the
obtained solutions. In this case, a self-adaptive strategy for generating scalarization param-
eters should be developed.
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Figure 11: Numerical performance for 2-objective problems.
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Figure 12: Numerical performance for 3-objective problems.

Figure 13: Comparison respect to time consumption and number of function value evalua-
tion.
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Figure 14: Objective function value space for test problems.

Figure 15: Real Pareto frontiers for test problems.
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Figure 16: Solving Problem 1 and 3 using SNSM.

Figure 17: Solving Problem 4 and 6 using SNSM.

Figure 18: Solving Problem 7 and 9 using SNSM.


