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where A xm−1 ∈ Rn with

(
A xm−1

)
i
:=

n∑
i2,...,im=1

aii2···imxi2 · · ·xim , ∀i ∈ {1, 2, . . . , n}.

Recently, Song and Qi [32] extended the concept of Q-matrix to the case of tensor, i.e., a
real m-th order n-dimensional tensor A is called a Q-tensor if TCP(q,A ) has a solution
for every vector q ∈ Rn. Furthermore, they proved that several classes of tensors are the
subclasses of Q-tensors.

In this paper, we consider several famous results related to Q-matrices and investigate
whether they can be extended to the tensor space or not. In Section 2, after reviewing some
basic concepts and known related results, we give a sufficient condition to judge whether a
tensor is a Q-tensor or not.

Recall that a matrix A ∈ Rn×n is called a P0-matrix if all its principal minors are
nonnegative; an R0-matrix if LCP(0, A) has a unique solution; and an R-matrix if LCP(te, A)
has a unique solution for each scalar t ≥ 0, where e ∈ Rn denotes the vector of all ones. In
1979, Agangic and Cottle [1] proved that within the class of P0-matrices, both the classes
of R-matrices and R0-matrices are equivalent to the class of Q-matrices. Since the classes
of matrices mentioned above play important roles in the field of variational inequalities and
complementarity problems [10, 15, 16, 19, 22, 25], it is important to extend Agangic-Cottle’s
result to the tensor space. It is known that P0-matrix, R0-matrix and R-matrix have been
extended to the case of tensor by Song and Qi [32, 33], called P0-tensor, R0-tensor and R-
tensor, respectively. Recently, Ding, Luo and Qi [8] gave another extension of P0-matrix,
which is called P ′

0-tensor in this paper. A natural question is whether Agangic-Cottle’s
result can be extended to the tensor space or not. In Section 3, we answer this question. We
clarify that within the class of P0-tensors (or P

′
0-tensors), the above equivalence cannot be

extended to the tensor space. In order to extend Agangic-Cottle’s result to the tensor space,
we introduce a new class of tensors, called strong P0-tensors, which is a generalization of
P0-matrices; and show that within the class of strong P0-tensors, the classes of R0-tensors,
R-tensors and ER-tensors are all equivalent to the class of Q-tensors, where the class of
ER-tensors was recently introduced by Wang, Huang and Bai [36]. In this section, we also
discuss the relationships among P0-tensors, P

′
0-tensors and strong P0-tensors.

Recall that a matrix A ∈ Rn×n is said to be nonnegative if all its elements are non-
negative; and a real m-th order n-dimensional tensor A is said to be nonnegative if all its
elements are nonnegative. In 1994, Danao [7] proved that within the class of nonnegative
matrices, the class of Q-matrices coincides with the class of R0-matrices. Since many tensors
from practical problems are nonnegative, nonnegative tensors have been extensively studied
in the last ten years [3, 5, 12, 17, 29, 37]. It is interesting whether Danao’s result can be
extended to the tensor space or not. In Section 4, we answer this question. We show that
within the class of nonnegative tensors, the classes of R0-tensors, R-tensors and ER-tensors
are all equivalent to the class of Q-tensors. In addition, we also discuss the relationship
between the class of nonnegative tensors and the class of strong P0-tensors.

Recall that a matrix A ∈ Rn×n is said to be semi-monotone if for every x ∈ Rn with
0 ̸= x ≥ 0, there exists an index i such that xi > 0 and (Ax)i ≥ 0; and copositive if xTAx ≥ 0
for all x ∈ Rn satisfying x ≥ 0. In Section 5, we consider two results obtained by Pang [30]
which are related to semi-monotone matrices and Q-matrices; and a result obtained by Jeter
and Pye [20] which is related to copositive matrices and Q-matrices. We illustrate that these
three results cannot be extended to the tensor space by using several examples. In addition,
the final conclusions are given in Section 6.
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In the rest of this paper, we assume that m ≥ 3 and n ≥ 2 are two integers unless
otherwise specialized; and use Tm,n to denote the set of all real m-th order n-dimensional
tensors. For any positive integer n, we denote [n] := {1, 2, . . . , n} and Rn

+ := {x ∈ Rn :
x ≥ 0}. We use Q to denote the set of real Q-matrices; and Q to denote the set of real
Q-tensors, i.e., A ∈ Q means that A is a real Q-matrix; and A ∈ Q means that A is a
real Q-tensor. If the sizes of the considered matrices or tensors need to be specified, we use
Rn×n

∩
Q to denote the set of all real Q-matrices of n× n; and Tm,n

∩
Q to denote the set

of all real m-th order n-dimensional Q-tensors, i.e., A ∈ Rn×n
∩
Q means that A is a real

Q-matrix of n × n; and A ∈ Tm,n

∩
Q means that A is a real m-th order n-dimensional

Q-tensor. Similar notations will be used for other classes of matrices or tensors.

2 Preliminaries

In this section, we review definitions and properties of several structured tensors, which are
useful for our subsequent discussions. We also give a sufficient condition to judge whether
a tensor is a Q-tensor or not.

Definition 2.1. A tensor A ∈ Tm,n is said to be

(i) a P0-tensor if for each x ∈ Rn \ {0}, there exists an index i ∈ [n] such that

xi ̸= 0 and xi(A xm−1)i ≥ 0;

(ii) a P ′
0-tensor if for each x ∈ Rn \ {0}, there exists an index i ∈ [n] such that

xi ̸= 0 and xm−1
i (A xm−1)i ≥ 0.

The concept of P0-tensor was introduced by Song and Qi [33]; and the concept of P ′
0-

tensor was introduced by Ding, Luo and Qi [8] with the name of P0-tensor. Since it is
different from P0-tensor defined by Song and Qi [33] (see the next section), in this paper,
we call P0-tensor introduced by Ding, Luo and Qi [8] as P ′

0-tensor to avoid confusion. When
m = 2, a P0-tensor or a P ′

0-tensor reduces to a P0-matrix. We will use P0 (P ′
0) to denote

the set of real P0-tensors (P ′
0-tensors); and Tm,n

∩
P0 (Tm,n

∩
P ′
0) to denote the set of all

real m-th order n-dimensional P0-tensors (P
′
0-tensors).

Definition 2.2. (i) A tensor A ∈ Tm,n is called an R-tensor, if there exists no (x, t) ∈
(Rn

+ \ {0})×R+ such that{
(A xm−1)i + t = 0, if xi > 0,
(A xm−1)i + t ≥ 0, if xi = 0.

(2.1)

(ii) A tensor A ∈ Tm,n is called an R0-tensor, if the system (2.1) has no solution when
t = 0, i.e., there exists no x ∈ Rn

+ \ {0} such that{
(A xm−1)i = 0, if xi > 0,
(A xm−1)i ≥ 0, if xi = 0.

(iii) A tensor A ∈ Tm,n is called an ER-tensor, if there exists no (x, t) ∈ (Rn
+ \ {0}) ×R+

such that {
(A xm−1)i + txi = 0, if xi > 0,
(A xm−1)i ≥ 0, if xi = 0.
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The concepts of R-tensor and R0-tensor were introduced by Song and Qi in [32]; and the
concept of ER-tensor was introduced by Wang, Huang and Bai in [36]. It is obvious that an
R-tensor or ER-tensor is an R0-tensor. When m = 2, an R-tensor (R0-tensor) reduces to
an R-matrix (R0-matrix) [6, 23]; and an ER-tensor reduces to an ER-matrix [36]. We will
use R (R0, ER) to denote the set of real R-tensors (R0-tensors, ER-tensors); and Tm,n

∩
R

(Tm,n

∩
R0,Tm,n

∩
ER) to denote the set of all real m-th order n-dimensional R-tensors

(R0-tensors, ER-tensors).

Definition 2.3 ([32]). A tensor A ∈ Tm,n is said to be semi-positive if for each x ∈
Rn

+ \ {0}, there exists an index i ∈ [n] such that xi > 0 and (A xm−1)i ≥ 0.

Clearly, every P0-tensor (P
′
0-tensor) is certainly semi-positive. It is shown that the class

of semi-positive R0-tensors is a subclass of Q-tensors [32]. When m = 2, a semi-positive
tensor reduces to a semi-monotone matrix; and the set of all semi-monotone matrices is
denoted by L1 (or E0) [9, 11].

Definition 2.4. A tensor A ∈ Tm,n is said to be copositive if A xm ≥ 0 for all x ∈ Rn
+.

When A ∈ Tm,n is symmetric, such a concept was first introduced by Qi [31]. When
m = 2, every copositive tensor reduces to a copositive matrix [6].

Proposition 2.1. Suppose that A ∈ Tm,n. Then the following results hold.

(i) If A ∈ R, then A ∈ Q.

(ii) If A is semi-positive, then

A ∈ R0 ⇐⇒ A ∈ ER ⇐⇒ A ∈ R.

(iii) If A ∈ ER, then A ∈ Q.

(iv) If A is nonnegative, then A ∈ Q if and only if ai···i > 0 for all i ∈ [n].

In Proposition 2.1, the results (i)-(iv) come from [32, Theorem 3.2], [36, Theorem 3.3], [36,
Corollary 4.1], and [32, Theorem 3.5], respectively.

At the end of this section, we give a characterization of Q-tensor, which is an extension
of [24, Proposition 2.1].

Theorem 2.2. Let A = (ai1···im) ∈ Tm,n with i1, . . . , im ∈ [n]. Denote A1···1 := (ai1···im) ∈
Tm,n−1 with i1, . . . , im ∈ [n]\{1} and A2···2 := (ai1···im) ∈ Tm,n−1 with i1, . . . , im ∈ [n]\{2}.
Suppose that a1i2···im = a2i2···im for all i2, . . . , im ∈ [n], and both A1···1 and A2···2 are Q-
tensors. Then A is a Q-tensor.

Proof. For any q = (q1, . . . , qn)
T ∈ Rn, we consider the following two cases.

Case 1. q2 ≤ q1. In this case, we denote

N := {(i2, . . . , im) : i2, . . . , im ∈ [n] \ {1}} and q−1 := (q2, . . . , qn)
T .

Then, for any x = (0, x̂T )T ∈ R × Rn−1 with x̂ := (x2, . . . , xn)
T ∈ Rn−1, it follows that

A1···1x̂
m−1 = ((A1···1x̂

m−1)1, . . . , (A1···1x̂
m−1)n−1)

T ∈ Rn−1 satisfying

(A1···1x̂
m−1)i =

∑
(i2,...,im)∈N

ai+1i2···imxi2 · · ·xim
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=
∑

i2,...,im∈[n]

ai+1i2···imxi2 · · ·xim = (A xm−1)i+1 (2.2)

for all i ∈ [n− 1]; and

(A xm−1)1 =
∑

i2,...,im∈[n]

a1i2···imxi2 · · ·xim

=
∑

i2,...,im∈[n]

a2i2···imxi2 · · ·xim = (A xm−1)2 (2.3)

since a1i2···im = a2i2···im for all i2, . . . , im ∈ [n].
Since A1···1 ∈ Tm,n−1 is a Q-tensor, it follows that TCP(q−1,A1···1) has a solution, say

ŷ := (ȳ2, . . . , ȳn)
T . Then, ŷ ∈ Rn−1

+ and for any i ∈ [n− 1],

0 ≤ (A1···1ŷ
m−1 + q−1)i = (A1···1ŷ

m−1)i + qi+1, (2.4)

0 = ŷi(A1···1ŷ
m−1 + q−1)i = ȳi+1(A1···1ŷ

m−1)i + ȳi+1(q−1)i

= ȳi+1qi+1 + ȳi+1

∑
(i2,...,im)∈N

ai+1i2···im ȳi2 · · · ȳim . (2.5)

Let y := (0, ŷ)T . Then, we have that y ∈ Rn
+,

(A ym−1 + q)1 = (A ym−1)1 + q1

= (A ym−1)2 + q1 (by (2.3))

≥ (A ym−1)2 + q2 (by q1 ≥ q2)

= (A1···1ŷ
m−1)1 + q2 (by (2.2))

≥ 0, (by (2.4))

(A ym−1 + q)i+1 = (A1···1ŷ
m−1)i + qi+1 (by (2.2))

≥ 0, ∀i ∈ [n− 1], (by (2.4))

and

y1(A ym−1 + q)1 = 0, (since y1 = 0)

yi+1(A ym−1 + q)i+1 = ȳi+1qi+1 + ȳi+1(A1···1ŷ
m−1)i (by (2.2))

= ȳi+1qi+1 + ȳi+1

∑
(i2,...,im)∈N

ai+1i2···im ȳi2 · · · ȳim

= 0, ∀i ∈ [n− 1], (by (2.5))

Thus, y is a solution to TCP(q,A ).
Case 2. q1 ≤ q2. In this case, by using the condition that A2···2 ∈ Tm,n−1 is a Q-tensor,

similar to the proof of Case 1, we can obtain that TCP(q,A ) has a solution.
Combining Case 1 with Case 2, we complete the proof of this theorem.

3 Equivalent Classes of Q-Tensors within the Class of Strong P0-
Tensors

Let P0 (R0,R,Q) denote the set of all real P0-matrices (R0-matrices, R-matrices, Q-
matrices); and Rn×n

∩
P0 denotes the set of all real P0-matrices of n×n. In 1979, Agangic

and Cottle [1] obtained the following results.
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Proposition 3.1. If A ∈ Rn×n
∩
P0, then

A ∈ R0 ⇐⇒ A ∈ R ⇐⇒ A ∈ Q.

Such a proposition gives two equivalent classes of Q-matrices within the class of P0-
matrices. After such a pioneer work, the problem on equivalent class of Q-matrices has
been extensively studied in the literature. See, for example, Pang [30], Jeter and Pye [21],
Gowda [13], etc.

In this section, we try to extend the above results to the case of tensor.
Note that both P0-tensor and P ′

0-tensor are extensions of P0-matrix. It is natural to
consider whether the following result holds or not:

If A ∈ Tm,n

∩
P0 (or A ∈ Tm,n

∩
P ′
0), then

A ∈ R0 ⇐⇒ A ∈ R ⇐⇒ A ∈ Q. (3.1)

It is regret that this conjecture does not hold, which can be seen by the following examples.

Example 3.2. Let A = (ai1i2i3i4) ∈ T4,2, where a1122 = a2222 = 1, a2112 = −1 and all
other ai1i2i3i4 = 0. Then A ∈ T4,2

∩
P0

∩
Q, but A ̸∈ T4,2

∩
P0

∩
R0.

We show that the results in Example 3.2 hold. Obviously, for any x ∈ R2,

A x3 =

(
x1x

2
2

x3
2 − x2

1x2

)
,

and hence,

x1(A x3)1 = x2
1x

2
2 and x2(A x3)2 = x4

2 − x2
1x

2
2. (3.2)

It is easy to see from (3.2) that for any x ∈ R2 with x ̸= 0, if x1 ̸= 0, then x1(A x3)1 = x2
1x

2
2 ≥

0; and if x1 = 0, then x2 ̸= 0 since x ̸= 0, and x2(A x3)2 = x4
2 ≥ 0. Thus, A ∈ T4,2

∩
P0. It

is also easy to see from (3.2) that (1, 0)T ∈ R2 is a solution to TCP(0,A ), which, together
with the definition of R0-tensor, implies that A ̸∈ T4,2

∩
R0. In the following, we show that

A ∈ T4,2

∩
Q. Let a and b be two nonnegative real numbers, we consider the following four

cases:

C1. Let q = (a3, b3)T , then z = (0, 0)T is a solution to TCP(q,A ).

C2. Let q = (a3,−b3)T , then z = (0, b)T is a solution to TCP(q,A ).

C3. Let q = (−a3,−b3)T with (a, b) ̸= (0, 0), we show that TCP(q,A ) has a solution.
In this case, in order to ensure that (A x3)i + qi ≥ 0 for i ∈ {1, 2}, it must hold that
x1 ̸= 0 and x2 ̸= 0. So we need to show that the system of equations

0 = A x3 + q =

(
x1x

2
2 − a3

x3
2 − x2

1x2 − b3

)
(3.3)

has a nonnegative solution. From the first equation in (3.3) it follows that x1 = a3

x2
2
;

and hence, the second equation in (3.3) becomes

(x3
2)

2 − b3x3
2 − a6 = 0.

It is easy to see that the above equation has a solution x∗
2 := [(b3+

√
b6 + 4a6)/2]1/3 > 0.

Furthermore, (a3/(x∗
2)

2, x∗
2)

T is a solution to TCP(q,A ).
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C4. Let q = (−a3, b3)T . Similar to the proof given in the case C3, we can obtain that
TCP(q,A ) has a solution in this case.

Combining the above four cases, we obtain that A ∈ T4,2

∩
Q.

Example 3.2 demonstrates that (3.1) cannot be obtained under the assumption that
A ∈ Tm,n

∩
P0.

Example 3.3. Let A = (ai1i2i3) ∈ T3,2, where a122 = a222 = 1, a212 = −1 and all other
ai1i2i3 = 0. Then A ∈ T3,2

∩
P ′
0

∩
Q, but A ̸∈ T3,2

∩
P ′
0

∩
R0.

We show that the results in Example 3.3 hold.
First, it is obvious that TCP(0,A ) is to find x ∈ R2 such that

x ≥ 0, A x2 =

(
x2
2

x2
2 − x1x2

)
≥ 0, xTA x2 = 0.

It is easy to see that (1, 0)T is a solution to TCP(0,A ); and hence, A ̸∈ T3,2

∩
R0.

Second, we show that A is a P ′
0-tensor. For any x ∈ R2 with x ̸= 0,

if x1 ̸= 0, then x2
1(A x2)1 = x2

1x
2
2 ≥ 0; and

if x1 = 0, then x2 ̸= 0 and x2
2(A x2)2 = x4

2 > 0.

Thus, A is a P ′
0-tensor.

Third, we prove that A ∈ T3,2

∩
Q. Let a and b be two nonnegative real numbers.

C1. Let q = (a2, b2)T . Obviously, (0, 0)T is a solution to TCP(q,A ).

C2. Let q = (−a2, b2)T with a ̸= 0. Take z := ((a2 + b2)/a, a)T , then

z ≥ 0, A z2 + q =

(
a2 − a2

a2 − a× a2+b2

a + b2

)
= 0, zT (A z2 + q) = 0.

Thus, z solves TCP(q,A ) in this case.

C3. Let q = (a2,−b2)T . Take z := (0, b)T , then

z ≥ 0, A z2 + q =

(
b2 + a2

0

)
≥ 0, zT (A z2 + q) = 0.

Thus, z solves TCP(q,A ) in this case.

C4. Let q = (−a2,−b2)T with a ≤ b. Take z := (0, b)T , then

z ≥ 0, A z2 + q =

(
b2 − a2

0

)
≥ 0, zT (A z2 + q) = 0.

Thus, z solves TCP(q,A ) in this case.

C5. Let q = (−a2,−b2)T with 0 ̸= a ≥ b. Take z := ((a2 − b2)/a, a)T , then

z ≥ 0, A z2 + q =

(
a2 − a2

a2 − a× a2−b2

a − b2

)
= 0, zT (A z2 + q) = 0.

Thus, z solves TCP(q,A ) in this case.
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Therefore, it follows from C1-C5 that TCP(q,A ) has a solution for each q ∈ R2. Thus,
A ∈ T3,2

∩
Q.

Example 3.3 demonstrates that (3.1) cannot be obtained under the assumption that
A ∈ Tm,n

∩
P ′
0.

Combining Example 3.2 with Example 3.3, we obtain that (3.1) cannot be obtained
within the class of P0-tensors or P

′
0-tensors.

In order to extend the result of Proposition 3.1 to the case of tensor, we introduce a new
class of tensors in the following. Recall that a function f : Rn → Rn is called a P0-function
if, for all x, y ∈ Rn with x ̸= y, there is an index i ∈ [n] such that

xi ̸= yi and (xi − yi)[fi(x)− fi(y)] ≥ 0.

It is well known that an affine mapping f(x) := Ax+ q with q ∈ Rn is a P0-function if and
only if A ∈ Rn×n is a P0-matrix. Inspired by such a result, we introduce a class of tensors
which is defined as follows.

Definition 3.1. Given A ∈ Tm,n. If the mapping f(x) := A xm−1 + q with q ∈ Rn is a
P0-function, we call A is a strong P0-tensor, abbreviated as SP0-tensor, and denote the set
of all real m-th order n-dimensional SP0-tensors by Tm,n

∩
SP0.

Obviously, when m = 2, an SP0-tensor reduces to a P0-matrix. Thus, SP0-tensor is an
extension of P0-matrix from the matrix space to the tensor space. It is easy to see from
Definition 2.1(i) and Definition 3.1 that Tm,n

∩
SP0 ⊆ Tm,n

∩
P0.

In the following, we extend the results of Proposition 3.1 to the tensor space.

Theorem 3.4. If A ∈ Tm,n

∩
SP0, we have

A ∈ R0 ⇐⇒ A ∈ R ⇐⇒ A ∈ ER ⇐⇒ A ∈ Q. (3.4)

Proof. Since an SP0-tensor is a P0-tensor and every P0-tensor is semi-positive, it follows
from Proposition 2.1(ii) that

A ∈ R0 ⇐⇒ A ∈ R ⇐⇒ A ∈ ER. (3.5)

Thus, in order to show that (3.4) holds, we only need to show that

A ∈ R0 ⇐⇒ A ∈ Q. (3.6)

Suppose that A ∈ R0, then A ∈ R by (3.5). This, together with Proposition 2.1(i), implies
that A ∈ Q. Thus, in order to show that (3.6) holds, we only need to show that A ∈ R0

under the condition that A ∈ Q
∩
SP0. Suppose that A ∈ Q but A /∈ R0. Then there

exists a vector x̄ ∈ Rn
+ \ {0} such that{

(A x̄m−1)i = 0, if x̄i > 0,
(A x̄m−1)i ≥ 0, if x̄i = 0.

Denote I = {i ∈ [n] : x̄i = 0} and J = {i ∈ [n] : x̄i > 0}. Take q ∈ Rn satisfying qi > 0 for
any i ∈ I and qi < 0 for any i ∈ J . Since A ∈ Q, we can assume that ȳ is a solution of
TCP(q,A ). It is obvious that x̄ ̸= ȳ. Let λ be a positive real number.

For any i ∈ {i ∈ [n] : x̄i ̸= ȳi}, we consider the following two cases.
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If i ∈ I, then x̄i = 0 and ȳi > 0, and hence, it follows that (A x̄m−1)i ≥ 0 and
(A ȳm−1+ q)i = 0. The above equality implies that (A ȳm−1)i < 0 since qi > 0 for any
i ∈ I. This further yields that (A (λȳ)m−1)i = λm−1(A ȳm−1)i < 0 for any i ∈ I since
λ > 0. So, for any i ∈ I,

(x̄i − λȳi)[(A x̄m−1)i − (A (λȳ)m−1)i] < 0

holds for any λ > 0.

If i ∈ J , then (A x̄m−1)i = 0 and (A ȳm−1 + q)i ≥ 0. The above inequality implies
that (A ȳm−1)i > 0 since qi < 0 for any i ∈ J , which yields that (A (λȳ)m−1)i =
λm−1(A ȳm−1)i > 0 for any λ > 0. Now, we can choose sufficiently small λ > 0 such
that (x̄− λȳ)i > 0. So, for any i ∈ J ,

(x̄i − λȳi)[(A x̄m−1)i − (A (λȳ)m−1)i] < 0

holds for any sufficiently small λ > 0.

Thus, we can choose sufficiently small λ > 0 such that for any i ∈ {i ∈ [n] : x̄i ̸= ȳi},

(x̄i − λȳi)[(A x̄m−1)i − (A (λȳ)m−1)i] < 0,

which contradicts the condition that A ∈ SP0. Therefore, A ∈ R0; and the desired results
are obtained.

In the following, we discuss the relationships among three classes of P0-type tensors.
First, we construct the following example.

Example 3.5. Let A = (ai1···im) ∈ Tm,n, where a122···2 = 1 and all other ai1···im = 0.
Then A ∈ Tm,n

∩
SP0

∩
P0

∩
P ′
0.

We show that the results in Example 3.5 hold. Obviously, for any x ∈ Rn, we have

A xm−1 =


xm−1
2

0
...
0

 ∈ Rn.

On one hand, for any x, y ∈ Rn with x ̸= y, if there exists an index i0 ∈ {2, . . . , n} such that
xi0 ̸= yi0 , then (xi0 − yi0)[(A xm−1)i0 − (A ym−1)i0 ] = 0. Otherwise, we have that xi = yi
for all i ∈ {2, . . . , n}, and hence, x1 ̸= y1 and x2 = y2. Furthermore, (x1 − y1)[(A xm−1)1 −
(A ym−1)1] = (x1 − y1)(x

m−1
2 − ym−1

2 ) = 0. So A ∈ Tm,n

∩
SP0.

On the other hand, for any x ∈ Rn with x ̸= 0, if there exists an index i0 ∈ {2, . . . , n} such
that xi0 ̸= 0, then xi0(A xm−1)i0 = 0 and xm−1

i0
(A xm−1)i0 = 0. Otherwise, we have that

xi = 0 for all i ∈ {2, . . . , n}, and hence, x1 ̸= 0 and x2 = 0. Furthermore, x1(A xm−1)1 =
x1x

m−1
2 = 0 and xm−1

1 (A xm−1)1 = xm−1
1 xm−1

2 = 0. So A ∈ Tm,n

∩
P0

∩
P ′
0.

Proposition 3.6. We have that Tm,n

∩
SP0

∩
P0

∩
P ′
0 ̸= ∅.

Proof. The results of the proposition hold directly from Example 3.5.

Second, we consider the relationship between the class of P0-tensors and the class of
SP0-tensor. We construct the following example.
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Example 3.7. Let A = (ai1i2i3i4) ∈ T4,2, where a1122 = a2122 = 1 and all other ai1i2i3i4 =
0. Then A ∈ T4,2

∩
P0, but A ̸∈ T4,2

∩
SP0.

We show that the results in Example 3.7 hold. Obviously, for any x ∈ R2 with x ̸= 0,
we have

A x3 =

(
x1x

2
2

x1x
2
2

)
.

If x1 ̸= 0, then x1(A x3)1 = x2
1x

2
2 ≥ 0; and if x1 = 0, then x2 ̸= 0, and x2(A x3)2 = x1x

3
2 = 0.

So we obtain that A ∈ T4,2

∩
P0.

In addition, for any given q ∈ R2, let f(x) = A x3+q for any x ∈ R2; and take x̄ = (1, 1)T

and ȳ = (1,−2)T , then it is easy to see that

x̄1 = ȳ1, and x̄2 ̸= ȳ2, (x̄2 − ȳ2)(f(x̄)− f(ȳ))2 = −9 < 0.

These demonstrate that A ̸∈ T4,2

∩
SP0.

Proposition 3.8. If A is an SP0-tensor, then it is a P0-tensor. But the converse is not
true.

Proof. The first result holds from the definition of SP0-tensor given in Definition 3.1 and the
definition of P0-tensor given in Definition 2.1(i); and the second result holds from Example
3.7.

Third, we consider the relationship between the class of P0-tensors and the class of
P ′
0-tensors. We construct the following two examples.

Example 3.9. Let A = (ai1i2i3) ∈ T3,2, where a121 = 1, a211 = −1 and all other ai1i2i3 = 0.
Then A ∈ T3,2

∩
P0, but A ̸∈ T3,2

∩
P ′
0.

We show that the results in Example 3.9 hold. Obviously, for any x ∈ R2, we have

A x2 =

(
x2x1

−x2
1

)
.

On one hand, from x1(A x2)1 = x2x
2
1 and x2(A x2)2 = −x2x

2
1, it is easy to see that for any

x ∈ R2 with x ̸= 0, there exists an index i ∈ {1, 2} such that xi ̸= 0 and xi(A x2)i ≥ 0, i.e.,
A ∈ T3,2

∩
P0. On the other hand, for any α > 0 and β < 0, by taking (x1, x2) := (α, β),

we have

x2
1(A x2)1 = x2x

3
1 = βα3 < 0 and x2

2(A x2)2 = −x2
2x

2
1 = −β2α2 < 0,

and hence, A ̸∈ T3,2

∩
P ′
0.

Example 3.10. Let A = (ai1i2i3) ∈ T3,2, where a122 = 1, a211 = −1 and all other ai1i2i3 =
0. Then A ∈ T3,2

∩
P ′
0, but A ̸∈ T3,2

∩
P0.

We show that the results in Example 3.10 hold. Obviously, for any x ∈ R2, we have

A x2 =

(
x2
2

−x2
1

)
.

On one hand, from x2
1(A x2)1 = x2

1x
2
2 and x2

2(A x2)2 = −x2
2x

2
1, it is easy to see that for any

x ∈ R2 with x ̸= 0, there exists an index i ∈ {1, 2} such that xi ̸= 0 and x2
i (A x2)i ≥ 0, i.e.,
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A ∈ T3,2

∩
P ′
0. On the other hand, for any α < 0 and β > 0, by taking (x1, x2) := (α, β),

we have

x1(A x2)1 = x1x
2
2 = αβ2 < 0 and x2(A x2)2 = −x2x

2
1 = −βα2 < 0,

and hence, A ̸∈ T3,2

∩
P0.

Proposition 3.11. (i) We have Tm,n

∩
P ′
0 = Tm,n

∩
P0 when m is even. (ii) There is

no inclusion relation between the class of odd order P0-tensors and the class of odd order
P ′
0-tensors.

Proof. The result (i) holds directly from the definitions of P0-tensor and P ′
0-tensor given in

Definition 2.1; and the result (ii) holds directly from Examples 3.9 and 3.10.

Fourth, we consider the relationship between the class of SP0-tensor and the class of P ′
0-

tensor. From Proposition 3.8 and Proposition 3.11(i), we obtain immediately the following
results.

Proposition 3.12. When m is even, every m-th order SP0-tensor is an m-th order P ′
0-

tensor, but the converse is not true.

In the following, we consider the odd order SP0-tensors and odd order P ′
0-tensors.

Lemma 3.13. Let A ∈ Tm,n

∩
SP0 with m being odd. Then, for any i ∈ [n], we have that

either (A xm−1)i ≡ 0 or (A xm−1)i is a function of variables x1, . . . , xi−1, xi+1, . . . , xn, but
independent of the variable xi.

Proof. For any x = (x1, . . . , xn)
T ∈ Rn, suppose that a is an arbitrary fixed real number

and i0 ∈ [n], we take y = (x1, . . . , xi0−1, a, xi0+1, . . . , xn)
T , then for any

i ∈ I := {1, . . . , i0 − 1, i0 + 1, . . . , n},

we have xi = yi. For any xi0 ∈ R \ {a}, we have xi0 ̸= yi0 , which, together with A ∈ SP0,
implies that

(xi0 − a)[(A xm−1)i0 − (A ym−1)i0 ] ≥ 0. (3.7)

For −x and −y, we have A (−x)m−1 = A xm−1 since m is odd; and −xi0 ̸= −yi0 and
−xi = −yi for any i ∈ I. These and A ∈ SP0 imply that

(a− xi0)[(A xm−1)i0 − (A ym−1)i0 ] ≥ 0. (3.8)

Combining (3.7) with (3.8), we obtain that for any xi0 ∈ R \ {a},

(A xm−1)i0 = (A ym−1)i0 .

By the arbitrariness of xi0 , the above equality implies that either (A xm−1)i0 ≡ 0 or
(A xm−1)i0 is independent of the variable xi0 . Furthermore, the desired results holds by
the arbitrariness of i0.

Proposition 3.14. Let m be odd. Then Tm,2

∩
SP0 ⊆ Tm,2

∩
P ′
0.
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Proof. Given A ∈ Tm,2

∩
SP0. Then A ∈ Tm,2

∩
P0.

First, we show that for any x ∈ R2, there exists an index i ∈ {1, 2} such that (A xm−1)i ≡
0. We assume that (A xm−1)i ̸≡ 0 for all i ∈ {1, 2}. Since A ∈ Tm,2

∩
SP0, it follows from

Lemma 3.13 that

A xm−1 =

(
αxm−1

2

βxm−1
1

)
,

where α, β ∈ R \ {0}. Without loss of generality, we assume that x̄ = (x̄1, x̄2)
T ∈ R2

+ such
that (A xm−1)i ̸= 0 for all i ∈ {1, 2}. Take

x̂ =


(−x̄1,−x̄2)

T if (A x̄m−1)1 > 0 and (A x̄m−1)2 > 0,
(−x̄1, x̄2)

T if (A x̄m−1)1 > 0 and (A x̄m−1)2 < 0,
(x̄1,−x̄2)

T if (A x̄m−1)1 < 0 and (A x̄m−1)2 > 0,
(x̄1, x̄2)

T if (A x̄m−1)1 < 0 and (A x̄m−1)2 < 0,

then A x̂m−1 = A x̄m−1 since m is odd; and hence, x̂1(A x̂m−1)1 < 0 and x̂2(A x̂m−1)2 < 0,
which is a contradiction with A ∈ P0.

Second, we show that A ∈ Tm,2

∩
P ′
0. Without loss of generality, we assume that

(A xm−1)2 ≡ 0 for any x ∈ R2. For any x ∈ R2 with x ̸= 0,

if x2 ̸= 0, then xm−1
2 (A xm−1)2 = 0; and

if x2 = 0, then x1 ̸= 0 and xm−1
1 (A xm−1)1 = xm−1

1 (αxm−1
2 ) = 0,

so A ∈ P ′
0. Therefore, the desired result holds.

From Example 3.5 and Proposition 3.14, we have obtained some relationship between
Tm,n

∩
SP0 and Tm,n

∩
P ′
0. But this does not give a full characterization for the relationship

between Tm,n

∩
SP0 and Tm,n

∩
P ′
0. We conjecture that it is possible that the class of SP0-

tensors is a proper subset of the class of P ′
0-tensors, which needs to be further studied in

the future.
At the end of this section, we give a characterization of SP0-tensor. Song and Qi [33]

gave the concept of principal sub-tensors and proved that the principal sub-tensors of every
P0-tensor is a P0-tensor. A tensor C ∈ Tm,r is called a principal sub-tensor of tensor
A = (ai1i2···im) ∈ Tm,n (1 ≤ r ≤ n) if there is a set J that composed of r elements in [n]
such that C = (ai1i2···im) for all i1, . . . , im ∈ J .

Theorem 3.15. Let A ∈ Tm,n be an SP0-tensor, then every principal sub-tensor of A is
an SP0-tensor.

Proof. Let A J
r be an arbitrary principal sub-tensor of A . Suppose that A J

r is not an
SP0-tensor, then for each pair of distinct vectors x = (xj1 , . . . , xjr )

T ∈ Rr and y =
(yj1 , . . . , yjr )

T ∈ Rr, it follows that the set K := {j ∈ J : xj ̸= yj} is nonempty and

(xj − yj)(A
J
r xm−1 − A J

r ym−1)j < 0, ∀j ∈ K.

Let x∗ = (x∗
1, . . . , x

∗
n)

T ∈ Rn and y∗ = (y∗1 , . . . , y
∗
n)

T ∈ Rn be defined by

x∗
i =

{
xi if i ∈ J ,
0 otherwise,

y∗i =

{
yi if i ∈ J ,
0 otherwise,

∀i ∈ [n],

then it is easy to show that

(x∗
i − y∗i )[(A (x∗)m−1)i − (A (y∗)m−1)i] < 0
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holds for any i ∈ {i ∈ [n] : x∗
i ̸= y∗i }. This contradicts the condition that A ∈ SP0. Thus,

the desired result holds.

4 Equivalent Classes of Q-Tensors within the Class of Nonnegative
Tensors

The following result was obtained by Danao (see Theorem 4.8 in [7]).

Proposition 4.1. If A ∈ Rn×n is nonnegative, then

A ∈ R0 ⇐⇒ A ∈ Q.

A natural question is whether the result of Proposition 4.1 can be extended to the case
of tensor or not. In this section, we give a positive answer to this question, which is given
as follows.

Theorem 4.2. If A ∈ Tm,n is nonnegative, we have

A ∈ R0 ⇐⇒ A ∈ R ⇐⇒ A ∈ Q ⇐⇒ A ∈ ER. (4.1)

Proof. We consider the following five cases.
(a) We show that A ∈ R0 ⇒ A ∈ R. Suppose that A is not an R-tensor. By the

definition of R-tensor, there exists (x̂, t̂) ∈ (Rn
+ \ {0})×R+ such that{

(A x̂m−1)i + t̂ = 0, if x̂i > 0,

(A x̂m−1)i + t̂ ≥ 0, if x̂i = 0.

If t̂ = 0, then the above contradicts the condition that A ∈ R0. So t̂ > 0. Thus, for any
i ∈ [n], we have {

(A x̂m−1)i = −t̂ < 0, if x̂i > 0,

(A x̂m−1)i + t̂ ≥ 0, if x̂i = 0,

which yields

A x̂m = x̂TA x̂m−1 =

n∑
i=1

x̂i(A (x̂)m−1)i < 0. (4.2)

In addition, since x̂ ∈ Rn
+ \ {0} and A is a nonnegative tensor, i.e., ai1···im ≥ 0 for all

i1, . . . , im ∈ [n], we have

A x̂m =

n∑
i1,...,im=1

ai1···im x̂i1 · · · x̂im ≥ 0,

which contradicts (4.2). So A ∈ R0 ⇒ A ∈ R.
(b) We show that A ∈ R ⇒ A ∈ Q. Such a result holds from Proposition 2.1(i).
(c) We show that A ∈ Q ⇒ A ∈ R0. Suppose that A ̸∈ R0. Then, by the definition

of R0-tensor, there exists x̂ ∈ Rn
+ with x̂ ̸= 0 such that{

(A x̂m−1)i = 0, if x̂i > 0,

(A x̂m−1)i ≥ 0, if x̂i = 0.
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Thus, there exists j ∈ [n] such that x̂j > 0, and then, (A x̂m−1)j = 0. Since A ∈ Q, it
follows from Proposition 2.1(iv) that aj···j > 0. So,

0 = (A x̂m−1)j =

n∑
i2,...,im=1

aji2···im x̂i2 · · · x̂im ≥ aj···jxj · · ·xj > 0,

which derives a contradiction. Thus, A ∈ Q ⇒ A ∈ R0.
(d) We show that A ∈ R0 ⇒ A ∈ ER. Suppose that A is not an ER-tensor. By the

definition of ER-tensor, there exists (x̂, t̂) ∈ (Rn
+ \ {0})×R+ such that{

(A x̂m−1)i + t̂x̂i = 0, if x̂i > 0,

(A x̂m−1)i ≥ 0, if x̂i = 0.

If t̂ = 0, then the above contradicts the condition that A ∈ R0. So t̂ > 0. Denote
I := {i ∈ [n] : x̂i > 0}, then

A x̂m = x̂TA x̂m−1 =

n∑
i=1

x̂i(A x̂m−1)i =
∑
i∈I

x̂i(−t̂x̂i) < 0. (4.3)

In addition, since x̂ ∈ Rn
+ \ {0} and A is a nonnegative tensor, we have

A x̂m =

n∑
i1,...,im=1

ai1···im x̂i1 · · · x̂im ≥ 0,

which contradicts (4.3). So A ∈ R0 ⇒ A ∈ ER.
(e) We show that A ∈ ER ⇒ A ∈ Q. Such a result holds from Proposition 2.1(iii).
Combining cases (a)-(e), we obtain that (4.1) holds within the class of nonnegative

tensors.

In Theorems 3.4 and 4.2, we have obtained several equivalent classes of Q-tensors within
the class of SP0-tensors and the class of nonnegative tensors, respectively. What is the
relationship between the class of SP0-tensors and the class of nonnegative tensors? We see
the following two examples.

Example 4.3. Let A = (ai1i2i3) ∈ T3,2, where a111 = 1, a222 = 1 and all other ai1i2i3 = 0.
Then A is nonnegative, but A ̸∈ T3,2

∩
SP0.

We show that the results in Example 4.3 hold. On one hand, it is obvious that A is
nonnegative. On the other hand, we have

A x2 =

(
x2
1

x2
2

)
, ∀x ∈ R2.

Take x = (−2,−3)T , y = (1, 2)T , then

max
{
(xi − yi)(A x2 − A y2)i : i ∈ {1, 2}

}
= max{−9,−12} = −9 < 0,

and hence, A ̸∈ T3,2

∩
SP0.

Example 4.4. Let A = (ai1i2i3i4) ∈ T4,2, where a1122 = −1, a2222 = 1 and all other
ai1i2i3i4 = 0. Then A is not nonnegative, but A ∈ T4,2

∩
SP0.
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We show that the results in Example 4.4 hold. On one hand, it is obvious that A is not
nonnegative. On the other hand, we have

A x3 =

(
−x1x

2
2

x3
2

)
, ∀x ∈ R2.

For any x, y ∈ R2 with x ̸= y, we have

max
{
(xi − yi)[(A x3)i − (A y3)i)] : i ∈ {1, 2}

}
≥ (x2 − y2)[(A x3)2 − (A y3)2]

= (x2 − y2)(x
3
2 − y32)

= (x2 − y2)
2(x2

2 + x2y2 + y22)

≥ 0,

and hence, A ∈ T4,2

∩
SP0.

From Examples 4.3 and 4.4, it follows that the class of nonnegative tensors is different
from the class of SP0-tensors. Combining Theorems 3.4 and 4.2, we have obtained that
(4.1) holds within the class of nonnegative tensors or the class of SP0-tensors.

5 Q-Tensors, Semi-Positive Tensors and Copositive Tensors

In this section, we show that three known results related to Q-matrices cannot be extended
to the tensor space by using several examples.

First, we consider the following result which was obtained by Pang [30].

Proposition 5.1. Let A ∈ Rn×n
∩
L1

∩
Q. If x∗ is a nonzero solution to LCP(0, A), then

x∗ contains at least two nonzero components.

Since it is not clear whether such a result can be extended to the case of tensor or not,
Song and Qi proposed the following question (see Question 3.1 in [32]):

Whether or not a nonzero solution x of TCP(0,A ) contains at least two nonzero
components if A is a semi-positive Q-tensor.

We now answer this question by using Example 3.3. Let A be given by Example 3.3.
On one hand, it has been showed that A ∈ P ′

0

∩
Q, which implies that A is a semi-positive

Q-tensor since every P ′
0-tensor is a semi-positive tensor. On the other hand, it is obvious

that (1, 0)T is a solution to TCP(0,A ). Therefore, by Example 3.3 we obtain that the
results of Proposition 5.1 cannot be extended to the case of tensor.

Second, we consider the following result which was obtained by Pang [30].

Proposition 5.2. Let A ∈ Rn×n
∩
L1

∩
Q. Then the system

Mx = 0, x > 0

is inconsistent.

A natural question is whether or not the system

A xm−1 = 0, x > 0 (5.1)

is inconsistent for any semi-positive A ∈ Tm,n

∩
Q. We now answer this question by

constructing the following example.
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Example 5.3. Let m ≥ 3 be odd and A = (ai1···im) ∈ Tm,2, where

a1 · · · 1︸ ︷︷ ︸
m−i

2 · · · 2︸ ︷︷ ︸
i

= a2 · · · 2︸ ︷︷ ︸
i+1

1 · · · 1︸ ︷︷ ︸
m−1−i

= (−1)iCi
m−1, ∀i ∈ {1, . . . ,m− 1}

and all other ai1···im = 0. Then A ∈ Tm,2

∩
Q is semi-positive, but (1, 1)T is a solution to

the system (5.1).

We show that the results in Example 5.3 hold. Obviously, for any x ∈ Rn, it follows that

A xm−1 =

(
(x1 − x2)

m−1

(x1 − x2)
m−1

)
.

It is easy to see that (1, 1)T is a solution to the system (5.1). Moreover, for any x ∈ R2
+

with x ̸= 0,

if x1 > 0, then x1(A x2)1 = x1(x1 − x2)
m−1 ≥ 0; and

if x1 = 0, then x2 > 0 and x2(A x2)2 = x2(x1 − x2)
m−1 > 0.

Thus, A is a semi-positive tensor. In the following, we prove that A ∈ Tm,2

∩
Q. For any

a, b ∈ R+, we consider the following five cases.

C1. Let q = (am−1, bm−1)T . Obviously, (0, 0)T is a solution to TCP(q,A ).

C2. Let q = (−am−1, bm−1)T . Take z := (a, 0)T , then

z ≥ 0, A zm−1 + q =

(
0

am−1 + bm−1

)
≥ 0, zT (A zm−1 + q) = 0.

Thus, z solves TCP(q,A ) in this case.

C3. Let q = (am−1,−bm−1)T . Take z := (0, b)T , then

z ≥ 0, A zm−1 + q =

(
am−1 + bm−1

0

)
≥ 0, zT (A zm−1 + q) = 0.

Thus, z solves TCP(q,A ) in this case.

C4. Let q = (−am−1,−bm−1)T with a ≤ b. Take z := (0, b)T , then

z ≥ 0, A zm−1 + q =

(
bm−1 − am−1

0

)
≥ 0, zT (A zm−1 + q) = 0.

Thus, z solves TCP(q,A ) in this case.

C5. Let q = (−am−1,−bm−1)T with a ≥ b. Take z := (a, 0)T , then

z ≥ 0, A zm−1 + q =

(
0

am−1 − bm−1

)
≥ 0, zT (A zm−1 + q) = 0.

Thus, z solves TCP(q,A ) in this case.
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Combining cases C1-C5, we obtain that TCP(q,A ) has a solution for each q ∈ R2. Thus,
A ∈ Tm,2

∩
Q.

Example 5.3 shows that the result of Proposition 5.2 cannot be extended to the case of
tensor.

Third, we consider the following result which was obtained by Jeter and Pye [20].

Proposition 5.4. If M ∈ Rn×n is copositive and n ≤ 3, then

M ∈ Q ⇐⇒ M ∈ R0.

A natural question is whether the above result can be extended to the tensor space or
not. In order to answer this question, we use Examples 3.2 and 3.3. It has been proved that
if A is given by Example 3.2 or Example 3.3, then A ∈ Q but A ̸∈ R0. In addition,

if A is given by Example 3.2, then xTA x3 = x4
2 ≥ 0 for any x ∈ R2

+ with x ̸= 0; and

if A is given by Example 3.3, then xTA x2 = x3
2 ≥ 0 for any x ∈ R2

+ with x ̸= 0,

which imply that if A is given by Example 3.2 or Example 3.3, then A is copositive. Thus,
the result of Proposition 5.4 cannot be extended to the case of tensor. Moreover, by using
Example 5.3 we can also obtain the above result.

6 Conclusions

In this paper, we studied Q-tensor and gave a sufficient condition to judge whether a tensor
is a Q-tensor or not. In order to extend Agangic-Cottle’s result to the tensor space, we
introduced the concept of SP0-tensor and showed that within the class of SP0-tensors, four
classes of tensors, i.e., R0-tensors, R-tensors, ER-tensors and Q-tensors, are all equivalent.
We clarified that the above equivalence does not hold if SP0-tensors is replaced by P0-
tensors or P ′

0-tensors by constructing two examples; and discussed the relationships among
three classes of P0-type tensors, i.e., P0-tensors, P

′
0-tensors and SP0-tensors. In order to

extend Danao’s result to the tensor space, we showed that the above equivalence holds
within the class of nonnegative tensors. We also discussed the relationship between the class
of SP0-tensors and the class of nonnegative tensors. Moreover, by using several examples
we also showed that three famous results, related to Q-matrices, semi-positive matrices
and copositive matrices, cannot be extended to the tensor space. Since Q-matrix plays
an important role in the field of structured matrices and the theory of complementarity
problems, fruitful results related to Q-matrices have been obtained in the literature. We
believe more results related to Q-matrices can be clarified whether they can be extended to
the case of tensor or not.
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