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In this paper, we consider the tensor eigenvalue complementarity problem (TEiCP) which
is to find a scalar λ ∈ R and a vector x ∈ Rn \ {0} satisfying the conditions

x ≥ 0, (λB −A)xm−1 ≥ 0, ⟨x, (λB −A)xm−1⟩ = 0, (1.1)

for A,B ∈ Tm,n. Especially, when m = 2, problem (1.1) is reduced to the classical eigenvalue
complementarity problem, which has wide applications in mechanical systems(see [14,22]).
In recent years, tensor eigenvalue problem has attracted extensive interests for the wide
spread applications in engineering, polynomial optimization and related fields. According to
Qi’s definition in [23], the eigenvalue and eigenvector of tensor A were the scalar λ ∈ C and
nonzero vector x ∈ Cn satisfying Axm−1 = λx[m−1], where x[m−1] = (xm−1

1 , . . . , xm−1
n )T .

When λ ∈ R and x ∈ Rn, they were called H-eigenvalue and H-eigenvector, respectively.
And Qi also proved that H-eigenvalues and Z-eigenvalues existed for an even-order real su-
persymmetric tensor. In addition, Chang, Pearson and Zhang introduced the definition of
generalized tensor eigenpair in [3]. Let A,B ∈ Tm,n, where m is even and B is positive
definite. Then (λ, x) ∈ C × {Cn \ {0}} is a generalized eigenpair of (A,B), which satisfying
Axm−1 = λBxm−1. In [23], Qi studied the symmetric hyperdeterminant, eigenvalues and E-
eigenvalues of a real supersymmetric tensor. Ye and Hu studied the solvability of the inverse
eigenvalue problem for tensor in [26]. Hu, Huang and Qi introduced the tensor conic linear
programming(TCLP) in [12]. They introduced an approximation method and reformulated
the extreme Z-eigenvalue problem as a special tensor conic linear programming. Chen and
Wang proposed a sum-of-squares algorithm to compute the minimal H-eigenvalues of tensors
in [4]. Zhang and Qi established an explicit convergence rate of the Ng-Qi-Zhou method for
positive tensors in [28]. Ling, He and Qi showed that TEiCP was solvable and they also
presented two equivalent optimization reformulations of TGEiCP in [18]. They also showed
that the TEiCP had at least one solution, under the assumption that Bxm−1 ̸= 0 for all
x ∈ Rn

+\{0}. Song and Qi [24] introduced the concepts of Pareto H-eigenvalue and Pareto
Z-eigenvalue. And they also studied the properties of Pareto eigenvalue and the relationship
between the minimum Pareto H-eigenvalue of a symmetric tensor and polynomial optimiza-
tion. Ng, Qi and Zhou proposed an iterative method for calculating the largest eigenvalue
of an irreducible nonnegative tensor in [20]. Fan, Nie and Zhou formulated TEiCP as con-
strained polynomial optimization in [8]. Chen and Qi reformulated TEiCP as nonlinear
equations and proposed a damped semismooth Newton method for solving it in [5]. Yu et
al. investigated two monotone ascent spectral projected gradient (SPG) methods for TE-
iCP in [27]. Ling, He and Qi reformulated tensor higher-degree eigenvalue complementarity
problem with symmetric tensor as a weakly coupled polynomial optimization problem in
[19].

Z-eigenvalues of A has wide range of research in the literature, such as [23,24]. When
the order of A was even, its Z-eigenvalues always existed and an even order supersymmetric
tensor was positive definite if and only if all of its Z-eigenvalues were positive. Therefore,
firstly, a natural question is that can we solve TEiCP (1.1) with m is even and A ∈ Sm,n by
optimization method? As we all know, Levenberg-Marquardt method is one of the important
optimization methods for solving optimization problems, see, e.g., [7,11,21]. Most recently,
Fan and Pan analyzed the convergence rate of an inexact Levenberg-Marquardt method for
nonlinear equations in [9]. In [16], Karas, Santos and Svaiter used Levenberg-Marquardt
method to solve the nonlinear least-squares problem and gave a convergence analysis of the
proposed method. In [17], Lqbal, Lqbal and Arif used the Levenberg-Marquardt method
to solve the absolute value equations. Secondly, another question is that can we use the
Levenberg-Marquardt method to solve TEiCP (1.1) with m is even and A ∈ Sm,n and
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obtain more interesting properties? Motivated by these questions, in this paper, we study
an inexact Levenberg-Marquardt method for TEiCP (1.1), where m is even and A ∈ Sm,n.

The rest of this paper is organized as follows. In Section 2, we reformulate TEiCP
(1.1) as nonsmooth equations by using Fischer-Burmeister function and present an inexact
Levenberg-Marquardt method. We also analyse the convergence properties of this method.
In Section 3, we report some numerical results to show the efficiency of the presented method.
Finally, some conclusions are also given.

Through this paper, lowercase letters (x, y, z, . . . ) denote vectors, italic capitals (A,B, I)
denote matrices, calligraphic capitals (A,B, I) denote tensors. All the tensors discussed are
real tensors.

2 Preliminaries and the Inexact Levenberg-Marquardt Method

In this section, firstly, we present properties of the transformed nonsmooth equations. Then
an inexact Levenberg-Marquardt method for TEiCP is proposed. Finally, the convergence
properties of the given method are also presented.

Now, we introduce the Fischer-Burmeister function [10,25] defined as

ϕ(a, b) = (a+ b)−
√
a2 + b2.

The Fischer-Burmeister function has been widely used in solving many optimization prob-
lems, such as constrained optimization problems, variational inequality problems and com-
plementarity problems. By the Fischer-Burmeister function, problem (1.1) can be reformu-
lated as nonsmooth equations

H(z) = H(x, y, λ) =

 Φ(x, y)
(λB −A)xm−1 − y

xTx− 1

 = 0, (2.1)

where

Φ(x, y) =


ϕ(x1, y1)
ϕ(x2, y2)

...
ϕ(xn, yn)

 , (2.2)

z = (x, y, λ) ∈ Rn × Rn × R and ϕ(xi, yi) = (xi + yi) −
√

x2
i + y2i , for i = 1, 2, . . . , n.

Now, we will show that the functions defined by (2.1) and (2.2) are all strongly semismooth
functions. This property is very important for the convergence analysis of the inexact
Levenberg-Marquardt method.

Theorem 2.1. Let H be defined by (2.1). Then H is strongly semismooth at z.

Proof. By Theorem 1 in [25], we know that Φ is strongly semismooth at (x, y). Note that for
any z = (x, y, λ) ∈ Rn×Rn×R, (λB−A)xm−1−y is continuously differentiable. Moreover,
xTx− 1 is continuously differentiable at x. Therefore, H is strongly semismooth at z. This
proves the theorem.
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We define the merit function associated with H by

Ψ(z) =
1

2
∥H(z)∥2.

Now, we know that problem (1.1) is equivalent to the following unconstrained optimization
problem

minΨ(z)

with zero optimal value. We denote the generalized Jacobian of H at z by ∂H(z). Further,
we consider the properties of Ψ, where Ψ is continuously differentiable at z.

Theorem 2.2. The function Ψ is continuously differentiable at z and its gradient is given
by

∇Ψ(z) = QTH(z),

where Q ∈ ∂H(z).

The generalized Jacobian of H at z = (x, y, λ) ∈ Rn ×Rn ×R is defined by

∂H(z) =

 Da(z) Db(z) 0
(m− 1)(λB −A)xm−2 −I Bxm−1

2xT 0 0

 ,

where
Da(z) := diag{a1(z), . . . , an(z)},

Db(z) := diag{b1(z), . . . , bn(z)},

and
ai(z) = 1− xi√

x2
i + y2i

,

bi(z) = 1− yi√
x2
i + y2i

,

for (xi, yi) ̸= (0, 0), i = 1, 2, . . . , n. For (xi, yi) = (0, 0), we define (ai(z), bi(z)) = (1−ζ, 1−ς),
where (ζ, ς) satisfies ∥(ζ, ς)∥ ≤ 1, i = 1, 2, . . . , n. And for a tensor T = (ti1...im) ∈ Tm,n and
a vector x ∈ Rn, T xm−2 is a matrix in Rn×n with its (i, j)-th component defined by

(T xm−2)i,j =

n∑
i3,...,im=1

tiji3...imxi3 . . . xim .

We are in the position to present the inexact Levenberg-Marquardt method.

Algorithm 1: An inexact Levenberg-Marquardt method for TEiCP

Step 0: Given a starting vector z0 ∈ Rn and some scales p > 2, 0 < β < 1
2 , ρ > 0, ε ≥ 0.

Set k := 0.
Step 1: If ∥H(zk)∥ ≤ ε, stop. Otherwise, choose Qk ∈ ∂H(zk).
Step 2: Find an approximate solution dk satisfying the equation

((Qk)
TQk + µkI)dk = −∇Ψ(zk) + rk, (2.3)
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where µk ≥ 0 is the inexact Levenberg-Marquardt parameter and rk is the vector of residuals.
If the condition

∇Ψ(zk)
T dk ≤ −ρ∥dk∥p

is not satisfied, set
dk = −∇Ψ(zk).

Step 3: Find the smallest integer ik ∈ {0, 1, 2, . . .} such that tk = 2−ik and

Ψ(zk + tkdk) ≤ Ψ(zk) + βtk∇Ψ(zk)
T dk.

Step 4: Set zk+1 = zk + tkdk, k := k + 1, go to Step 1.

In Algorithm 1, dk can be computed by inexact equation (2.3). In the implementation
of inexact Levenberg-Marquardt method, we can set ∥rk∥ ≤ αk∥∇Ψ(zk)∥, where {αk} is a
sequence and αk ∈ (0, 1), αk → 0(k → ∞). To ensure global convergence, a line search is
used to minimize the natural merit function Ψ. If the search direction dk generated by (2.3)
is not a good descent direction, we can set dk = −∇Ψ(zk). In the following of this section,
we analyze the convergence properties of the given method. Next, we present the following
global convergence theorem.

Theorem 2.3. Suppose that {µk} is bounded and {rk} satisfies

∥rk∥ ≤ αk∥∇Ψ(zk)∥,

where {αk} is a sequence of numbers with 0 < αk < 1 and αk → 0 as k → ∞. Then each
accumulation point of {zk} is a stationary point of Ψ.

Proof. Let {zk}K is a subsequence of {zk} and {zk}K → z∗, k = 1, 2, . . . . Suppose that
dk = −∇Ψ(zk) for all k ∈ K, where K is an infinite set. Then we get the result of this
theorem by Proposition 1.16 in [2]. If dk is always computed by (2.3), we can get this
theorem by Theorem 12 in [11]. This completes the proof.

In the following of this section, we discuss the local rate convergence of the inexact
Levenberg-Marquardt method. Here, we assume that {rk} satisfies ∥rk∥ ≤ αk∥∇Ψ(zk)∥,
where {αk} is a sequence of numbers with 0 < αk < 1 and αk → 0 as k → ∞. Then we get
the following theorem.

Theorem 2.4. Suppose that z∗ is one of the accumulation point of {zk} and 2Bxm·Db(z
∗) ̸=

0, {µk} → 0. Then zk → z∗ Q-superlinearly.

Proof. From Theorem 2.1, 2Bxm · Db(z
∗) ̸= 0 and {µk} → 0, we can get this theorem by

Theorem 14 in [11].

3 Numerical Experiments

We implemented Algorithm 1 with the code in Matlab Version R2014a with Tensor Toolbox
Version 2.6 [1]. All numerical experiments were done at a laptop with an Intel (R) Core
(TM) i5-2520M CPU (2.50GHz) and RAM of 4.00GB. In order to verify the effectiveness of
Algorithm 1, we compare Algorithm 1 with SNM, SSNM, SPP and SPA method presented
in [5,6,13,18] and take the examples from [8,13,15,18]. In the implementation of Algorithm
1, we set ρ = 10−6, p = 2.1, β = 10−4, µk = 10−6 and maximum step Nmax = 300.
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Example 1 ([13]). Consider A ∈ S4,3, which is defined by

a1222 = 1, a1333 = 1,

a2111 = 1, a3111 = 1,

and the other ai1i2i3i4 = 0.

We use Algorithm 1 to compute Pareto Z-eigenvalues of A with the initial point z0 =
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]T and ε = 10−5. We get Pareto Z-eigenvalue 0.5566 and Pareto
Z-eigenvector [0.8002, 0.4240, 0.4240]T , which happens to be as the same as the results given
in [13]. The detailed numerical results are presented in Table 1. We also give Figure 1 to
show the iterations related to Pareto Z-eigenvalues. It is clearly to see that Algorithm 1 is
also efficient.

Table 1: Numerical results for Example 1.

Alg. λ Eigenvector Its. Time(sec.)

Algorithm 1 0.5566 (0.8002,0.4240,0.4240) 5 0.0682
SNM 0.5566 (0.8002,0.4240,0.4240) 5 0.1328
SSNM 0.5566 (0.8002,0.4240,0.4240) 5 0.5437
SPP 0.5566 (0.8004,0.4239,0.4239) 9 0.2817
SPA 0.5566 (0.8004,0.4239,0.4239) 229 2.0233

Figure 1: Pareto Z-eigenvalue of Algorithm 1 for Example 1.

Example 2. ([13,15]) Consider A ∈ S4,3, which is defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,

a1223 = 0.1862, a1133 = 0.3847, a1222 = 0.2972, a1123 = −0.2939,

a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,
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a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

We use Algorithm 1 to compute Pareto Z-eigenvalues of A with the initial point z0 =
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]T and set ε = 10−5. The numerical results are reported in Table
2. We also give Figure 2 to show the iterations related to Pareto Z-eigenvalues.

Table 2: Numerical results for Example 2.

Alg. λ Eigenvector Its. Time(sec.)

Algorithm 1 0.3633 (0.2676,0.6447,0.7160) 6 0.0873
SPP 0.3632 (0.2648,0.6445,0.7162) 7 0.1120
SPA 0.3632 (0.2771,0.6461,0.7112) 260 2.0137
SNM 0.2682 (0.6099,0.4362,0.6616) 5 0.0832
SSNM 0.2682 (0.6099,0.4362,0.6616) 6 0.0860

Figure 2: Pareto Z-eigenvalue of Algorithm 1 for Example 2.

Example 3. ([8]) Consider A, B ∈ S4,3, which are defined by

A(:, :, 1, 1) =

 0.6229 0.2644 0.3567
0.2644 0.0475 0.7367
0.3567 0.7367 0.1259

 ,A(:, :, 1, 2) =

 0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725

 ,

A(:, :, 1, 3) =

 0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711

 ,A(:, :, 2, 1) =

 0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725

 ,

A(:, :, 2, 2) =

 0.7689 0.3941 0.6034
0.3941 0.3577 0.3465
0.6034 0.3465 0.4516

 ,A(:, :, 2, 3) =

 0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608

 ,

A(:, :, 3, 1) =

 0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711

 ,A(:, :, 3, 2) =

 0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608

 ,
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A(:, :, 3, 3) =

 0.7581 0.7205 0.9044
0.7205 0.0782 0.7240
0.9044 0.7240 0.3492

 ,B(:, :, 1, 1) =

 0.6954 0.4018 0.1406
0.4018 0.9957 0.0483
0.1406 0.0483 0.0988

 ,

B(:, :, 1, 2) =

 0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665

 ,B(:, :, 1, 3) =

 0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390

 ,

B(:, :, 2, 1) =

 0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665

 ,B(:, :, 2, 2) =

 0.3608 0.3914 0.5230
0.3914 0.6822 0.5516
0.5230 0.5516 0.7091

 ,

B(:, :, 2, 3) =

 0.4632 0.2043 0.2823
0.2043 0.7288 0.7400
0.2823 0.7400 0.9369

 ,B(:, :, 3, 1) =

 0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390

 ,

B(:, :, 3, 2) =

 0.4632 0.2043 0.2823
0.2043 0.7288 0.7400
0.2823 0.7400 0.9369

 ,B(:, :, 3, 3) =

 0.8200 0.5914 0.4983
0.5914 0.0762 0.2854
0.4983 0.2854 0.1266

 .

We use Algorithm 1 to compute eigenpair of (A,B) with a random vector uniformly
distributed in (0, 1) and we also set ε = 10−5. We get the eigenvalue 1.5477 and the
eigenvector (0.2406, 0.1751, 0.9547)T after 34 iterations. We also give Figure 3 to show the
iterations related to eigenvalues.
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Figure 3: Eigenvalue of Algorithm 1 for Example 3.

Example 4. ([8]) Consider A,B ∈ S4,2, which are defined by

A(:, :, 1, 1) =

(
0.8147 0.5164
0.5164 0.9134

)
,A(:, :, 1, 2) =

(
0.4218 0.8540
0.8540 0.9595

)
,

A(:, :, 2, 1) =

(
0.4218 0.8540
0.8540 0.9595

)
,A(:, :, 2, 2) =

(
0.6787 0.7504
0.7504 0.3922

)
,



LEVENBERG-MARQUARDT METHOD FOR TECP 95

B(:, :, 1, 1) =
(

1.6324 1.1880
1.1880 1.5469

)
,B(:, :, 1, 2) =

(
1.6557 1.4424
1.4424 1.9340

)
,

B(:, :, 2, 1) =
(

1.6557 1.4424
1.4424 1.9340

)
,A(:, :, 2, 2) =

(
1.6555 1.4386
1.4386 1.0318

)
.

We consider to compute eigenpairs of (A,B) with Algorithm 1 by difference starting
points. The first set of starting points are all a vector of ones and the second set of starting
points are random vectors uniformly distributed in (0, 1). We set ε := {5× 10−3, 10−3, 5×
10−4}. The numerical results with the two different initial points are proposed in Tables 3
and 4, respectively. From the numerical results, it is clearly to see that Algorithm 1 is also
efficient.

Table 3: Numerical results with starting point (1, . . . , 1)T for Example 4.

ε λ Eigenvector Its.

5.0e-03 0.4841 (0.3693, 0.9293)T 15
1.0e-03 0.4849 (0.3679, 0.9299)T 17
5.0e-04 0.4847 (0.3669, 0.9302)T 19

Table 4: Numerical results with random starting point for Example 4.

ε λ Eigenvector Its.

5.0e-03 0.4850 (0.3701, 0.9290)T 14
5.0e-03 0.4839 (0.3691, 0.9294)T 14
5.0e-03 0.4845 (0.3701, 0.9290)T 15
1.0e-03 0.4992 (1.0000, 0.0000)T 7
1.0e-03 0.4989 (1.0000, 0.0000)T 15
1.0e-03 0.4847 (0.3660, 0.9306)T 12
5.0e-04 0.4992 (1.0000, 0.0000)T 16
5.0e-04 0.4992 (1.0000, 0.0000)T 15
5.0e-04 0.4849 (0.3672, 0.9301)T 18

Example 5. ([18]) Consider A, B ∈ S4,3, which are defined by

A(:, :, 1, 1) =

 0.4468 0.4086 0.5764
0.4086 0.8176 0.5867
0.5764 0.5867 0.8116

 ,A(:, :, 1, 2) =

 0.2373 0.5028 0.7260
0.5028 0.5211 0.4278
0.7260 0.4278 0.6791

 ,

A(:, :, 1, 3) =

 0.0424 0.0841 0.6220
0.0841 0.8181 0.4837
0.6220 0.4837 0.6596

 ,A(:, :, 2, 1) =

 0.2373 0.5028 0.7260
0.5028 0.5211 0.4278
0.7260 0.4278 0.6791

 ,

A(:, :, 2, 2) =

 0.3354 0.7005 0.3154
0.7005 0.1068 0.7164
0.3154 0.7164 0.7150

 ,A(:, :, 2, 3) =

 0.1734 0.5972 0.6791
0.5972 0.0605 0.4080
0.6791 0.4080 0.6569

 ,
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A(:, :, 3, 1) =

 0.0424 0.0841 0.6220
0.0841 0.8181 0.4837
0.6220 0.4837 0.6596

 ,A(:, :, 3, 2) =

 0.1734 0.5972 0.6791
0.5972 0.0605 0.4080
0.6791 0.4080 0.6569

 ,

A(:, :, 3, 3) =

 0.4897 0.6299 0.6104
0.6299 0.0527 0.5803
0.6104 0.5823 0.5479

 ,B(:, :, 1, 1) =

 2.5328 2.6133 2.7630
2.6133 2.5502 2.4151
2.7630 2.4151 2.3012

 ,

B(:, :, 1, 2) =

 2.3955 2.2026 2.8921
2.2026 2.8852 2.5060
2.8921 2.5060 2.2619

 ,B(:, :, 1, 3) =

 2.1586 2.8867 2.7372
2.8867 2.4538 2.2579
2.7372 2.2579 2.1332

 ,

B(:, :, 2, 1) =

 2.3955 2.2026 2.8921
2.2026 2.8852 2.5060
2.8921 2.5060 2.2619

 ,B(:, :, 2, 2) =

 2.9037 2.7948 2.5391
2.7948 2.1978 2.2653
2.5391 2.2653 2.4799

 ,

B(:, :, 2, 3) =

 2.6280 2.1537 2.2689
2.2026 2.9841 2.2698
2.8921 2.2698 2.1981

 ,B(:, :, 3, 1) =

 2.1586 2.8867 2.7372
2.8867 2.4538 2.2579
2.7372 2.2579 2.1332

 ,

B(:, :, 3, 2) =

 2.6280 2.1537 2.2689
2.2026 2.9841 2.2698
2.8921 2.2698 2.1981

 ,B(:, :, 3, 3) =

 2.9427 2.3596 2.7611
2.3596 2.7011 2.6822
2.7611 2.6822 2.6665

 .

We use Algorithm 1 to compute eigenpairs of (A,B) with an arbitrary vector uniformly
distributed in (0, 1) and set ε := {5 × 10−3, 10−3, 5 × 10−4} respectively. The numerical
results with different random starting points are reported in Table 5. From the numerical
results, we can see that Algorithm 1 using less iterations.

Table 5: Numerical results with random starting points for Example 5.

ε λ Eigenvector Its.

5.0e-03 0.2173 (0.0704, 0.0000, 0.9975)T 5
5.0e-03 0.2170 (0.0702, 0.0000, 0.9975)T 5
5.0e-03 0.2175 (0.0685, 0.0046, 0.9977)T 9
1.0e-03 0.2171 (0.0698, 0.0019, 0.9976)T 15
1.0e-03 0.2169 (0.0703, 0.0005, 0.9975)T 6
1.0e-03 0.2170 (0.0703, 0.0000, 0.9975)T 8
5.0e-04 0.2169 (0.0702, 0.0007, 0.9975)T 9
5.0e-04 0.2169 (0.0702, 0.0011, 0.9975)T 7
5.0e-04 0.2170 (0.0700, 0.0013, 0.9975)T 8

4 Conclusion

In this paper, we reformulate the tensor eigenvalue complementarity problem into nonsmooth
equations by Fischer-Burmeister function and present an inexact Levenberg-Marquardt
method to solve it. The numerical results show the efficiency of the proposed method.
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