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benefitting for better flexibility and adaptability to specific data. Therefore, methods for
adaptively learning a dictionary with specific properties from instance of data is still an
intensively ongoing research in DL. In the field of classification, some methods such as D-
KSVD (discrimination K-SVD) [46], LC-KSVD (label consistent K-SVD) [19] have reached
quite high accuracies. Previous works mainly emphasize presentative ability more while
paying little attention on the potential of discrimination power. Therefore, our main purpose
of this paper is to take an exploration for the capability of the Synthesis K-SVD framework
in handling pattern classification problems.

It is well known that SRC with embedding ℓ1-norm algorithm considers classification
between each class. Then the development of joint sparse representation based classification
(JSRC) was proposed [27, 35], which assumes that the query face images share the same
sparsity pattern information with training and general images. Instead of solving the SRC
problem for each query image, JSRC with ℓ2,1-norm is applied to solve a set of query images
from the same subject. However, this assumption will not be true when there are large pose
differences in the query images. Therefore, forcing the entire view share the same sets of
atoms is not applicable for the multi-view face recognition. To overcome this problem, the
joint dynamic sparse representation based classification (JDSRC) was proposed [45], and
its sparsity brings flexibility to atom selection of JSRC. When the pose variation is large
in the query images, JDSRC does not necessarily select the same atom for all poses, this
may not lead to a robust solution. In addition, the JDSRC is achieved by an extension of
simultaneous orthogonal matching pursuit [35] which is a naive greedy method, Hence, this
method may not be convergent. Then, the MSRC [47] is proposed to decrease the influence
when a face image has large pose variation in the recognition process. Although the method
is convergent, the effect of recognition is not particularly satisfactory. Therefore, a new
algorithm is required to solve this challenging multi-view problem.

In [32], the authors argue that the robustness of SRC based methods should be achieved
by employing the ℓ1-norm loss function instead of the ℓ2-norm loss. As solving this issue is
similar to the ℓ1-norm of Lasso in statistics functional form, i.e., the robust Lasso, which
explicitly models the corruptions, is proposed and analysed in [28]. Statistically, this is
more generic and proven to be better than the least entropy and error correction alternative
discussed in [38]. However, this is achieved at the cost of an extra regularisation parameter.
In the related robust paper [30], a slightly different loss function, known as Huber’s robust
loss function is employed, but it requires the estimates of the Huber’s parameters, which
induces additional computational burden and over-penalization. The most advanced result
is archived by [47], which is introduced a trade off between the ℓ1-norm from SRC and
ℓ2,1-norm from JSRC to achieve high recognition performance, as when some face images
are with a certain degree, this mixed norm will find an optimal representation based on the
shared information induced from multi-views, meanwhile, the structured sparse method also
can be improved by the ℓ0-norm regularization.

Essentially, our aim in this paper is to investigate the ignored mutual dependence among
observations of the learned dictionaries from K-SVD, which would contain variation features
about the uncontrolled variations for each subject. For such purpose, a new scheme called
the KSVD-MSRC approach is proposed, which is different from the traditional SRC. The
proposed approach will utilize the classification of framework via a revised K-SVD algorithm.
Moreover, in order to achieve more robustness, we propose the mixed ℓ0-norm regularization
instead of the general ℓ1-norm and ℓ2-norm. Furthermore, based on recent advantages in the
alternating direction method of multipliers (ADMM), the proposed KSVD-MSRC problem
can be easily split into three subproblems. Compared with MADMM(manifold based on
alternating direction method Of multipliers) [44] and SADMM(subspace based alternating
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direction method Of multipliers) [43], the biggest difference is that our problem is nonconvex
while other two problems are convex. In summary, our main contributions can be described
as follows:

1. The dictionary is learned by employing the revised K-SVD model, which is employed
to solve this optimization problem via the ℓ0-norm optimization in each step. The
reason is that the ℓ0-norm is the essential measure of sparsity, and the ℓ1-norm can
only been seen as its best convex relaxation form.

2. The mixed ℓ0-norm regularization model with ℓ1 fidelity combines the advantages of
SRC and JSRC. By virtue of the mixed ℓ0-norm regularization, the proposed model
is more robust when it deals with large pose variation images. To the best of our
knowledge, this is the first time to integrate the mixed ℓ0-norm regularization and ℓ1
fidelity, which has demonstrated the superiority of performance.

3. An efficient algorithm using the alternating direction method of multipliers to optimize
our KSVD-MSRC models is developed. Moreover, promising results from extensive
comparison experiments on 3 benchmark databases validate the effectiveness of our
method and demonstrate the great potential of KSVD-MSRC in pattern classification
tasks.

The remainder of this paper is organized as follows. In section 2, we review the basic
of dictionary learning. In section 3, the proposed algorithm KSVD-MSRC is described
in details. In section 4, extensive recognition experiments are conducted on 3 databases:
CMU-PIE, Multi-PIE and YaleB. Finally, we obtain a conclusion in section 5.

2 Related Work

2.1 Sparse Representation via ℓ1-norm

In [39], the discriminative nature of sparse representation is exploited to perform classifi-
cation. They assumed that any test sample can be represented as a linear combination
of training samples from each class. This representation is naturally sparse, and involves
only a small fraction of the overall dictionary. Based on this assumption, they introduced
the sparse representation based classification (SRC). In sparse representation classification,
given a set of gallery images A = [a1, a2, . . . , an] ∈ Rm×n, one seeks a sparse combination
of these images to represent an unknown images Y . Such a sparse solution can be found by
solving following problem in [39]:

min
X

1

2
∥Y −AX∥22 + λ∥x∥1,

where λ is a tuning parameter, and ∥X∥1 is defined as the sum of absolute values of all entries.
This convex optimization problem can be solved efficiently with many algorithms developed
specifically for Compressed Sensing (CS). Then SRC combines this sparse representation
with nearest subspace classification. In other words, it computes the class-specific residual
vector and the target Y is classified according to the minimum ℓ2-norm of the residual
vectors:

rk = Y −AkXk,

class(Y ) = argmin
k

∥rk∥22,
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where Ak is the sub-matrix of A that corresponds to all gallery images in class k, and Xk is
the sub-vector of X with the corresponding sparse coefficients.

2.2 IIHT Algorithm via ℓ0-norm

To make the ℓ0-norm algorithm converge to a point satisfying certain optimality conditions
(stationarity), a proper selection of step size is necessary at each iteration. An adaptive step
size rule based on the restricted isometry property [3] to ensure a sufficient decrease in the
objective per iteration for the classical linear compressed sensing is introduced. Recently,
for the nonlinear sparse optimization problem, a non-monotone line search to ensure its
convergence is proposed [24]. The remaining part of IIHT just follows the original IHT,
which is described as follows,

min
x

1

2
∥y −Ax∥22 + λ∥x∥0,

where ∥x∥0 is defined as the number of nonzero entries. We emphasize that the major
computation is very easy to obtain via solving,

argmin{∥y − x∥22, s.t. y ∈ Rn}, (2.1)

By considering the restricted strong convexity and smoothness of f(x), the convergence of
IIHT can be established. Suppose that the function f(x) has the Lipschitzian gradient with
L-stationary point Ls [2]. For any x, y ∈ Rn satisfying ∥Γxy∥0 ≤ s, one has

∥(∇(f(y)−∇f(x))Γxy∥22 ≤ Ls∥y − x∥22.

where ∇f(x) is the gradient of f(x) on Rn. Let the sequence {xk} be generated by IIHT.
It can be shown that the linear convergence rate both in terms of functional value sequence
{f(xk)} and the sequence itself {xk}. That is, for any sufficiently large k, it holds,

∥xk+1 − x∗∥22 ≤ ρ∥xk − x∗∥22,

where ρ is a constant, x is any s-sparse and obeys y = Ax.
We note that the above fast convergence is significant in the analysis of ℓ0-norm algo-

rithm. The numerical experiments demonstrate IIHT can work as well as original ℓ0-norm
in reconstruction ability and accelerate the speed of spare coding, according to the DL
algorithm process.

2.3 Synthesis Dictionary Learning

The main idea of SDL is to approximately reconstruct the original samples by the combi-
nation of dictionary atoms with respective weight factors. The weight factors are stored
in the form of coefficients. Let Y = [y1, y2, . . . , yn] ∈ Rm×n be the original data ma-
trix, each column of which represents the m-dimensional feature of one sample. And let
X = [x1, x2, . . . , xn] ∈ Rc×n be the coding coefficients of Y over a learnt dictionary. The
basic formula of SDL is presented as the following:

min
D,X

∥Y −DX∥2F

s.t. D ∈ A, ∥xi∥0 ≤ T0, ∀i,



IMAGE SET FACE RECOGNITION VIA THE MIXED ℓ0-NORM SRC 179

where D ∈ Rm×c is the synthesis dictionary, A denotes a set of constraints on D to make the
solution non-trivial, and T0 is the sparsity level. Euclidean distance is always an effective
tool for distance metric. In the above formula, minimizing the square of Frobenius norm
means minimizing the sum of all the distances between original data and its approximate
representation, i.e. minimizing the residual.

The column dimension represents the poses/images in the gallery as grouped by subjects,
while the row dimension represents different images in the unknown set Y . Each column
denotes a sparse representation vector and each square denotes a coefficient. (a) Independent
sparsity (as in SRC): all coefficients are selected independently based on ℓ1 regularization;
(b) IIHT based on ℓ0-norm: nonconvex penalty functions perform better than the ℓ1-norm
in terms of estimation accuracy and consistency; (c) Dictionary learning: Update the D
and X used ℓ0-norm algorithm of OMP(Orthogonal Matching Pursuit); As mention above,
a new mixed sparsity should be the highest priority requirement to balance both ℓ0 and ℓ1
to adaptively select the suitable class-level and atom-level sparsity.

3 The Proposed Model

The main idea of proposed method is to focus on two parts. Firstly, it is to learn the dis-
crimination dictionary on which we can gain effective coefficients of each sample. Secondly,
the mixed ℓ0-norm sparse representation classification method to overcome the issues with
JDSRC is presented.

3.1 Dictionary Learning with Synthesis K-SVD

The dictionary learning methods aim to learn a good dictionary from original training sam-
ples such that it can properly represent the original samples in feature extraction process.
But due to original K-SVD embedding with OMP method has the unsupervised nature char-
acteristic, it suffers from low classification accuracy and slow training speed. Consequently,
a new proposed method embedding with IIHT algorithm is to learn an optimized dictionary
with which we can gain effective coefficients of each sample with fast training speed. How-
ever, section 2.3 only focuses on representative power without considering discrimination
ability of dictionary. For performing pattern classification tasks better, we expect that im-
ages from the same class have similar representations. This problem can turn to handle the
problem of learning a dictionary which impels coefficients obtained from intra-class images
mostly similar and close but maximizes the dissimilarity of inter-class coefficients. Mathe-
matically, in the original K-SVD formulation, Y can be any face data for one subject and
D is the learned dictionary representing this subject.

Assume there are totally P subjects and n images per person in the training set,
we can write Y as Y = [Y1, Y2, . . . , Yp] ∈ Rd×N . Hence, Yi can be rewritten as yi =
[yi1, yi2, . . . , yin] ∈ Rd×n, where yij is a d-dimensional vector of cropped face image. In
order to extract more discriminative and robust information from this training set, K-SVD
aims to simultaneously learn a discriminative structured dictionary for all individual image
sets for each subject, on which each image is encoded by a discriminative coefficient. To
achieve this, we formulate the following optimization problem:

min
Di,Xi

∥Yi −DiXi∥2F + λ∥Xi∥0,

where Yi ∈ Rd×n is a group of samples from the training subject, and each column of Yi

denotes a face vector, Xi is the coefficient vector of Yi, which is the sparse representation of
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training samples in Y . In this paper, we choose Pan’s [22] method to use the IIHT algorithm
for faster convergence. Here, D = [D1, D2, . . . , Dp] is a structured dictionary learned from
the K-SVD, Xi is simultaneously penalized by the same parameter λ in this paper. In
detail, this term enforces data from each class have their own target different expressions
after transformation. That is to say, the coefficients Xi for one subject are similar with ones
from identical category while distinct with ones from other classes. An appropriate value of
parameter can make our model be balanced with discriminative power in next subsection.

In general, the difference of sparse codes for two face images should be minimized if they
are from the same class as they should look similar, the difference of sparse codes for two face
images should be maximized if they are from different classes as they should be different. In
this case, the images of per subject are separately trained by the K-SVD to obtain different
dictionaries. It is reasonable that combining all dictionaries forms an integrated dictionary
which has the standard class labels corresponding to the image labels before trained. So,
after the group sparse coding and dictionary updating, we can archive a collection of X and
D with class labels, where X = [X1, X2, . . . , Xn] and D = [D1, D2, . . . , Dp]. In detail, the
update of k-th column of each subject is done by rewriting the penalty term as

∥Yi −DiXi∥2F = ∥(Yi −
∑
j ̸=k

djx
j
T )− dkx

k
T ∥2F

= ∥Ek − dkx
k
T ∥2F

where Xk
T denotes the k-th row of Xi. After this step, we preserve the matrix Ωk with a

size n × |{i|1 ≤ i ≤ K,xk
T (i) ̸= 0

∩
xk
T (i) ≤ T}| according to the sparsity [1]. The same

effect happens with ER
k = EkΩk, implying a selection of error columns that correspond to

examples that use the atom dk. So the minimization problem as mentioned before becomes
∥ER

k − dkx
k
TΩk∥2F , which can be solved into U∆V T by using the SVD. Then we can obtain

that, dk = U(:, 1) and the coefficient vector xk = xk
TΩk is actually the first column of

V ×∆(1, 1). Once the entire dictionary is updated, the sparse coding process will be invoked
again and then we can update D consequently. The details of the solution of K-SVD is
described as below:

In summary, the update scheme for the K-SVD can be rapidly implemented in each iteration,
and the discriminate dictionary is achieved by minimizing the following subsections.

3.2 The Proposed KSVD-MSRC for Robust Sparse Representation

In this section, we aim to modify the SRC algorithm based on the revised K-SVD algorithm.
In fact, by combining the learned dictionaries from the proposed K-SVD for each subject, the
joint sparse representation classification (JSRC) [27] can be modified to exploit the shared
information from all the samples. To describe our model,we first extend the original SRC
to the following robust and stable formulation for sparse representation:

min
X

1

2
∥DY −DAX∥1 + λ∥X∥0,

where DY ∈ Rd×N represents the probe dictionary matrix that contains all the samples in
probe set, and DA ∈ Rd×m is the dictionary matrix that learned from the gallery set. Next,
we introduce information sharing between different face views. Recall that each column of
the coefficient matrix X ∈ Rm×N represents one view of a subject, and each row represents
the weights of the corresponding gallery images in all views of the same subject. The same
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Algorithm 1: Revised KSVD

1: Task Find the best dictionary to represent the data samples Y .
2: Initialize D0 ∈ Rd×N , set J = 1
3: repeat
4: Sparse Coding Step: Using the IIHT technique in [23] to compute the

representation vectors X = [X0, X1, . . . , XN ].
5: Codebook Update Step: For each column k = 1, 2, . . . , n in DJ−1,update it by

- Calculate the error matrix Ek = Y −
n∑

j ̸=k

djx
j
k,

Restrict Ek by choosing only the columns corresponding to
|{i|1 ≤ i ≤ K,xk

T (i) ̸= 0
∩
xk
T (i) ≤ T}|, and obtain ER

k

- Using SVD decomposition ER
k = U △ V T

- Update the dictionary column dk = U(:, 1)

- Update the cloned vector xk = V (:, 1) ∗ △(1, 1)

6: until Set J = J + 1.

hypotheses are applied with JSRC, the shared information appears in each face image for
one subject onto the previous formulation. The ℓ2,0-norm is used on the coefficients matrix
X to exploit the shared information. To the best of our knowledge, we are the first to
model the mixed ℓ2,0-norm problem JSRC framework with nonconvex regularization. In
comparison to the convex ℓ2,1-norm, this nonconvex ℓ2,0-norm enables us to extract a higher
performance. In this paper, we propose the following optimization model:

min
X

∥DY −DAX∥1 + λ∥X∥∗, (3.1)

where the mixed ℓ0-norm is defined as

∥X∥∗ = γ∥X∥0 + (1− γ)∥X∥2,0.

Here, ∥X∥2,0 is the cardinality of the ℓ2-norm of all rows of a matrix. The parameter γ
controls the trade-off between ℓ0-norm and ℓ2,0-norm.

To make use of the structure of (3.1), we then formulate (3.1) as an equivalent constrained
problem

min
X,V,Z,T

∥V ∥1 + γλ∥Z∥0 + (1− γ)λ∥T∥2,0 (3.2)

s.t. DAX −DY − V = 0, X − Z = 0, X − T = 0.

The associated augmented Lagrangian function is defined as follows

L(X,V, Z, T,W1,W2,W3)

= ∥V ∥1 + γλ∥Z∥0 + (1− γ)λ∥T∥2,0
−tr[WT

1 (DAX −DY − V )] +
σ1

2
∥DAX −DY − V ∥2F

−tr[WT
2 (X − Z)] +

σ2

2
∥X − Z∥2F
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−tr[WT
3 (X − T )] +

σ3

2
∥X − T∥2F ,

which can be simplified to

L(X,V, Z, T,W1,W2,W3)

= ∥V ∥1 + γλ∥Z∥Φ + (1− γ)λ∥T∥2,Φ
+
σ1

2
∥DAX −DY − V −W1/σ1∥2F

+
σ2

2
∥X − Z −W2/σ2∥2F

+
σ3

2
∥X − T −W3/σ3∥2F + C,

where W1,W2,W3 are the Lagrange multipliers, σ1, σ2, σ3 are positive penalty parameters,
tr(·) is the trace of matrix, and C is a constant. It is difficult to simultaneously optimize all
these variables. We therefore approximately solve this optimization problem by alternatively
minimizing one variable with the others fixed. Under the framework of multi-block ADMM,
the optimization problem of L with respect to each variable can be solved by the following
steps. Now, we will show that each step of the ADMM either has a closed-form solution or
can be solved by a fast solver.

Step 1: For variable V , the optimization subproblem of L with respect to V
is equivalent to

V k+1 = argmin
V

∥V ∥1 +
σ1

2
∥DAX

k −DY − V −W k
1 /σ1∥2F .

From the following lemma, the solution can be given by the following soft-shrinkage operator

V k+1 = shrink2,1(DAX
k −DY −W k

1 /σ1, 1/σ1). (3.3)

Lemma 3.1 The minimization problem

min
x

λ∥x∥1 +
1

2
∥x− t∥22

with λ > 0 and t ∈ R has a closed-form solution, and it is given by the following soft-
shrinkage operator

x∗ = shrink2,1(t, λ) := sign(t) ◦max {|t| − λ, 0} ,

where ◦ and sign represent, respectively, the point-wise product and the signum function,
and all operations are done componentwise. See [9] and [11] for more details.

Step 2: For the variable Z, optimizing L with respect to Z can be simplified
to

Zk+1 = argmin
Z

γλ∥Z∥0 +
σ2

2
∥Xk − Z −W k

2 /σ2∥2F .

According to the lemma below, the solution is

Zk+1 = shrink2,0(X
k −W k

2 /σ2, 2γλ/σ2). (3.4)

Lemma 3.2 The minimization problem

min
x

λ∥x∥0 + ∥x− t∥22
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with λ > 0 and t ∈ R has a closed-form solution which is given by the following hard-
shrinkage operator

x∗ = shrink2,0(t, λ) :=

{
t if |t| > λ0.5,
0 if |t| ≤ λ0.5.

Step 3: For variable T , the subproblem of L with respect to T can be trans-
formed as

T k+1 = argmin
T

(1− γ)λ∥T∥2,0 +
σ3

2
∥Xk − T −W k

3 /σ3∥2F .

Notice that the optimizations of each row are independent of each other. Therefore, it can
be decomposed into

tk+1
i = argmin

ti
(1− γ)λ∥ti∥2 +

σ3

2
∥xk

i − ti − (wk
3 )i/σ3∥22,

where ti, x
k
i , (w

k
3 )i are the i-th row vectors of T,Xk,W k

3 , respectively. Based on the following
lemma, it can be solved by

tk+1
i = shrink2,2(x

k
i − (wk

3 )i/σ3, (1− γ)λ/σ3).

Lemma 3.3 The minimization problem

min
x

λ∥x∥2 +
1

2
∥x− t∥22

with λ > 0 and t ∈ R has a closed-form solution, and it is given by

x∗ = shrink2,2(t, λ) :=
t

∥t∥2
◦max {∥t∥2 − λ, 0} .

Hence, the solution of this subproblem is

T k+1 = shrink2,0(T
k+1, 2(1− γ)λ/σ3). (3.5)

Step 4: For variable X, the subproblem of L with respect to X is equivalent
to the linear system

(σ1D
T
ADA + σ2I + σ3I)X = σ1D

T
A(DY + V k +W k

1 /σ1)

+ σ2(Z
k +W k

2 /σ2) + σ3(T
k +W k

3 /σ3),

which yields,

Xk+1 = (σ1σ1D
T
ADA + σ2I + σ3I)

−1 (3.6)

(σ1D
T
A(DY + V k +W k

1 /σ1) + σ2(Z
k +W k

2 /σ2)

+ σ3(T
k +W k

3 /σ3)).

In practice, it can be efficiently solved by applying Cholesky decomposition.
Step 5: For dual variables W1,W2,W3, according to the ADMM, the multipli-

ers associated with L are updated by the following formulas

W k+1
1 = W k

1 − σ1(DAX
k+1 −DY − V k+1), (3.7)
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W k+1
2 = W k

2 − σ2(X
k+1 − Zk+1),

W k+1
3 = W k

3 − σ3(X
k+1 − T k+1).

By summarizing the above steps, one can obtain the solutions by Algorithm 2, and the
convergence is given as follows.
Theorem Suppose that {(V k, Zk, T k, Xk

1 ,W
k
1 ,W

k
2 ,W

k
3 )} is a sequence generated by Algo-

rithm 2, then any cluster point (V ∗, Z∗, T ∗, X∗,W
∗
1 ,W

∗
2 ,W

∗
3 ) of the sequence is a stationary

point of (3.2).
The proof follows a similar line of arguments as in [14] and [42], thus we omit the detail for
succinctness.

Algorithm 2: - The KSVD-MSRC solution based on the ADMM

1: input
Probe face dictionary DY ∈ Rd×N , galley dictionary set DA ∈ Rd×m, regularization
parameters λ and γ, penalty parameters σ1, σ2 and σ3 .

2: Initialize
V ∈ Rd×N , Z ∈ Rm×N , T ∈ Rm×N , W1 ∈ Rd×N , W2 ∈ Rm×N , W3 ∈ Rm×N .

3: repeat
4: While not converge do
5: 1. Update V K+1 according to (3.3)
6: 2. Update ZK+1 according to (3.4)
7: 3. Update TK+1 according to (3.5)
8: 4. Update XK+1 according to (3.6)
9: 5. Update WK+1

i according to (3.7)
10: until Some stopping criterion

3.3 Recognition and Classification

The fitness for class k is represented by the residual matrix

Ek = DY −Dk
AX

k,

Identify(Y ) = argmin
k

∥Ek∥2F ,

where Dk
A is the k-th column of the training set DA, and Xk is the coefficient matrix cor-

responding to each subject. In summary, the proposed method is based on a joint sparse
representation with the revised K-SVD on ℓ0-norm and ℓ2,0-norm optimization. In fact,
the mixed norm optimization for sparse representation in motivated by the following obser-
vations: 1) The input samples are assumed to lie on dictionary learning from the revised
K-SVD learning method for face images; 2) The optimized variables can be transferred to a
mixed norm optimization if the variable and input data is linearly related as demonstrated
in [47]. 3) The treatments on optimization to the K-SVD and KSVD-MSRC are different.

4 Numerical Experiments

In this section, we can apply our algorithms to solve the mixed norm model and compare
them with the other methods. All the experiments are performed using MATLAB (R2017a)
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on a desktop computer with an Intel Xeon E5 4.0 GHz Dual Core with 32 GB RAM to show
effectiveness of the proposed approach. Three popular face databases, including the CMU-
PIE, YaleB and Multi-PIE, which are shown in the Fig.1 are used. In order to show the
performance of our proposed method, three parts of experiments are conducted, including:
1) Parameters set-up, 2) The proposed K-SVD and convergence analysis for the KSVD-
MSRC, 3) Performance analysis for face recognition.

Figure 1: From top to bottom are CMU-PIE, YaleB, Multi-PIE databases which is described
in our experiment.

4.1 Parameters Set-up

For notational convenience, the novel method is denoted as KSVD-MSRC. For the param-
eters of K-SVD model, here the dictionary length is assumed to be the length of the input
samples. In spare representation, we follow the standard cross validation procedure in ma-
chine learning to select the regularisation parameter λ for SRC and JSRC. This is achieved
by further dividing the training set into a smaller training set and a validation set. For
the proposed KSVD-MSRC method, we also follow the same procedure, wherein all the
training, validation, and test sets are exactly the same as those used for SRC and JSRC.
The only minor difference is that KSVD-MSRC has both the regularisation parameter λ
and the mixed norm parameter γ (γ ∈ [0, 1]). All initial values (W 0

1 ,W
0
2 ,W

0
3 ) = (0, 0, 0, 0).

As is well know, the accuracy of the solution depends on the value of the regularization
parameters λ and γ. Thus, we will try values from the set {0.5, 0.1, 0.05, 0.01, 0.005,
0.001} and select the one that give the highest recognition rate. Regarding the penalty
parameters σ1, σ2, σ3, we also try some values and choose a satisfactory performance values.
This means the computation slightly increases because the search is done on two dimensions.
From the interpretation of the role of in controlling the pose variation and our intensive nu-
merical studies, we suggest that the computational increase in cross validation might be
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reduced by a preliminary estimation of the pose variations.

4.2 The proposed K-SVD and Convergence Analysis for the KSVD-MSRC

In this section, the performance of proposed K-SVD and convergence of KSVD-MSRC will
be evaluated. As motivated by discrimination representation, novel method should have
the effect of compacting dictionaries and preserving feature similarity. To evaluate the
compactness of the learned dictionary from the proposed K-SVD, the embedded IIIHT with
λ = 0.0005, σ = 0.4 is employed to calculate the normalized orthogonality in face images.
Since the ℓ0-norm problem is a convex problem which can be iteratively solved with high
efficiency, so the reconstruction error it is an important indicator in this experiment. In Fig.2,
the different number of coefficients and iterations are considered. It show the reconstruction
error of the YaleB database based revised K-SVD algorithm with the sparsity level 5 to 35,
and it is clear that with the increasing sparsity, the error is decreased, and we also can see
that all the cases reach the reconstruction error threshold after 12 iterations. These show
that revised K-SVD algorithm always converges rapidly regardless of the dictionary size.

Figure 2: An example of revised K-SVD process on the YaleB face database. (a) the
reconstruction error via same sparsity. (b) the reconstruction error via same iteration.

In addition, the RMSE(root mean square error) and time of recognition process is also
considered for face recognition performance. In the sequent section, the computation time of
K-SVD is calculated when it has 40 images per person on the CMU-PIE database. For a fair
and thorough comparisons, 100 subjects are recorded on each database respectively for the
computational time. Iteration number is set as 40. All images are resized to 32×32 = 1024,
and the training samples are randomly chosen from the database, the final results are shown
in Fig. 3, with the increase of the dictionary size, the RMSE of proposed K-SVD will
be gradually stable and smaller than the original K-SVD, and the computational time of
proposed K-SVD increases slower than the K-SVD when the sample number is sufficiently
large.

The above results show that the proposed K-SVD can achieve the better performance
with compact characterization. Its effectiveness on face recognition based on the proposed
KSVD-MSRC will be conducted based on the ADMM framework. When we setup the proper
stopping criterions, the proposed ADMM-based method can converge to modest accuracy
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Figure 3: Illustration of the RMSE and time cost via orignial K-SVD and revised K-SVD
on CMU-PIE database.

within a few tens of iterations, this behavior makes our method deal with large-scale problem
in a short time. It can be seen from the Fig.4, with the increasing iteration, the objective
function is decreasing and stable after 30 iterations.

4.3 Face Recognition with different Number of Views

In order to show the performance of related methods under different number of views, we fol-
low the experiment settings in [45] for CMU-PIE data set. The views subset [0◦,±22.5◦,±45◦,
±67.5◦,±90◦] are chosen for the training set. Only one face image is selected for each sub-
ject with each pose in the training, and only one image for each pose. Since we randomly
select from all 13 poses, the selected pose may not exist in the training set. For the YaleB
data set, the same setting is also applied, which will makes our experiments more realistic
and challenging.

In Fig.5, the classification accuracy of the proposed method both on CMU-PIE and YaleB
are compared with others. As it can be seen, traditional subspace methods cannot reach
satisfactory classification rates, but all SRC based methods can work well in multiple-views
scenario. If there is just one testing image, none of methods can perform well. We note that
all methods perform better in YaleB than CMU-PIE when there is only one training image.
The reason for this is that the YaleB only has 10 subjects, which is much less than CMU-
PIE. When more views are added in, the performance of SRC based methods is increased.
Especially, our proposed KSVD-MSRC reached a satisfactory rate, and it achieved 97.82%
when we have 7 views in the test set. Clearly, this outperforms the closest competitor JSRC
by about 1% for CMU-PIE. It can be further improved by adding more number of views
for YaleB. Furthermore, it can be noted that both KSVD-MSRC and MSRC have a similar
recognition rate on CMU-PIE. When the number of views increases, MSRC cannot achieve
the same performance as KSVD-MSRC.
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Figure 4: Convergence analysis of the proposed method. The objective function is converged
after 30 iterations.

4.4 Face Recognition under Different Dimensions

In this subsection, the performance of the face recognition based on different feature dimen-
sions is investigated. Prior to the experiment, the original image of CMU-PIE is reduced to
the d = [32, 64, 128, 256], which is effective for SRC introduced in [39]. Following the previous
experiments of [45], the same training set are employed and randomly 5 views are chosen for
the testing set. For YaleB data set, the dimension is reduced to d = [8, 16, 32, 64, 128] since
the pose variation is not as large as CMU-PIE,. It can be seen the comparison results from
the Fig.6, which shows that the proposed methods have obtained much higher performance
than the other methods under the same dimensions for CMU-PIE and YaleB databases.
MSRC is a little less than KSVD-MSRC method. Though less than KSVD-MSRC, both
JSRC and SRC have competitive accuracy. The performance of all these methods are su-
perior to JDSRC in most image dimensions. When the data dimension ≥ 64 in CMU-PIE
and 32 in YaleB, the performance becomes saturated in all these methods. However, the
recognition rate of JDSRC is reduced after d = 128 in CMU-PIE, which is caused by the
low accuracy of its greedy algorithm. Considering the case of methods, when the dimension
≥ 64 for CMU-PIE or 32 for YaleB, KSVD-MSRC is not sensitive to feature dimensions.
That means it is a good choice with 64 feature dimension for our method. Additionally, the
satisfactory performance with much lower computational complexity also can be achieved.

4.5 Face Recognition under Different Views

Under large view variations in multiple face recognition, the performance of the proposed
method is investigated with other methods. Since CMU-PIE data set has more than 9
poses, which is sufficient to perform this experiment, so only CMU-PIE is employed in this
subsection. We followed the same setting as follows in [45]. Face images of all 13 poses are
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Figure 5: Face recognition under different number of views with dimension d=64 for CMU-
PIE and YaleB.

Methods 22.5◦ 45◦ 67.5◦ 90◦

PCA 24.43 24.68 24.38 23.43
LDA 59.75 60.00 58.11 54.13
SRC 82.24 80.30 80.15 69.25
JSRC 84.48 84.63 83.28 74.18
JDSRC 87.16 84.63 87.16 78.21

MSRC [47] 95.52 94.33 93.73 88.96
KSVD-MSRC 97.54 95.73 95.13 89.67

Table 1: Face recognition against large view variations

employed for the training set, but only one image is randomly selected for each pose of per
subject. We then create 4 different view groups: [0◦,±22.5◦], [0◦,±45◦], [0◦,±67.5◦], and
[0◦,±90◦]. There are 3 images (one image for each view) in each group. The testing sets
are generated by randomly selecting from these 4 view groups. As can be seen in Table 1,
traditional subspace methods perform poorly, which demonstrate consistency with previous
experimental results. However, all SRC-based methods obtain satisfactory performance. It
can be observed that when the view difference increases, the performance of SRC decreases.
JSRC performs slightly better than SRC across all view variations. Also, JDSRC outper-
forms both JSRC and SRC. Since JDSRC uses dynamic selected atoms, it would not select
the same set of atoms for all views as JSRC. This makes JDSRC more suitable to multiple-
views scenarios. Overall, our proposed method reaches the highest recognition rates under
each testing view group. It achieves 97.54% for [0◦,±22.5◦] group with 2% improvement
compared to its best competitor.
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Figure 6: Face recognition under different dimensional with same views for CMU-PIE and
YaleB.

4.6 Face Recognition with a Large Number of Subjects

In order to detect the compared methods with a large number of subjects, the Multi-PIE
data set is employed to perform two sets of experiments. To make our experiments more
realistic and challenging, all images from the 337 subjects with 102 females and 235 males
are mixed. Images in each training set are selected based on following views [0◦,±30◦,±60◦,
± 90◦]. Three face images are selected for each subject with each view in the training. For
testing, views are randomly selected from all views for each subject (5 or 7). We also employ
three face images for each view in testing set. Four pairs of training and testing sets are
created from randomly selected subjects from all 337 subjects and ten sets are created. These
pairs of data set correspond to 64 (34 females and 34 males), 136 (68 females and 68 males),
204 (102 females and 102 males), 272 (all random) subjects. All subjects were randomly
chosen from 337 subjects. For obtaining the fair experiment results, 10 different random
data sets are generated, and at least 65 subjects are left for random selection purpose.

It can be seen from the Table 2, when the number of subjects increases, the performance
of SRC, JSRC, JDSRC, MSRC and KSVD-MSRC deteriorates significantly. However, the
proposed KSVD-MSRC is more robust against this large number of subjects. It also shown
that all methods are benefit from decreasing number of subjects. Their performance are
observed to improve overall, there is less sharp drop in recognition accuracy when number
of subjects increases. Due to the flexible atom selection, both KSVD-MSRC and MSRC
outperform SRC and JSRC. However, the lack of guaranteed convergence of JDSRC makes
it hard to find a robust and accurate solution. In general, the proposed method achieves
a robust performance against different scales of data sets because it has an advantage of a
dynamic atom selection and fast convergence.

5 Conclusions

In this paper, by introducing the definition of mixed ℓ0-norm, a novel framework of KSVD-
MSRC is proposed to establish the optimization problem. Firstly, we propose an dictionary
learning approach based on K-SVD embedding with IIHT algorithm for faster convergence
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Methods 68 136 204 272
SRC 86.74 82.30 78.55 77.47
JSRC 85.24 79.30 76.15 73.56
JDSRC 89.16 85.98 82.26 80.21

MSRC [47] 92.52 93.12 90.73 90.73
KSVD-MSRC 93.20 95.63 93.24 92.60

Table 2: Face recognition with different number of subjects for Multi-PIE database

to construct the relationship between training and testing set. Secondly, mixed norm penalty
of ℓ0-norm and ℓ2,0-norm is embedded into sparse representation classification to regulate
the sparsity of inter-class and inner-class level, which has demonstrated to outperform other
state-of-the-art methods. Furthermore, KSVD-MSRC is solved on the powerful ADMM
framework in deriving the numerical algorithm, which further improve the performance and
computation. Experimental results on three different databases demonstrate superior per-
formance of the proposed methods under a different number of views, various dimensionality,
view differences, and scalability.
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