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as image segmentation [14,19,36], image completion [33], medical imaging [6,21], 3D recon-
struction [20, 25], stereo matching [18, 34] and machine learning [15]. The stereo matching
methods usually adopt the graph-cuts by transforming the disparity map into a multi-label
update problem [22, 30]. Namely, different disparities are treated as different labels. With
the maximum posteriori probability (MAP) estimation of label distribution [24,29] or mini-
mizing the energy function [12,28], the disparities can be calculated. Under the assumption
of Markov Random Field, the maximum posterior probability and the minimum energy are
equivalent [26].

Graph-cuts, as an optimization method, is originally proposed by Ford and Fulkerson to
solve the combinatorial optimization problems [10]. Max-flow and min-cut theorem implied
by their algorithm is an important core theorem in network flow and graph theory. Never-
theless, graph-cuts had not been applied to the field of computer vision until 1989. Greig
et al. first applied graph-cuts in binary image segmentation and overcomes the defects of
local optimal solution and slow convergence rate [11]. After that, graph-cuts was limited to
binary image segmentation until 1998. Roy et al. first used graph-cuts to solve multi-value
optimization problems and make graph-cuts have a wider applicability [27]. But finding the
minimum value of energy function objectively is a NP-hard problem. To solve this problem,
Boykov et al. adopted the idea of multi-label to solve multi-value problems and proposed
two swap-move algorithms, i.e., alpha-beta swap and alpha-expansion algorithm. These al-
gorithms can achieve good performance [4]. In terms of the optimization performance of
alpha-expansion algorithm, it has been proved that the difference between the local and the
global optimization is only a fixed factor while alpha-beta swap algorithm isn’t proved to
have similar optimization performance. Nashihatkon et al. did a meticulous research on
label update strategy and pointed out that alpha-beta swap algorithm has a better per-
formance than alpha-expansion algorithm in the condition of a large number of labels [23].
Nevertheless, the optimization performance of alpha-beta swap algorithm is still unknown.

Previous researches mainly focus on the multi-label problem and are able to produce
very good results with ideal calibration in vertical direction. However, in practice, there
is always calibration errors in the vertical direction for binocular camera, which causes the
longitudinal disparities. For example, the optical axis of the cameras is not exactly parallel,
or the two cameras are not set at the same height. Moreover, there also could be some
factors affecting the accuracy of calibration, such as the non-standard calibration plate, the
insufficient number of feature points, the accuracy of feature points extraction method and
the shooting angles [35]. Meanwhile, the fully automatic calibration method of camera is
still existed errors [16, 31]. However, the previous algorithms only consider the latitudinal
disparity, and will fail when both longitudinal and latitudinal (LL) disparities are present.
To solve this problem, we propose a LL-swap-move algorithm with the consideration of the
longitudinal disparities. Firstly, we reconstruct the model with the help of MAP. Then, we
redesign the graph, i.e., weights, source and sink points. After that, max-flow algorithm
is executed to optimize. Next, the label of pixel is changed based on update strategy. Af-
terwards iteration strategy is applied to obtain the final result. Furthermore, we prove the
reason why the LL-swap-move algorithm can achieve good optimization performance. Fi-
nally, we verify the effectiveness of this algorithm by real experimental data.

The rest of the paper is organized as follows. Section 2 describes the problems of binoc-
ular camera system in practice. Section 3 introduces the LL-swap-move algorithm as well as
corresponding proving process. The actual test results of LL-swap-move algorithm are given
in Section 4. Also, comparison between different algorithms and analysis on the results are
made. At last, the conclusion of this paper is given in Section 5.
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2 Existing System Problem

2.1 Binocular Stereo Matching Theory

In classical stereo vision problems, there are two cameras to observe a static scene and the
relative coordinate system assumption is known for both cameras. Under this condition,
stereo matching is to determine the position of two corresponding points, PL(XL, YL) in
the left image and PR(XR, YR) in the right image, for the same point P (XC , YC , ZC) in the
scene. Then, the positional differences, between PL and PR, can be regard as the distance
from P to cameras. In order to simplify the problem of stereo matching when finding
corresponding points, two cameras are usually placed on the same line as much as possible.
Thus the two optical axes of cameras can be placed as parallel as possible and there is
only a latitudinal difference between PL and PR. Their abscissa difference is the latitudinal
disparity d. From this, the depth of the scene and the coordinates of the points in the
scene mapped from pixels can be calculated by combining disparities with the triangular
geometry principle. Depth is the distance from the point in the scene to the camera. On
condition that the calculated disparity map is accurate, disparity map can be used for 3D
reconstruction, target detection, non-contact measurement, and so on. Therefore, accurate
disparity map is the focus of stereo matching.

Figure 1: Sketch map of binocular imaging.

When a binocular camera is used to collect images for stereo matching, OCL and OCR

represent two horizontal placed cameras as shown in Figure 1. OCL is selected as the origin
and the coordinate system is established as OCLxcyczc, where the xc axis is parallel to
the x axis of imaging plane coordinate, the yc axis is parallel to the y axis of the imaging
plane coordinate system, and the zc axis is the optical axis of the left camera. If the
camera calibration is very accurate, the coordinates of P can be calculated according to the
coordinates of PL and PR, the focal distance f of the camera, and the baseline distance b.

From ∆PPLPR ∼ ∆POCLOCR and triangular geometry principle we have that

XL=f
XC

ZC
, (2.1)

XR=f
XC − b

ZC
, (2.2)

Y=f
YC

ZC
, (2.3)
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where Y = YL = YR. If d is known, we can substitute XL = XR + d into equation (2.1),
(2.2) and (2.3), giving

XC=
b ·XL

d
, (2.4)

YC=
b · Y
d

, (2.5)

ZC=
b · f
d

. (2.6)

Then, the depth of P can also be calculated by the geometric relationship

D =
b

d

√
X2

L + Y 2 + f2. (2.7)

Different pixel positions in the image and disparities reflect the different distance from
points in the scene to the cameras. The position of the pixel in the image is relatively
fixed. Therefore, accurate disparity is the focus of the stereo matching. The generation of
accurate and reliable disparity map is of great significance for the subsequent use for 3D
reconstruction, target detection and so on.

2.2 System Problems

The 3D coordinate accuracy (e.g. accuracy of calibration plate printed and measured),
the number of feature points, the extraction accuracy of feature points, the quantity of
calibration picture, the angles of taking pictures and other factors affect the accuracy of
calibration. But the current calibration methods are still existing calibration errors [9, 13,
16, 31]. Meanwhile, the position of two cameras affects whether the calibration image pairs
can achieve sufficient line alignment. If the line alignment is not sufficient, the disparities
calculated by the stereo matching algorithms, may be inadequate and inaccurate, e.g. alpha-
beta swap algorithm [17]. In Figure 1, PRE is the point after inaccurate camera calibration.
In this case, the corresponding points not only have differences in latitudinal direction, that
is latitudinal disparity d, but also have certain differences in longitudinal direction, that is
longitudinal disparity l. However, when the network graph of the max-flow algorithm is
constructed by the alpha-beta swap, the source and sink points and weights are designed
only considering disparities along the latitudinal neighborhood direction.

Take the label set F with α and β as an example, that is, F={α, β}. The alpha-beta
swap is first given a set of initial labels f , P={Pm|m ∈ F}, where Pm={p ∈ P |fp = m}
represents a pixel set whose label is assigned as m. The energy function to be minimized by
the algorithm is

E(f) = Esmooth(f) + Edata(f), (2.8)

where Esmooth measures the piecewise smoothness of f , while Edata measures the difference
between f and the observed data. The form of Edata is typically

Edata(f) =
∑
p∈P

Dp(fp), (2.9)

where Dp measures how well label fp fits the observed data at pixel p.
The first image is represented by I and the second image is represented by I ′. Ip repre-

sents the intensity of p in the first image. Dp’s expression is

Dp(fp) = min(
∣∣∣Ip − I ′p+fp

∣∣∣ , U), (2.10)
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where U is a constant and usually set as 20. The form of Esmooth is typically

Esmooth(f) =
∑

{p,q}∈N

Vp,q(fp, fq), (2.11)

where N represents a set of adjacent pixel pairs on the image, Vp,q represents the smoothness
between adjacent pixel pairs p and q, and its expression is

Vp,q(fp, fq) = min(
∣∣∣I ′p+fp − I ′q+fq

∣∣∣ , U). (2.12)

For clarity, Figure 2 shows 1D network graph for a 1D image.

Figure 2: Alpha-beta swap algorithm composition.

In Figure 2, α is the source point and β is the sink point, p ∈ Pαβ , where Pαβ = Pα

∪
Pβ

and fp ∈ {α, β}. The edges connecting with α and β are t-link edges, that is tαp and tβp .
A pixel pair of {p, q} ⊂ Pαβ and {p, q} ∈ N , {p, q} are connected by n-link edges, that is
e{p,q}. The weights of the edges are shown in Table 1.

Table 1: Weight design of alpha-beta swap algorithm

edge weight for
tαp Dp(α) +

∑
q∈Np

q ̸∈Pαβ

Vp,q(α, fq) p ∈ Pαβ

tβp Dp(β) +
∑

q∈Np

q ̸∈Pαβ

Vp,q(β, fq) p ∈ Pαβ

e{p,q} Vp,q(α, β)
{p,q}∈N
p,q∈Pαβ

Only latitudinal disparities are considered in the alpha-beta swap algorithm as shown
in Table 1. Once the image pair has both the latitudinal and longitudinal disparity, alpha-
beta swap algorithm is ineffective. In this paper, LL-swap-move algorithm is proposed
for image pairs with both latitudinal and longitudinal disparity. With the consideration
of longitudinal disparity, the optimal model is constructed from MAP, and the iterative
optimization is performed with the help of the max-flow algorithm. Finally, our algorithm
has a better performance.
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3 Swap-move with longitudinal neighborhood optimization

3.1 Optimization Function Model

For each pixel p ∈ P , fp represents the label of p in the image f = (f1, f2, ..., fm) and
the label set is F = u1, u2, ..., us×t. y = (y1, y2, ..., ym) means the value of the actual
label. y1, y2, ..., ym are conditionally independent of the given f , each of which has a known
conditional density function f(yp|fp), dependent on f only through fp.

A Bayesian formulation specifies a priori distribution p(x) over all allowable images. The
likelihood l(y|f) of any image f is combined with p(x), in accordance with Bayes’s theorem,
to form an a posteriori distribution

p(f |y) ∝ l(y|f)p(f). (3.1)

The actual disparity map is calculated when p(f |y) is maximized by MAP. So p(f |y) is
defined as the optimization function model which should be maximized.

The expression of log-likelihood ratio is

ln l(y|f) =
∑
p∈P

∑
fp∈F

( ∏
uq∈F

∏
uk∈F
uk ̸=uq

fp − uk

uq − uk

)
ln f(yp|fp). (3.2)

The prior distribution model p(x) can be expressed as

p(f) ∝ exp(
1

2

∑
p∈P
q∈P

βpqGpq), (3.3)

wherein

βpq =

{
Vpq(fp, fq) {p, q} ∈ N

0 others
, (3.4)

Gpq =

{
1 fp = fq

0 fp ̸= fq
. (3.5)

Thus, apart from an additive constant, ln p(f |y) can be written as

L(f) = ξ(f) + η(f), (3.6)

wherein

ξ(f) =
∑
p∈P

∑
fp∈F

( ∏
uq∈F

∏
uk∈F
uk ̸=uq

fp − uk

uq − uk

)
ln f(yp|fp), (3.7)

η(f) =
1

2

∑
p∈P
q∈P

βpqGpq. (3.8)

The MAP estimation is the image f which maximizes L. α and β are chosen to construct
the optimization function Lαβ , and its expression is

Lαβ(f) = ξαβ(f) + ηαβ(f), (3.9)
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wherein

ξαβ(f) =
∑

p∈Pαβ

λp

fp − β

α− β
, (3.10)

ηαβ(f) =
1

2

∑
p∈Pαβ

q∈Pαβ

βpq +
∑

p∈Pαβ

q ̸∈Pαβ

βpq, (3.11)

Where λp = ln{f(yp|α)/f(yp|β)}. Consider a capacity network comprising n + 2 nodes,
including a source s, a sink t and n pixels. If λp > 0, the capacity of a directed edge (s, p)
from s to pixel p is designed as

c(s, p) = λp +

p∈Pαβ∑
q ̸∈Pαβ

βpq; (3.12)

Otherwise, there is a directed edge (p, t) from p to t with capacity

c(p, t) = −λp +

p∈Pαβ∑
q ̸∈Pαβ

βpq. (3.13)

There is an undirected edge (p, q) between two internal nodes(pixels) p and q with ca-
pacity

c(p, q) =

{
βpq p ∈ Pαβ , q ∈ Pαβ

0 otherwise
. (3.14)

For any image f , let S = {s} ∪ {p : fp = α} and T = {t} ∪ {p : fp = β} define a two-set
partition of the network nodes and put

C(f) =
∑
k∈S

∑
l∈T

ckl. (3.15)

Figure 3: A cut of a network graph.

As shown in Figure 3, the set of edges with a node in S and a node in T is called a cut
and C(f) is called the capacity of the cut. The min-cut is the cut with minimum capacity
and its capacity is equal to the max-flow.

Theorem 3.1. If α and β are chosen to be source and sink to construct the network graph
Gαβ, Lαβ(f) will be minimized to Lαβ(f

C) after update labels by max-flow algorithm. Mean-
while, L(f) will be local maximized to L(fC).
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Proof. The cost of a cut in Gαβ is obtained

C(f) =

{ ∑
p∈Pαβ

α− fp

α− β

[
max(0, λp) +

∑
q ̸∈Pαβ

βpq

]}

+

{ ∑
p∈Pαβ

fp − β

α− β

[
max(0,−λp) +

∑
q ̸∈Pαβ

βpq

]}
+

1

2

∑
p∈Pαβ

q∈Pαβ

βpq

(
fp − fq

α− β

)2

,

(3.16)

which differs from −Lαβ(f) by a term which does not depend on f and this term does not
affect that the minimization of C(f) is to maximize Lαβ(f). The difference between L(f)
and Lαβ(f) is

L(f)− Lαβ =
∑

p ̸∈Pαβ

∑
fp∈F

[( ∏
up∈F

∏
uk∈F
uk ̸=uq

fp − uk

uq − uk

)
ln f(yp|fp)

]
+

1

2

∑
p∈Pαβ

q∈Pαβ

βpq

(
fp − fq

α− β

)2

.

(3.17)
No matter which cut is used to form the new label set fC , the labels of (P −Pαβ) region

will not update, so L(fC) − Lαβ(f
C) is a constant for all cuts C. Thus L(f) will be local

maximized to L(fC) when min-cut is acquired.

Theorem 3.2. f∗ is the label which maximize L(f). Different label pairs are selected to
construct network graph to execute max-flow algorithm each swap, the relationship between
the current label fC and f∗ is L(f∗) ≥ L(fC) ≥ sL(f∗), where s ∈ (0, 1].

Proof. Let

c = minp,q∈N

(
minα̸=β∈FVp,q(α, β)

maxα̸=β∈FVp,q(α, β)

)
, (3.18)

be the smallest ratio of the smallest nonzero value of V to the largest nonzero value of V .
After one time swap, the labels are updated to

fαβ
p =


α p ∈ Pα

β p ∈ Pβ

fC
p otherwise

. (3.19)

When swap moves are allowed, i.e., when the max-flow is still decreasing, we can get

L(fC) ≥ L(fαβ). (3.20)

Let Ω be a set consisting of pixels in P and adjacent of pixels in N . We define L(f |Ω)
to be a restriction of the contribution of labeling f to the set Ω

L(f |Ω) = −
∑
p∈Ω

Dp(fp) +
∑

{p,q}∈Ω

βpq(1−Gpq). (3.21)

Let Hαβ be the set of pixels and pairs of neighboring pixels contained in Pαβ . Also, let
Iαβ be the set of pairs of neighboring pixels on the boundary of Pαβ and Jαβ be the set of
pixels and pairs of neighboring pixels contained outside of Pαβ . That is

Hαβ = Pαβ ∪ {{p, q} ∈ N : p ∈ Pαβ , q ∈ Pαβ}, (3.22)
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Iαβ = {{p, q} ∈ N : p ∈ Pαβ , q ∈ (P − Pαβ)}, (3.23)

Jαβ = (P − Pαβ) ∪ {{p, q} ∈ N : p ̸∈ Pαβ , q ̸∈ Pαβ}. (3.24)

The following facts hold
L(fαβ |Hαβ) = L(f∗|Hαβ), (3.25)

L(fαβ |Iαβ) ≥ cL(f∗|Iαβ), (3.26)

L(fαβ |Jαβ) = L(fC |Jαβ). (3.27)

The left and right of equations (3.25), (3.26), and (3.27), are respectively added to each
other so that

L(fαβ |Hαβ) + L(fαβ |Iαβ) + L(fαβ |Jαβ) ≥ L(f∗|Hαβ) + cL(f∗|Iαβ) + L(fC |Jαβ). (3.28)

When max-flow falls after swap moves, the inequality relation is as follows

L(fC |Hαβ) + L(fC |Iαβ) + L(fC |Jαβ) ≥ L(fαβ |Hαβ) + L(fαβ |Iαβ) + L(fαβ |Jαβ). (3.29)

Using (3.22), (3.23), and (3.24), we get from the equation above

L(fC |Hαβ) + L(fC |Iαβ) ≥ L(f∗|Hαβ) + cL(f∗|Iαβ), (3.30)

The total L(f) is obtained by using all label pairs. Therefore, we need to sum (3.30)
over all α ̸= β ∈ F∑

α∈F

∑
β≠α
β∈F

[L(fC |Hαβ) + L(fC |Iαβ)] ≥
∑
α∈F

∑
β ̸=α
β∈F

[L(f∗|Hαβ) + cL(f∗|Iαβ)]. (3.31)

Let different label pairs have w species, w >2. And let I = ∪α,β∈F I
αβ . On the left side

of (3.28), for every pixel p, Dp appears w-1 times. Meanwhile, for {p, q} ∈ N , the term
V (fp, fq) appears once for fp = α, fq = β in L(fC |Hαβ), w-2 times for fp = α, fq ̸= β
in L(fC |Iαfq ), and w-2 times for fp = β, fq ̸= α in L(fC |Ifpβ). Similarly, corresponding
number of times also be known on the right side of (3.31). Thus, (3.31) can be rewritten to
get the bound

L(fC) +
w − 2

w − 1
L(fC |I) ≥ L(f∗) +

(
(2w − 3)c

w − 1
− 1

)
L(f∗|I). (3.32)

Then, we get from the equation above

L(f∗) ≤ L(fC) +
w − 2

w − 1
L(fC |I)−

[
(2w − 3)c

w − 1
− 1

]
L(f∗|I)

≤ L(fC) +
(2w − 3)(1− c)

w − 1
L(fC |I)

≤

[
(2w − 3)(1− c)

w − 1
+ 1

]
L(fC).

(3.33)

It proves that each new label distribution fC has both upper and lower bound

sL(f∗) ≤ L(fC) ≤ L(f∗), (3.34)
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where

s =

(
(2w − 3)(1− c)

w − 1
+ 1

)−1

. (3.35)

So we can use max-flow algorithm for different label pairs to approximates L(fC) to
the local maximum L(f∗). Finally, their difference is within a fixed factor. Moreover, this
factor, can be as large as 1 which depends on c.

3.2 The Process and Weight Design

Two labels u1 and u2 are taken as example to construct the network graph as shown in
Figure 4. u1 represents the longitudinal disparity l1 and latitudinal disparity d1. Similarly,
u2 represents the longitudinal disparity l2 and latitudinal disparity d2.

Figure 4: A network graph with label pairs u1 and u2.

Considering the longitudinal neighborhood, we still use Dp to measure how well the label
fp fits pixel p given the observed data and use Vp,q to represent the smoothness between
adjacent pixel pairs p and q. Thus we have

Dp(lp, dp) = min(
∣∣∣Ip − I ′px+lp,py+dp

∣∣∣ , U), (3.36)

Vp,q(lp, lq, dp, dq) = min(
∣∣∣I ′px+lp,py+dp

− I ′qx+lq,qy+dq

∣∣∣ , U), (3.37)

where px is the abscissa of p and py is the ordinate of p. The edge weights are set as shown
in Table 2.

Then the max-flow can be got by max-flow algorithm after the weight is set. Before the
max-flow converges, pixels will be divided into different cut sets and their labels will also be
updated. When the max-flow converges, the optimal disparity map can be generated. The
updated rules are expressed as follows

fp =


u1 p ∈ T

u2 p ∈ S

fp others

, (3.38)
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Table 2: Weight design of LL-swap-move algorithm

edge weight for
tu1
p Dp(l1, d1) +

∑
q∈Np

q ̸∈Pu1u2

Vp,q(l1, lq, d1, dq) p ∈ Pu1u2

tu2
p Dp(l2, d2) +

∑
q∈Np

q ̸∈Pu1u2

Vp,q(l2, lq, d2, dq) p ∈ Pu1u2

e{p,q} Vp,q(l1, l2, d1, d2)
{p,q}∈N
p,q∈Pu1u2

Figure 5: The flow chart of LL-swap-move algorithm.

The update of the label corresponds to the calculation result of longitudinal disparity
and latitudinal disparity. For instance, if fp is updated to u1, the longitudinal disparity of
p is updated to l1 and the latitudinal disparity of p is updated to d1. The complete flow
chart of proposed algorithm is shown in Figure 5.

4 Results and Analysis of Experiments

Since the experimental results are not tested on the classic data set which is fully calibrated,
our environmental scenario is shown in Figure 6. Some images are taken from laboratory
environment, where ZED binocular cameras are chosen and the yellow shadow is the in-
tersecting area of two cameras. All images used in the experiments are obtained after the
flexible camera calibration by viewing a plane.

Figure 6: The scene of laboratory.
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4.1 The Calibrator Test

Figure 7: (a) Left image (b) Right image (c) Latitudinal disparity map of alpha-beta swap
algorithm (d) Longitudinal disparity map of alpha-beta swap algorithm (e) Latitudinal dis-
parity map of LL-swap-move algorithm (f) Longitudinal disparity map of LL-swap-move
algorithm.
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In order to verify the optimization performance, we use a calibrator to perform the matching
test as shown in Figure 7. Some corners on the calibrator are selected for disparity measure-
ment, which are indicated in Figure 7 by red points, i.e., 24 corners in the 3rd row and 20
corners in the 20th column. After that, we select the image in Figure 7(b) as the reference
image and perform alpha-beta swap algorithm and LL-swap-move algorithm on the image
pair. Figure 7(c)(d) show the results of alpha-beta swap algorithm and the LL-swap-move
algorithm’s results are shown in Figure 7(e)(f).

Figure 8: (a) The curve of latitudinal disparity at 3rd row (b) The curve of longitudinal
disparity at 3rd row (c) The curve of latitudinal disparity at 20th column (d) The curve of
longitudinal disparity at 20th column.

As shown in Figure 8, there is only one obvious error of the calculated longitudinal and
latitudinal disparity at the second corner in the 3rd row. Most of the other corners’ calculated
results are accurate. Moreover, we also make the mean square error analysis among the
results of the proposed algorithm, alpha-beta swap algorithm and actual disparity. For the
latitudinal and longitudinal disparity, the mean square errors of LL-swap-move algorithm
are 0.41px and 0.84px while those of alpha-beta swap algorithm are 3.30px and 19.23px.

We also analyze the corner M as shown in Figure 9(a) which has obvious errors. After
processed by LL-swap-move algorithm, the corresponding corner R is in the 4th row and the
5th column in the right image as shown in Figure 9(b). The corresponding corner N which is
got by measuring is also shown in Figure 9(b). According to the measurements, this error is
an apparent error of position. In section 3, we use the four-neighbor model and the grayscale
information to construct the network graph. So, the gray values of the four-neighbor pixels of
cornerM,N,R are extracted as shown in Figure 9(c∼e). In accordance with the construction
method of the network graph in LL-swap-move algorithm, the local network graph of the
result of measurements and this algorithm can be obtained as shown in Figure 9(f)(g).
In order to make it clearer, we only show the grayscale difference without normalizing.
The accuracy of this corner is concerned in the measured result while other pixels in the
neighborhood are not considered completely. But because the positional information of the
relationship between the pixels is considered in the measurements, the accuracy of the result
is ensured. On the other hand, in order to obtain the smooth effect, LL-swap-move algorithm
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is performed with considering of the grayscale difference in the four-neighbor. However, the
positional relationship is not taken into account. Thus, after this algorithm, the grayscale
difference in the neighborhood is smaller than the actual measurements, but the positional
error is obvious.

Figure 9: (a) The error corner in the left image (b) The corresponding corners of the
measured and the calculation of LL-swap-move algorithm (c) The gray value of M ’s four-
neighbor (d) The gray value of N ’s four-neighbor (e) The gray value of R’s four-neighbor (f)
The local network graph of measured result (g) The local network graph of LL-swap-move
algorithm’s result.

4.2 Single-target Image Test

In order to further verify the effectiveness of LL-swap-move algorithm on more complex
targets, we make a test on the pedestrian images. The four consecutive frames extracted
from the pedestrian video are selected as the reference images as shown in Figure 10(a), and
the corresponding images are shown in Figure 10(b). Shoulder and leg areas are selected to
show the local effect which are indicated in Figure 10(a) by red and blue circles. The results
of alpha-beta swap algorithm are shown in Figure 10(c). Figure 10(d) shows LL-swap-move
algorithm’s results. The local results are shown in Figure 10(e∼h).
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Figure 10: (a) The reference images (frame 1 to 4) (b) The correspondence images (c)
Alpha-beta swap algorithm (d) LL-swap-move algorithm (e) The shoulder results of alpha-
beta swap algorithm (f) The shoulder results of LL-swap-move algorithm (g) The leg results
of alpha-beta swap algorithm (h) The leg results of LL-swap-move algorithm.
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From the test results of the collected images, it can be found that alpha-beta swap algo-
rithm performs poorer than LL-swap-move algorithm because of the systematic calibration
error and the existence of the longitudinal disparity. In addition, the results of alpha-beta
swap algorithm as shown in Figure 10(e)(g) show that the contour information cannot be
well performed at the strong texture area and the performance of smoothness is poor at the
weak texture area as well. With the consideration of longitudinal disparity, LL-swap-move
algorithm have a better optimization performance as shown in Figure 10(f)(h). Because of
the consideration of the smoothness of the labels, the results are relatively smooth.

4.3 Multi-target Image Test

Figure 11: (a) The reference images (b) The correspondence images (c) Alpha-beta swap
algorithm (d) LL-swap-move algorithm (e) The head results of alpha-beta swap algorithm
(f) The head results of LL-swap-move algorithm (g) The body results of alpha-beta swap
algorithm (h) The body results of LL-swap-move algorithm.
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We also make an experiment on images with multiple pedestrians. Figure 11(a)(b) show
the reference images and the correspondence images. Moreover, head and body areas are
selected to show the local effect which are indicated in Figure 11(a) by yellow and green
circles. Because of the systematic calibration error and the existence of the longitudinal
disparity, the results generated by alpha-beta swap algorithm are not satisfactory as shown
in Figure 11(c). LL-swap-move algorithm has a better performance as shown in Figure
11(d). As shown in Figure 11(e), the effects of the results generated by alpha-beta swap
algorithm are rough in the strong texture region, and are not smooth in the weak texture
region as shown in Figure 11(g). But LL-swap-move algorithm has the better effect as shown
in Figure 11(f)(h) even there are systematic calibration errors.

In order to describe the convergence performance of LL-swap-move algorithm more
clearly, we choose the first image pair in Figure 11(a)(b) to visually illustrate the con-
vergence process as shown in Figure 12(a∼f). As the iterations progress, the disparities are
updated step by step. Finally, the optimal disparity map can be obtained. Moreover, we
show the different convergence performance between alpha-beta swap algorithm and LL-
swap-move algorithm in Figure 13. Because the consideration of longitudinal disparity is
adding into the optimization function, LL-swap-move algorithm has a lower initial value. In
terms of convergence speed, alpha-beta swap algorithm is a little faster than LL-swap-move
algorithm. Alpha-beta swap algorithm converges at the 16th iteration while LL-swap-move
algorithm converges at the 45th iteration. But in terms of convergence results, LL-swap-
move algorithm has a lower convergence value. Alpha-beta swap converges at 1044 while
LL-swap-move algorithm converges at 469. Thus, LL-swap-move algorithm has better con-
vergence performance.

Figure 12: The comparison of different convergence processes.

5 Conclusion

In the field of stereo matching, the inaccurate calibration and non-ideal cameras position will
result in image pairs disparities not only in latitudinal neighborhood but also in longitudinal
neighborhood. With the consideration of longitudinal neighborhood, we propose the LL-
swap-move algorithm and construct the optimization model. Then, we execute the max-
flow procedure to generate the dense disparity map. The optimization performance of LL-
swap-move algorithm are verified by real data experiments, which shows that the proposed
algorithm can ensure the retention of disparity information and the accuracy of disparity
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calculation when dealing with stereo matching image data with longitudinal deviation. It
can be applied to the image matching with two-dimensional disparity, which effectively solves
the problem that the alpha-beta swap algorithm cannot perform well with the inaccuracy
of the camera calibration. Also, it can provide accurate disparity reference value for further
image detection and 3D reconstruction. Moreover, this two-dimensional matching points
optimization strategy can be applied to other stereo matching algorithms when camera
calibration is not ideal.
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