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and complementarity problems). In addition, problem (1.1) may be regarded as the Karush-
Kuhn-Tucker (KKT) conditions of stochastic SOC programs

min Eξ[f(u, ξ)]

s.t. g(u) ≤ 0, h(u) = 0,

x ∈ K,

provided that the orders of expectation and gradient involved above are exchangeable under
some dominated conditions. As is well-known to us, SOC programs and their stochastic
versions have lots of applications in engineering design, portfolio optimization, etc. [1, 3].
Therefore, it is meaningful to study the theoretical and algorithmic aspects of the SSOCCP
(1.1).

Note that the SSOCCP given above is different from the one considered in the recent
work [16] and formulated as

x ∈ K, y ∈ K, xT y = 0, F (x, y, z, ξ) = 0 a.e. ξ ∈ Ω, (1.2)

where a.e. is the abbreviation for “almost every”. According to the works [8, 17, 26] on
stochastic complementarity problems, which have attracted much attention in the recent
optimization literature, problem (1.1) can be called an expected value formulation for prob-
lem (1.2). From this point of view, our study may be regarded as a further supplement
of the work [16], in which the authors discuss the so-called expected residual minimization
formulation for problem (1.2) only.

As in the deterministic SOC complementarity theory, the SOC complementarity func-
tions will play a key role in our study. Recall that a function ϕ : ℜν ×ℜν → ℜν is called an
SOC complementarity function associated with a second-order-cone Kν if

ϕ(s, t) = 0 ⇐⇒ s ∈ Kν , t ∈ Kν , sT t = 0. (1.3)

Two well-known SOC complementarity functions associated with Kν will be used in this
paper: one is the natural residual function associated with Kν defined as

ϕNR(s, t) := s− [s− t]+ (1.4)

and the other is the vector-valued Fischer-Burmeister function associated with Kν defined
as

ϕFB(s, t) := s+ t− (s2 + t2)1/2, (1.5)

where [ · ]+ denotes the projection operator onto the convex cone Kν , s2 := s ◦ s with ‘◦’
referring to the Jordan product operator, and s1/2 is the unique square root in Kν of s under
the Jordan algebra. See Section 2 for details about the Jordan algebras.

By means of the SOC complementarity function (1.3), it is easy to see that the SSOCCP
(1.1) is equivalent to the minimization problem

min
(x,y,z)

Θ(x, y, z) := ∥Eξ[F (x, y, z, ξ)]∥2 + ∥Φ(x, y)∥2, (1.6)

where Φ is defined by

Φ(x, y) :=

 ϕ(x1, y1)
...

ϕ(xm, ym)

 (1.7)
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with x := (x1, . . . , xm) ∈ ℜn1 ×· · ·×ℜnm and y := (y1, . . . , ym) ∈ ℜn1 ×· · ·×ℜnm , provided
that the optimal value of (1.6) equals to zero. In general, there are two main difficulties in
dealing with (1.6): One is the existence of expectation, which generally has no analytical
expression. The other is the nonsmoothness of the SOC complementarity function ϕ. In
Section 3, with the help of the Monte Carlo approximation techniques and some smoothing
techniques given in [12], we suggest an approximation method for solving problem (1.6) and
establish a comprehensive convergence analysis for the method. In Section 4, we investigate
the exponential convergence of the approximation method and, in Section 5, we derive some
results related to error bounds, which belong to an important area in optimization theory.
Finally, in Section 5, we consider an application of the theoretical results in a practical
engineering problem.

Throughout, we assume that F (x, y, z, ξ) is twice continuously differentiable with respect
to (x, y, z) and continuously integrable with respect to ξ over the compact set Ω. For a dif-
ferentiable function H : ℜn → ℜm and a vector x ∈ ℜn, ∇H(x) denotes the transposed
Jacobian of H at x. Given a vector x ∈ ℜn and a convex set X ⊆ ℜn, dist(x,X) de-
notes the distance from x to X and intX/clX/coX/bdX denote the interior/closure/convex
hull/boundary of X respectively. For an m× n matrix A := (aij), ∥A∥F denotes its Frobe-
nius norm, that is, ∥A∥F := (

∑m
i=1

∑n
j=1 a

2
ij)

1/2. For a vector x := (x1, x2) ∈ ℜ × ℜn−1,
we denote its reflection of the x1-axis by x̂ := (x1,−x2) and by Rx := {tx | t ∈ ℜ} and
R−

x := {tx | t < 0} respectively. Moreover, we denote by gphΓ the graph of a set-valued
map Γ and by Bε(x) and B the open ball centered at x with radius ε > 0 and the open unit
ball respectively. In addition, I and O stand for the identity matrix and null matrix with
suitable dimensions and C◦ stands for the polar of a cone C.

2 Preliminaries

In this section, we review some background materials that will be used later on.

2.1 Jordan algebras

For any s = (s1, s2) ∈ ℜ×ℜν−1 and t = (t1, t2) ∈ ℜ×ℜν−1, their Jordan product is defined
by

s ◦ t := (sT t, t1s2 + s1t2).

Under the Jordan product, the identity element is e := (1, 0, . . . , 0)T ∈ ℜν and for simplicity,
we denote by x2 = x ◦ x. Moreover, if s ∈ Kν , there exists a unique vector s1/2 ∈ Kν such
that (s1/2)2 = s.

For any vector s = (s1, s2) ∈ ℜ × ℜν−1, its spectral factorization with respect to the
second-order-cone Kν can be decomposed as

s = λ1u
1 + λ2u

2,

where λ1 and λ2 are the spectral values given by

λi := s1 + (−1)i ∥ s2 ∥, i = 1, 2,

and u1 and u2 are the spectral vectors given by

ui :=

{ 1
2

(
1, (−1)i s2

∥s2∥
)

if s2 ̸= 0,
1
2

(
1, (−1)iw

)
if s2 = 0,

i = 1, 2
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with w being an arbitrary unit vector in ℜν−1. The projection function [s]+ used in Section
1 can be calculated by

[s]+ = [λ1]+u
1 + [λ2]+u

2,

where [λ]+ := max{λ, 0} for a scalar λ ∈ ℜ. In [12], it is showed that both s1/2 and s2 can
also be rewritten by the spectral values and vectors of s. Thus, the functions defined in
(1.4) and (1.5) can be represented as

ϕNR(s, t) = s− [s− t]+ = s− ([λ1]+u
1 + [λ2]+u

2),

where {λ1, λ2} and {u1, u2} are given by, for i = 1, 2,

λi := s1 − t1 + (−1)i∥s2 − t2∥, (2.1)

ui :=

{ 1
2

(
1, (−1)i s2−t2

∥s2−t2∥
)

if s2 ̸= t2,
1
2

(
1, (−1)iw

)
if s2 = t2,

(2.2)

and

ϕFB(s, t) = s+ t− (s2 + t2)1/2 = s+ t− (
√
λ1u

1 +
√
λ2u

2),

where {λ1, λ2} and {u1, u2} are given by, for i = 1, 2,

λi := ∥s∥2 + ∥t∥2 + 2(−1)i∥s1s2 + t1t2∥,

ui :=

{ 1
2

(
1, (−1)i s1s2+t1t2

∥s1s2+t1t2∥
)

if s1s2 + t1t2 ̸= 0,
1
2

(
1, (−1)iw

)
if s1s2 + t1t2 = 0,

with w ∈ ℜν−1 being an arbitrary vector satisfying ∥w∥ = 1. Note that both ϕNR and ϕFB
are locally Lipschitz continuous but not differentiable everywhere [12].

2.2 Variational analysis

This subsection contains some background materials on nonsmooth analysis that will be
used particularly for the investigation on local error bounds in Section 4.

For a cone C, we denote by C◦ its polar. For a set-valued map Γ : ℜn ⇒ ℜn, we denote
the Kuratowski-Painlevé upper (outer) and lower (inner) limit by

lim sup
x→x0

Γ(x) :=
{
ξ ∈ ℜn

∣∣∣ ∃ sequences xk → x0 and ξk → ξ with ξk ∈ Γ(xk) for each k
}
,

lim inf
x→x0

Γ(x) :=
{
ξ ∈ ℜn

∣∣∣ ∀ sequence xk → x0,∃ξk ∈ Γ(xk) (∀k) such that ξk → ξ
}
.

Definition 2.1 (Normal cones [18]). Let X ⊆ ℜn be nonempty and x0 ∈ clX. The convex
cone

N π
X(x0) :=

{
ξ ∈ ℜn| ∃σ > 0 s.t. ξT (x− x0) ≤ σ∥x− x0∥2, ∀x ∈ X

}
is called the proximal normal cone to X at x0. The convex cone

NF
X (x0) :=

{
ξ ∈ ℜn

∣∣∣∣ lim sup
x→x0,x∈X

⟨ξ, x− x0⟩
∥x− x0∥

≤ 0

}
is called the Fréchet (regular) normal cone to X at x0. The nonempty cone

NX(x0) := lim sup
x→x0

NF
X (x) = lim sup

x→x0

N π
X(x)
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is called the limiting (Mordukhovich or basic) normal cone to X at x0. The Clarke normal
cone is the closure of the convex hull of the limiting normal cone, i.e.,

N c
X(x0) := clcoNX(x0).

The limiting normal cone leads to the definition of coderivative of a set-valued map.

Definition 2.2 (Coderivative of a set-valued map [18]). Let Υ : ℜn ⇒ ℜq be an arbitrary
set-valued map (assigning to each τ ∈ ℜn a set Υ(τ) ⊂ ℜq, which may be empty) and
(x̃, ỹ) ∈ clgphΥ, where gphΥ := {(τ, υ)| υ ∈ Υ(τ)} denotes the graph of the set-valued map
Υ. The set-valued map D∗Υ(τ̃ , υ̃) from ℜq into ℜn by

D∗Υ(τ̃ , υ̃)(ζ) := {ϱ ∈ ℜn| (ϱ,−ζ) ∈ NgphΥ(τ̃ , υ̃)}

is called the coderivative of Υ at the point (τ̃ , υ̃). By convention, for (τ̃ , υ̃) /∈ clgphΥ, we
define D∗Υ(τ̃ , υ̃)(ζ) = ∅.

To better understand this concept, we give the following example.

Example 2.1. Let X and Y be finite-dimensional Hilbert spaces and A : X → Y be a linear
operator. The graph of the set-valued map A is given by

gphA := {(x,Ax)| x ∈ X},

which is a linear space, and the normal cone to gphA at (x,Ax) can be written as

NgphA(x,Ax) := {(x∗, y∗) ∈ X × Y| ⟨(x∗, y∗), (z,Az)⟩ = 0,∀z ∈ X}
= {(x∗, y∗) ∈ X × Y| ⟨x∗, z⟩+ ⟨y∗,Az)⟩ = 0,∀z ∈ X}
= {(x∗, y∗) ∈ X × Y| ⟨x∗ +A∗y∗, z⟩ = 0,∀z ∈ X}
= {(x∗, y∗) ∈ X × Y| x∗ +A∗y∗ = 0}.

Then, we have

D∗A(x,Ax)(y) = {v| (v,−y) ∈ (x∗, y∗) ∈ NgphA(x,Ax)} = {v| v −A∗y∗ = 0} = A∗y.

We now give some concepts for Lipschitz behavior of a set-valued map. Examples for
these concepts can be found in [18].

The following concept for Lipschitz behavior is introduced by Aubin in [2].

Definition 2.3 (Pseudo-Lipschitz continuity). A set-valued map Υ : ℜn ⇒ ℜq is said to be
pseudo-Lipschitz continuous around (τ̃ , υ̃) ∈ gphΥ if there exist a neighborhood U of τ̃ , a
neighborhood V of υ̃, and ρ ≥ 0 such that

Υ(τ) ∩ V ⊂ Υ(τ
′
) + ρ∥τ

′
− τ∥clB, ∀τ

′
, τ ∈ U.

On the other hand, the following upper-Lipschitz behavior is studied by Robinson in [23].

Definition 2.4 (Upper-Lipschitz continuity). A set-valued map Υ : ℜn ⇒ ℜq is said to be
upper-Lipschitz continuous at τ̃ ∈ ℜn if there exist a neighborhood U of τ̃ and ρ ≥ 0 such
that

Υ(τ) ⊂ Υ(τ̃) + ρ∥τ − τ̃∥clB, ∀τ ∈ U.

Some conditions weaker than both the Aubin’s pseudo-Lipschitz continuity and the
Robinson’s upper-Lipschitz continuity include the clamness condition [25] and the pseudo
upper-Lipschitz continuity in [33].

Definition 2.5 (Calmness). A set-valued map Υ : ℜn ⇒ ℜq is called to be calm at (τ̃ , υ̃) ∈
gphΥ if there exist a neighborhood U of τ̃ , a neighborhood V of υ̃, and ρ ≥ 0 such that

Υ(τ) ∩ V ⊂ Υ(τ̃) + ρ∥τ̃ − τ∥clB, ∀τ ∈ U.
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3 Monte Carlo Approximation Method

In this section, we devote to developing approximation methods for solving the SSOCCP
(1.1). Our focus is on the minimization approach (1.6). As mentioned in Section 1, there
are two main difficulties in dealing with (1.6): One is the existence of expectation and the
other is the nonsmoothness of the SOC complementarity functions. For the former, popular
strategy is to employ the Monte Carlo sampling techniques to approximate the expectation
and, for the latter, we may employ some smoothing techniques. But this is not always
the case. For the two SOC complementarity functions introduced in Section 1, ∥ϕFB∥2 is
actually a smooth function although ϕFB is nonsmooth, while ∥ϕNR∥2 and ϕNR are both
nonsmooth functions.

In general, for an integrable function ψ : Ω → ℜ, the Monte Carlo sampling estimate
for Eξ[ψ(ξ)] is obtained by taking independently and identically distributed (iid) random
samples Ωk := {ξ1, . . . , ξNk} from Ω and letting Eξ[ψ(ξ)] ≈ 1

Nk

∑
ξi∈Ωk

ψ(ξi). We assume

that {Nk} tends to infinity as k increases. The strong law of large numbers guarantees that
this procedure converges with probability one (abbreviated by “w.p.1” below), that is,

lim
k→∞

1

Nk

∑
ξi∈Ωk

ψ(ξi) = Eξ[ψ(ξ)] w.p.1. (3.1)

When ϕ is taken to be ϕNR and ϕFB, (1.6) becomes the following two problems respec-
tively:

min
(x,y,z)

ΘNR(x, y, z) := ∥Eξ[F (x, y, z, ξ)]∥2 + ∥ΦNR(x, y)∥2, (3.2)

min
(x,y,z)

ΘFB(x, y, z) := ∥Eξ[F (x, y, z, ξ)]∥2 + ∥ΦFB(x, y)∥2. (3.3)

Note that ∥ΦFB∥2 is actually a smooth function although ϕFB is nonsmooth, while ∥ΦNR∥2
and ϕNR are both nonsmooth functions. Here, we employ the following smoothing technique
presented in [12] for ϕNR: Given a scalar µ > 0, let

ϕµNR(s, t) := s− µ

(
g
(λ1
µ

)
u1 + g

(λ2
µ

)
u2

)
,

where g(a) :=
√
a2+4+a

2 , {λ1, λ2} and {u1, u2} are the same as in (2.1) and (2.2) respectively.
It is shown in [12] that, for each (s, t) ∈ ℜ2ν ,

lim
µ→0+

ϕµNR(s, t) = ϕNR(s, t)

and ϕµNR is a smooth function with

∇ϕµNR(s, t) =

[
I −Mµ(s, t)
Mµ(s, t)

]
,

where

Mµ(s, t) :=


aµ(s, t)I, if s2 − t2 = 0 bµ(s, t)

dµ(s,t)(s2−t2)
T

∥s2−t2∥
dµ(s,t)(s2−t2)

∥s2−t2∥
(bµ(s,t)−cµ(s,t))(s2−t2)(s2−t2)

T

∥s2−t2∥2
+ cµ(s, t)I

 , if s2 − t2 ̸= 0
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for s = (s1, s2) ∈ ℜ × ℜν−1 and t = (t1, t2) ∈ ℜ × ℜν−1 with

aµ(s, t) := g′( s1−t1
µ ), (3.4)

bµ(s, t) :=
1
2 (g

′(λ2

µ ) + g′(λ1

µ )), (3.5)

cµ(s, t) :=
g(

λ2
µ )−g(

λ1
µ )

λ2
µ −λ1

µ

, (3.6)

dµ(s, t) :=
1
2 (g

′(λ2

µ )− g′(λ1

µ )). (3.7)

In addition, from the proof of Proposition 5.1 in [12], it is not difficult to see that there
exists a positive constant C such that

∥ϕµNR(s, t)− ϕNR(s, t)∥ ≤ Cµ (3.8)

holds for each (s, t) ∈ ℜ2ν .
Taking a smoothing parameter µk > 0 and iid samples Ωk := {ξ1, . . . , ξNk} from Ω, the

corresponding approximation problems of (3.2) and (3.3) are

min
(x,y,z)

Θk
NR(x, y, z) :=

∥∥∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)
∥∥∥2 + ∥Φµk

NR(x, y)∥
2 (3.9)

and

min
(x,y,z)

Θk
FB(x, y, z) :=

∥∥∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)
∥∥∥2 + ∥ΦFB(x, y)∥2 (3.10)

respectively. Suppose that µk → 0+ as k → ∞. We next study the limiting behavior of the
above approximations.

Theorem 3.1. Let (xk, yk, zk) be a globally optimal solution of problem (3.9) or (3.10) for
each k and (x̄, ȳ, z̄) be an accumulation point of the sequence {(xk, yk, zk)}. Then (x̄, ȳ, z̄)
is a globally optimal solution of problem (3.2) or (3.3) with probability one.

Proof. We first prove the case of ϕNR. Without loss of generality, we assume that
limk→∞(xk, yk, zk) = (x̄, ȳ, z̄). Let B be a compact and convex set containing the whole
sequence {(xk, yk, zk)}. By the continuity of F and ∇(x,y,z)F on the compact set B × Ω,
there exists a constant C̄ > 0 such that

∥F (x, y, z, ξ)∥ ≤ C̄, ∥∇(x,y,z)F (x, y, z, ξ)∥F ≤ C̄, ∀(x, y, z, ξ) ∈ B × Ω. (3.11)

It is sufficient to show that, for each (x, y, z),∥∥Eξ [F (x̄, ȳ, z̄, ξ) ]
∥∥2 + ∥ΦNR(x̄, ȳ)∥2 ≤

∥∥Eξ [F (x, y, z, ξ) ]
∥∥2 + ∥ΦNR(x, y)∥2 (3.12)

holds with probability one.
In fact, for each k, since (xk, yk, zk) solves (3.9), we have

∥∥ 1

Nk

∑
ξi∈Ωk

F (xk, yk, zk, ξi)
∥∥2 + ∥Φµk

NR(x
k, yk)∥2 ≤

∥∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)
∥∥2

+∥Φµk

NR(x, y)∥
2 (3.13)
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for any (x, y, z). Note that∥∥∥ 1

Nk

∑
ξi∈Ωk

F (xk, yk, zk, ξi)− 1

Nk

∑
ξi∈Ωk

F (x̄, ȳ, z̄, ξi)
∥∥∥

≤ 1

Nk

∑
ξi∈Ωk

∥∥F (xk, yk, zk, ξi)− F (x̄, ȳ, z̄, ξi)
∥∥

≤ 1

Nk

∑
ξi∈Ωk

∫ 1

0

∥∇(x,y,z)F (tx
k + (1− t)x̄, tyk + (1− t)ȳ, tzk + (1− t)z̄, ξi)∥F

×∥(xk, yk, zk)− (x̄, ȳ, z̄)∥ dt
≤ C̄∥(xk, yk, zk)− (x̄, ȳ, z̄)∥
→ 0 as k → ∞,

where the second inequality follows from the mean-value theorem and the third inequality
follows from (3.11). We then have from (3.1) that

lim
k→∞

1

Nk

∑
ξi∈Ωk

F (xk, yk, zk, ξi) = lim
k→∞

1

Nk

∑
ξi∈Ωk

F (x̄, ȳ, z̄, ξi)

= Eξ [F (x̄, ȳ, z̄, ξ) ] w.p.1, (3.14)

that is,

lim
k→∞

∥∥ 1

Nk

∑
ξi∈Ωk

F (xk, yk, zk, ξi)
∥∥2 =

∥∥Eξ [F (x̄, ȳ, z̄, ξ) ]
∥∥2.

On the other hand, since∥∥ϕµk

NR(x
k, yk)− ϕµk

NR(x̄, ȳ)
∥∥

≤
∥∥ϕµk

NR(x
k, yk)− ϕNR(x

k, yk)
∥∥+

∥∥ϕNR(x
k, yk)− ϕNR(x̄, ȳ)

∥∥
+
∥∥ϕNR(x̄, ȳ)− ϕµk

NR(x̄, ȳ)
∥∥

≤ 2Cµk +
∥∥ϕNR(x

k, yk)− ϕNR(x̄, ȳ)
∥∥

→ 0 as k → ∞,

where the second inequality follows from (3.8), we have

lim
k→∞

∥Φµk

NR(x
k, yk)∥2 = ∥ΦNR(x̄, ȳ)∥2 and lim

k→∞
∥Φµk

NR(x, y)∥
2 = ∥ΦNR(x, y)∥2. (3.15)

Letting k → ∞ in (3.13) and applying (3.1) again, we can get (3.12) immediately.
For the case of ϕFB, noting that the smoothing techniques are not required, we can show

the conclusion in a similar but simpler way. This completes the proof.

Since (3.2) and (3.3) are nonconvex optimization problems in general, we need to inves-
tigate the limiting behavior of its stationary points. To this end, the following definitions
are useful.

Definition 3.2 ( [10]). Let H : ℜp → ℜq be locally Lipschitz continuous. The Clarke
generalized gradient of H at w is defined as

∂H(w) := co
{

lim
w′→w,w′∈DH

∇H(w′)
}
,

where DH denotes the set of points at which H is differentiable.
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Definition 3.3 ( [14]). Let H : ℜp → ℜq be locally Lipschitz continuous and Hµ : ℜp → ℜq

be a function such that Hµ is continuously differentiable everywhere for any µ > 0 and
limµ→0+H

µ(w) = H(w) for any w ∈ ℜp. We say that Hµ satisfies the Jacobian consistency
with H if

lim
µ→0+

dist
(
∇Hµ(w), ∂H(w)

)
= 0

holds for any w ∈ ℜp.

For simplicity, we denote by

ΨNR(x, y) := ∥ΦNR(x, y)∥2, Ψµ
NR(x, y) := ∥Φµ

NR(x, y)∥
2,

and, for x = (x1, . . . , xm) ∈ ℜn1 × · · ·×ℜnm and y = (y1, . . . , ym) ∈ ℜn1 × · · ·×ℜnm , we let

Ψi
NR(x

i, yi) := ∥ϕNR(x
i, yi)∥2, Ψµ,i

NR(x
i, yi) := ∥ϕµNR(x

i, yi)∥2

for each i. Then we have

∂ΨNR(x, y) = ∂Ψ1
NR(x

1, y1)× · · · × ∂Ψm
NR(x

m, ym), (3.16)

where ∂Ψi
NR(x

i, yi) = 2∂(ϕNR(x
i, yi))ϕNR(x

i, yi), i = 1, . . . ,m, and

∇Ψµ
NR(x, y) =

 ∇Ψµ,1
NR(x

1, y1)
...

∇Ψµ,m
NR (xm, ym)

 . (3.17)

Theorem 3.4. Suppose that (xk, yk, zk) is a stationary point of problem (3.9) or (3.10) for
each k and (x̄, ȳ, z̄) is an accumulation point of the sequence {(xk, yk, zk)}. Then (x̄, ȳ, z̄)
is a stationary point of problem (3.2) or (3.3) with probability one.

Proof. First of all, we consider the case of (3.9). Without loss of generality, we may assume
limk→∞(xk, yk, zk) = (x̄, ȳ, z̄). Let B and C̄ > 0 be the same as those in the proof of
Theorem 3.1. For each k, since (xk, yk, zk) is stationary to problem (3.9), we have

2

N2
k

∑
ξi∈Ωk

∇(x,y,z)F (x
k, yk, zk, ξi)

∑
ξi∈Ωk

F (xk, yk, zk, ξi) +

[
∇Ψµk

NR(x
k, yk)

0

]
= 0. (3.18)

Since F is twice continuously differentiable, and F , ∇(x,y,z)F and ∇2
(x,y,z)F are continuous

on the compact set B × Ω, in a similar way to the proof of Theorem 3.1, we have

lim
k→∞

2

N2
k

∑
ξi∈Ωk

∇(x,y,z)F (x
k, yk, zk, ξi)

∑
ξi∈Ωk

F (xk, yk, zk, ξi)

= 2Eξ [∇(x,y,z)F (x̄, ȳ, z̄, ξ) ]Eξ [F (x̄, ȳ, z̄, ξ) ]

= 2∇(x,y,z)(Eξ [F (x̄, ȳ, z̄, ξ) ])Eξ [F (x̄, ȳ, z̄, ξ) ]

= ∇(x,y,z)(∥Eξ [F (x̄, ȳ, z̄, ξ) ]∥2) (3.19)

with probability one, where the second equality follows from by Theorem 16.8 of [20] due to
the continuity of ∇(x,y,z)F on the compact set B × Ω. We next show

lim
k→∞

dist
(
∇Ψµk

NR(x
k, yk), ∂ΨNR(x̄, ȳ)

)
= 0.
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Denote by xk := (xk,1, . . . , xk,m) ∈ ℜn1 ×· · ·×ℜnm , yk := (yk,1, . . . , yk,m) ∈ ℜn1 ×· · ·×ℜnm

for each k and by x̄ := (x̄1, . . . , x̄m) ∈ ℜn1 ×· · ·×ℜnm , ȳ := (ȳ1, . . . , ȳm) ∈ ℜn1 ×· · ·×ℜnm .
From (3.16) and (3.17), it is sufficient to show

lim
k→∞

dist
(
∇Ψµk,i

NR (xk,i, yk,i), ∂Ψi
NR(x̄

i, ȳi)
)
= 0 (3.20)

for each i. In what follows, we let i be fixed and λk,ij := xk,i1 − yk,i1 + (−1)j∥xk,i2 − yk,i2 ∥,
λ̄ij := x̄i1 − ȳi1 + (−1)j∥x̄i2 − ȳi2∥ for j = 1, 2. We consider six cases:

(I) Suppose that λ̄i
1 > 0, that is, x̄i

1 − ȳi
1 > ∥x̄i

2 − ȳi
2∥. By Lemma 5.1 in [6], we have

∂Ψi
NR(x̄

i, ȳi) =

{
2

[
O
I

]
ϕNR(x̄

i, ȳi)

}
.

If xk,i
2 − yk,i

2 = 0 holds for infinitely many k, noting that limk→∞
x
k,i
1 −y

k,i
1

µk
= +∞ and taking

a subsequence if necessary, we have from (3.4) that

lim
k→∞

Mµk (x
k,i, yk,i) = lim

k→∞
aµk (x

k,i, yk,i)I = lim
k→∞

g′(
xk,i
1 − yk,i

1

µk
)I = I.

If xk,i
2 − yk,i

2 ̸= 0 holds for every k sufficiently large, noting that limk→∞
λ
k,i
1
µk

= +∞ and

limk→∞
λ
k,i
2
µk

= +∞, we obtain by calculating (3.5)–(3.7) that

lim
k→∞

bµk (x
k,i, yk,i) = 1, lim

k→∞
cµk (x

k,i, yk,i) = 1, lim
k→∞

dµk (x
k,i, yk,i) = 0,

which means

lim
k→∞

Mµk (x
k,i, yk,i) = I.

Therefore, any accumulation point of {Mµk (x
k,i, yk,i)} must be I. On the other hand, we

have limk→∞ ϕ
µk
NR(x

k,i, yk,i) = ϕNR(x̄
i, ȳi) from the proof of Theorem 3.1 by (3.15). Hence,

we obtain (3.20) immediately.

(II) Suppose that λ̄i
2 < 0, that is, x̄i

1 − ȳi
1 < −∥x̄i

2 − ȳi
2∥. By Lemma 5.1 in [6], we have

∂Ψi
NR(x̄

i, ȳi) =

{
2

[
I
O

]
ϕNR(x̄

i, ȳi)

}
.

In a similar way to that in (I), we can show that any accumulation point of {Mµk (x
k,i, yk,i)}

must be O and hence we have (3.20).

(III) Suppose that λ̄i
1 < 0 and λ̄i

2 > 0, that is, |x̄i
1 − ȳi

1| < ∥x̄i
2 − ȳi

2∥. By Lemma 5.1 in [6], we
have

∂Ψi
NR(x̄

i, ȳi) =

{
2

[
I − Z
Z

]
ϕNR(x̄

i, ȳi)

}
,

where

Z :=
1

2

 1
(x̄i

2−ȳi
2)

T

∥x̄i
2−ȳi

2∥
x̄i
2−ȳi

2

∥x̄i
2−ȳi

2∥
I +

x̄i
1−ȳi

1

∥x̄i
2−ȳi

2∥
(I − (x̄i

2−ȳi
2)(x̄

i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥2
)

 .

Similarly to that in (I), we can show that any accumulation point of {Mµk (x
k,i, yk,i)} must

be Z and hence we have (3.20).
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(IV) Suppose that λ̄i
1 = 0 and λ̄i

2 > 0, that is, x̄i
1 − ȳi

1 = ∥x̄i
2 − ȳi

2∥ ̸= 0. By Lemma 5.1 in [6], we
have

∂Ψi
NR(x̄

i, ȳi) =

{
2

[
I − V
V

]
ϕNR(x̄

i, ȳi)

∣∣∣∣ V ∈ co(I, Z)

}
,

where

Z :=
1

2

 1
(x̄i

2−ȳi
2)

T

∥x̄i
2−ȳi

2∥
x̄i
2−ȳi

2

∥x̄i
2−ȳi

2∥
2I − (x̄i

2−ȳi
2)(x̄

i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥2

 .

Note that limk→∞
λ
k,i
2
µk

= +∞. Taking a subsequence if necessary, we assume that

limk→∞
λ
k,i
1
µk

= α ∈ ℜ ∪ {±∞}. If limk→∞
λ
k,i
1
µk

= +∞, we have

lim
k→∞

bµk (x
k,i, yk,i) = 1, lim

k→∞
cµk (x

k,i, yk,i) = 1, lim
k→∞

dµk (x
k,i, yk,i) = 0,

which implies
lim
k→∞

Mµk (x
k,i, yk,i) = I.

If limk→∞
λ
k,i
1
µk

= α ∈ ℜ, by letting γ := g′(α) ∈ (0, 1), we have

lim
k→∞

bµk (x
k,i, yk,i) =

1 + γ

2
, lim

k→∞
cµk (x

k,i, yk,i) = 1, lim
k→∞

dµk (x
k,i, yk,i) =

1− γ

2
,

which implies

lim
k→∞

Mµk (x
k,i, yk,i) =

 1+γ
2

1−γ
2

(x̄i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥
1−γ
2

x̄i
2−ȳi

2

∥x̄i
2−ȳi

2∥
I + ( γ−1

2
)
(x̄i

2−ȳi
2)(x̄

i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥2

 = γI + (1− γ)Z,

and hence the limit of {Mµk (x
k,i, yk,i)} is a convex combination of I and Z. If limk→∞

λ
k,i
1
µk

=
−∞, we have

lim
k→∞

bµk (x
k,i, yk,i) =

1

2
, lim

k→∞
cµk (x

k,i, yk,i) = 1, lim
k→∞

dµk (x
k,i, yk,i) =

1

2
,

which implies

lim
k→∞

Mµk (x
k,i, yk,i) =

 1
2

1
2

(x̄i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥
1
2

x̄i
2−ȳi

2

∥x̄i
2−ȳi

2∥
I − 1

2

(x̄i
2−ȳi

2)(x̄
i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥2

 .

Therefore, in all cases, any limit of {Mµk (x
k,i, yk,i)} must belong to co(I, Z) and hence (3.20)

holds.

(V) Suppose that λ̄i
1 < 0 and λ̄i

2 = 0, that is, −x̄i
1 + ȳi

1 = ∥x̄i
2 − ȳi

2∥ ̸= 0. By Lemma 5.1 in [6],
we have

∂Ψi
NR(x̄

i, ȳi) =

{
2

[
I − V
V

]
ϕNR(x̄

i, ȳi)

∣∣∣∣ V ∈ co(O,Z)

}
,

where

Z :=
1

2

 1
(x̄i

2−ȳi
2)

T

∥x̄i
2−ȳi

2∥
x̄i
2−ȳi

2

∥x̄i
2−ȳi

2∥
(x̄i

2−ȳi
2)(x̄

i
2−ȳi

2)
T

∥x̄i
2−ȳi

2∥2

 .

Similarly as in (IV), we can show that any accumulation point of {Mµk (x
k,i, yk,i)} must

belong to co(O,Z) and hence (3.20) holds.
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(VI) Suppose that λ̄i
1 = 0 and λ̄i

2 = 0, that is, x̄i − ȳi = 0. By Lemma 5.1 in [6], we have

∂Ψi
NR(x̄

i, ȳi) =

{
2

[
I − V
V

]
ϕNR(x̄

i, ȳi)

∣∣∣∣ V ∈ co{O, I, S}
}
,

where

S :=

{
1

2

[
1 wT

w (1 + β)I − βwwT

] ∣∣∣∣ β ∈ [−1, 1], ∥w∥ = 1

}
.

We first consider the case where xk,i
2 − yk,i

2 = 0 for infinitely many k. If limk→∞
x
k,i
1 −y

k,i
1

µk
=

+∞, from (3.4), we have

lim
k→∞

Mµk (x
k,i, yk,i) = lim

k→∞
aµk (x

k,i, yk,i)I = lim
k→∞

g′(
xk,i
1 − yk,i

1

µk
)I = I.

If limk→∞
x
k,i
1 −y

k,i
1

µk
= δ ∈ ℜ, from (3.4), we have

lim
k→∞

Mµk (x
k,i, yk,i) = lim

k→∞
aµk (x

k,i, yk,i)I = lim
k→∞

g′(
xk,i
1 − yk,i

1

µk
)I = τI,

where τ := g′(δ) ∈ (0, 1). If limk→∞
x
k,i
1 −y

k,i
1

µk
= −∞, from (3.4), we have

lim
k→∞

Mµk (x
k,i, yk,i) = lim

k→∞
aµk (x

k,i, yk,i)I = lim
k→∞

g′(
xk,i
1 − yk,i

1

µk
)I = O.

In conclusion, any limit of {Mµk (x
k,i, yk,i)} must be a convex combination of O, I, and S.

We next consider the case where xk,i
2 − yk,i

2 ̸= 0 holds for every k sufficiently large. From the
mean-value theorem, there exists λk,i ∈ [λk,i

1 , λk,i
2 ] such that

g(
λk,i
2

µk
)− g(

λk,i
1

µk
) = g′(

λk,i

µk
)(
λk,i
2

µk
− λk,i

1

µk
).

If limk→∞
λ
k,i
1
µk

= +∞ and limk→∞
λ
k,i
2
µk

= +∞, it is obvious that limk→∞
λk,i

µk
= +∞. By

calculating (3.5)–(3.7), we obtain

lim
k→∞

bµk (x
k,i, yk,i) = 1, lim

k→∞
cµk (x

k,i, yk,i) = lim
k→∞

g′(
λk,i

µk
) = 1, lim

k→∞
dµk (x

k,i, yk,i) = 0,

which means

lim
k→∞

Mµk (x
k,i, yk,i) = I.

If limk→∞
λ
k,i
1
µk

= α ∈ ℜ and limk→∞
λ
k,i
2
µk

= +∞, we have

lim
k→∞

bµk (x
k,i, yk,i) =

1 + γ1
2

, lim
k→∞

cµk (x
k,i, yk,i) = 1, lim

k→∞
dµk (x

k,i, yk,i) =
1− γ1

2
,

where γ1 := g′(α) ∈ (0, 1), and then

lim
k→∞

Mµk (x
k,i, yk,i) =

[
1+γ1

2
1−γ1

2
wT

1−γ1
2

w I + γ1−1
2

wwT

]
= γ1I + (1− γ1)

1

2

[
1 wT

w (1 + β1)I − β1wwT

]
,
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where β1 := 1. This indicates that the limit of {Mµk (x
k,i, yk,i)} is a convex combination of

O, I, S. Actually, the above conclusion can be shown in a similar way for the following four
cases:

(i) limk→∞
λ
k,i
1
µk

= −∞ and limk→∞
λ
k,i
2
µk

= +∞;

(ii) limk→∞
λ
k,i
1
µk

= α ∈ ℜ and limk→∞
λ
k,i
2
µk

= η ∈ ℜ with α ≤ η;

(iii) limk→∞
λ
k,i
1
µk

= −∞ and limk→∞
λ
k,i
2
µk

= η ∈ ℜ;

(iv) limk→∞
λ
k,i
1
µk

= −∞ and limk→∞
λ
k,i
2
µk

= −∞.

Therefore, we can obtain (3.20) immediately.

As a result, we have (3.20) in all cases. Letting k → ∞ in (3.18), we have from (3.19)–(3.20)
that

0 ∈ ∇Eξ [ ∥F (x̄, ȳ, z̄, ξ)∥2 ] + ∂ΨNR(x̄, ȳ)× {0} w.p.1,

which means that (x̄, ȳ, z̄) is a stationary point of (3.2) with probability one.
Now we consider the case of (3.10). For each k, since (xk, yk, zk) is stationary to problem

(3.10), we have

2

N2
k

∑
ξi∈Ωk

∇(x,y,z)F (x
k, yk, zk, ξi)

∑
ξi∈Ωk

F (xk, yk, zk, ξi) +

[
∇ΨFB(x

k, yk)
0

]
= 0. (3.21)

By Proposition 2 of [7], ΨFB is a smooth function, that is, ∇ΨFB is continuous everywhere.
Letting k → ∞ in (3.21), we have from (3.19) that

∇Eξ [ ∥F (x̄, ȳ, z̄, ξ)∥2 ] +∇ΨFB(x̄, ȳ) = 0 w.p.1,

which means that (x̄, ȳ, z̄) is a stationary point of (3.3) with probability one.

4 Exponential Convergence Rate

In this section, we discuss the exponential convergence rate of the optimal solutions of the
approximation problem (3.9) or (3.10). To this end, we need the following lemma.

Lemma 4.1 ( [27]). Let X be a compact set and h : X × Ω → ℜ be integrable everywhere.
Suppose that the following conditions hold:

(i) For every x ∈ X , the moment generating function Eξ[e
t(h(x,ξ)−Eξ[h(x,ξ)])] is finite-valued

for all t in a neighbourhood of zero.

(ii) There exist a measurable function κ : Ω → ℜ+ and a constant γ > 0 such that, for all
ξ ∈ Ω and all x′, x ∈ X , |h(x′, ξ)− h(x, ξ)| ≤ κ(ξ)∥x′ − x∥γ holds.

(iii) The moment generating function Eξ[e
tκ(ξ)] is finite-valued for all t in a neighbourhood

of zero.

Then, for every ε > 0, there exist positive constants D(ε) and β(ε), independent of Nk, such
that

Prob
{
sup
x∈X

∣∣∣ 1

Nk

∑
ξi∈Ωk

h(x, ξi)− Eξ[h(x, ξ)]
∣∣∣ ≥ ε

}
≤ D(ε)e−Nkβ(ε).
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Applying this lemma, we can obtain the following result related to exponential conver-
gence rate.

Theorem 4.2. Let (xk, yk, zk) be an optimal solution of (3.9) or (3.10) for each k and
(x̄, ȳ, z̄) be an accumulation point of the sequence {(xk, yk, zk)}. Then, for every ε > 0,
there exist positive constants D(ε) and β(ε), independent of Nk, such that

Prob
{
|Θk

NR(x
k, yk, zk)−ΘNR(x̄, ȳ, z̄)| ≥ ε

}
≤ D(ε)e−Nkβ(ε) (4.1)

or

Prob
{
|Θk

FB(x
k, yk, zk)−ΘFB(x̄, ȳ, z̄)| ≥ ε

}
≤ D(ε)e−Nkβ(ε). (4.2)

Proof. Without loss of generality, we assume that {(xk, yk, zk)} itself converges to (x̄, ȳ, z̄).
Let B be a compact set that contains the whole sequence {(xk, yk, zk)}.

(1) Consider the case for (4.2). We first show that, for every ε > 0, there exist positive
constants D(ε) and β(ε), independent of Nk, such that

Prob
{

sup
(x,y,z)∈B

|Θk
FB(x, y, z)−ΘFB(x, y, z)| ≥ ε

}
≤ D(ε)e−Nkβ(ε). (4.3)

In fact, from (3.3) and (3.10), it is sufficient to show

Prob
{

sup
(x,y,z)∈B

∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣ ≥ ε

}
≤ D(ε)e−Nkβ(ε). (4.4)

Noting that F can be regarded as an (n+ l)-dimensional vector, we obtain∣∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣∣

=
∣∣∣ n+l∑
i=1

( 1

Nk

∑
ξi∈Ωk

Fi(x, y, z, ξ
i)
)2 − n+l∑

i=1

(
Eξ[Fi(x, y, z, ξ)]

)2∣∣∣
≤

n+l∑
i=1

∣∣∣ 1

Nk

∑
ξi∈Ωk

Fi(x, y, z, ξ
i) + Eξ[Fi(x, y, z, ξ)]

∣∣∣ ·
∣∣∣ 1

Nk

∑
ξi∈Ωk

Fi(x, y, z, ξ
i)− Eξ[Fi(x, y, z, ξ)]

∣∣∣.
Since F (x, y, z, ξ) is continuously differentiable with respect to (x, y, z) and continuously
integrable with respect to ξ over the compact set Ω, there exists a constant M > 0 such
that, for all i ∈ {1, . . . , n+ l},∣∣∣ 1

Nk

∑
ξi∈Ωk

Fi(x, y, z, ξ
i) + Eξ[Fi(x, y, z, ξ)]

∣∣∣ ≤M, ∀(x, y, z, ξ) ∈ B × Ω.

Let ∣∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x, y, z, ξ
i)− Eξ[Fj(x, y, z, ξ)]

∣∣∣
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:= max
{∣∣ 1

Nk

∑
ξi∈Ωk

Fi(x, y, z, ξ
i)− Eξ[Fi(x, y, z, ξ)]

∣∣, 1 ≤ i ≤ n+ l
}
.

We have ∣∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣∣

≤
n+l∑
i=1

M
∣∣∣ 1

Nk

∑
ξi∈Ωk

Fi(x, y, z, ξ
i)− Eξ[Fi(x, y, z, ξ)]

∣∣∣
= (n+ l)M

∣∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x, y, z, ξ
i)− Eξ[Fj(x, y, z, ξ)]

∣∣∣,
which means

sup
(x,y,z)∈B

∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣ ≥ ε

=⇒ sup
(x,y,z)∈B

∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x, y, z, ξ
i)− Eξ[Fj(x, y, z, ξ)]

∣∣ ≥ ε

(n+ l)M
.

Therefore, we have

Prob
{

sup
(x,y,z)∈B

∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣ ≥ ε

}
≤ Prob

{
sup

(x,y,z)∈B

∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x, y, z, ξ
i)− Eξ[Fj(x, y, z, ξ)]

∣∣ ≥ ε

(n+ l)M

}
. (4.5)

Let X := B and h(x, y, z, ξ) := Fj(x, y, z, ξ). Since both B and Ω are compact sets, by the
continuous differentiability assumption on F (x, y, z, ξ) given in Section 1, it is not difficult to
verify that X and the function h(x, y, z, ξ) satisfy the conditions given in Lemma 4.1. Hence,
for every ε > 0, there exist positive constants D( ε

(n+l)M ) and β( ε
(n+l)M ), independent of

Nk, such that

Prob
{

sup
(x,y,z)∈B

∣∣ 1

Nk

∑
ξi∈Ωk

Fj(x, y, z, ξ
i)− Eξ[Fj(x, y, z, ξ)]

∣∣
≥ ε

(n+ l)M

}
≤ D(

ε

(n+ l)M
)e−Nkβ(

ε
(n+l)M

).

Noting that (n + l)M is just a constant for every ε, we can use D(ε) and β(ε) to denote
D( ε

(n+l)M ) and β( ε
(n+l)M ) respectively. Thus, combining with (4.5), we can obtain (4.4)

easily.
Since (xk, yk, zk) is an optimal solution of (3.10) for each k, by Theorem 3.1, (x̄, ȳ, z̄)

must be an optimal solution of (3.3). It then follows that

θkFB(x
k, yk, zk) ≤ θkFB(x̄, ȳ, z̄), θFB(x̄, ȳ, z̄) ≤ θFB(x

k, yk, zk),

from which we have

θkFB(x
k, yk, zk)− θFB(x̄, ȳ, z̄)
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= θkFB(x
k, yk, zk)− θkFB(x̄, ȳ, z̄) + θkFB(x̄, ȳ, z̄)− θFB(x̄, ȳ, z̄)

≤ θkFB(x̄, ȳ, z̄)− θFB(x̄, ȳ, z̄)

≤ sup
(x,y,z)∈B

|θkFB(x, y, z)− θFB(x, y, z)|

and

θkFB(x
k, yk, zk)− θFB(x̄, ȳ, z̄)

= θkFB(x
k, yk, zk)− θFB(x

k, yk, zk) + θFB(x
k, yk, zk)− θFB(x̄, ȳ, z̄)

≥ θkFB(x
k, yk, zk)− θFB(x

k, yk, zk)

≥ − sup
(x,y,z)∈B

|θkFB(x, y, z)− θFB(x, y, z)|.

It follows that

|θkFB(xk, yk, zk)− θFB(x̄, ȳ, z̄)| ≤ sup
(x,y,z)∈B

|θkFB(x, y, z)− θFB(x, y, z)|.

This together with (4.3) implies (4.2).
(2) Consider the case for (3.9). The inequality (4.4) still holds from the proof of (1).

This means that, for every ε > 0, there exist positive constants D(ε) and β(ε), independent
of Nk, such that

Prob
{

sup
(x,y,z)∈B

∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣ ≥ ε

}
≤ D(ε)e−Nkβ(ε).

From (3.8), there exists a constant C0 such that
∣∣∣∥Φµk

NR(x, y)∥2−∥ΦNR(x, y)∥2
∣∣∣ ≤ C0µk. We

have ∣∣Θk
NR(x, y, z)−ΘNR(x, y, z)

∣∣
≤

∣∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣∣+ ∣∣∣∥Φµk

NR(x, y)∥
2 − ∥ΦNR(x, y)∥2

∣∣∣
≤

∣∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣∣+ C0µk.

Since µk → 0 as k → ∞, there exists K > 0 such that µk ≤ ε
C0

for k > K and then, from
(4.4) and the above inequality,

Prob
{

sup
(x,y,z)∈B

|Θk
NR(x, y, z)−ΘNR(x, y, z)| ≥ 2ε

}
≤ Prob

{
sup

(x,y,z)∈B

∣∣∥ 1

Nk

∑
ξi∈Ωk

F (x, y, z, ξi)∥2 − ∥Eξ[F (x, y, z, ξ)]∥2
∣∣ ≥ ε

}
≤ D(ε)e−Nkβ(ε).

Then, in a similar manner to (1), we can get

|θkNR(x
k, yk, zk)− θNR(x̄, ȳ, z̄)| ≤ sup

(x,y,z)∈B

|θkFB(x, y, z)− θFB(x, y, z)|

and hence (4.1) is true. This completes the proof.
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5 Error Bounds for SSOCCP

In this section, we devote to deriving some results related to error bound conditions, which
bound the distance from the vectors in a test set to a goal set, for (1.1). Error bounds
play important roles in variational inequalities, especially in convergence analysis for var-
ious numerical algorithms [11]. Although error bound conditions are not involved in the
convergence analysis given in the last sections, they may be useful in the subsequent study
on (1.1).

To this end, we rewrite (1.1) as the following equivalent constraint system with nonconvex
cone:

Eξ[F (x, y, z, ξ)] = 0, (xi, yi) ∈ Λi, i = 1, . . . ,m,

where Λi ⊆ ℜ2ni (i = 1, . . . ,m) denotes the complementarity set given by

Λi := {(s, t) | s ∈ Kni , t ∈ Kni , sT t = 0} = {(s, t) | − t ∈ NKni (s)},

and we denote by x := (x1, . . . , xm) ∈ ℜn1 ×· · ·×ℜnm , y := (y1, . . . , ym) ∈ ℜn1 ×· · ·×ℜnm .
We consider its perturbed system

Eξ[F (x, y, z, ξ)] + r = 0, (xi, yi) + pi ∈ Λi, i = 1, . . . ,m, (5.1)

where the perturbation parameters r ∈ ℜn+l and pi ∈ Λi (i = 1, . . . ,m). In particular, we
suppose that the system (1.1) has a solution (x∗, y∗, z∗) and denote by S(r, p) the solution
set of the parametric system (5.1).

Definition 5.1. We say that the system (1.1) has a local error bound at (x∗, y∗, z∗) if there
exist µ, ε > 0 such that

dist((x, y, z),S(0, 0)) ≤ µ∥(r, p)∥

holds for each (r, p) ∈ εB and each (x, y, z) ∈ S(r, p) ∩ Bε(x
∗, y∗, z∗).

From [33], the system (1.1) has a local error bound at (x∗, y∗, z∗) if and only if the solution
map S : ℜn+l×ℜ2n ⇒ ℜ2n+l is calm at (0, 0, x∗, y∗, z∗) or pseudo upper-Lipschitz continuous
around (0, 0, x∗, y∗, z∗). This means that, if S is either pseudo-Lipschitz continuous around
(0, 0, x∗, y∗, z∗) or upper-Lipschitz continuous at (0, 0), then (1.1) has a local error bound
at (x∗, y∗, z∗).

In what follows, we assume the validity of switching orders of taking expectation with
respect to ξ and taking gradient with respect to (x, y, z) in front of F (x, y, z, ξ). We make
this assumption for the sake of more elegant formal expression, with the understanding that
it can be easily guaranteed under mild boundedness conditions. It is worth mentioning that
the results given below remain true without this assumption.

Definition 5.2. We say that the no nonzero abnormal multiplier constraint qualification
(NNAMCQ) holds at (x∗, y∗, z∗) for the system (5.1) if there is no nonzero vector (λF , λx, λy)
with (λx, λy) ∈ NΛ1

(x∗,1, y∗,1)× · · · × NΛm
(x∗,m, y∗,m) such that Eξ[∇xF (x

∗, y∗, z∗, ξ)]λF + λx = 0,
Eξ[∇yF (x

∗, y∗, z∗, ξ)]λF + λy = 0,
Eξ[∇zF (x

∗, y∗, z∗, ξ)]λF = 0.

Following the idea in [32], we can prove that the NNAMCQ condition is sufficient to
guarantee the existence of local error bounds.
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Theorem 5.3. Assume that the NNAMCQ holds at a solution (x∗, y∗, z∗). Then the solution
map S is pseudo-Lipschitz continuous around (0, 0, x∗, y∗, z∗) and hence the SSOCCP (1.1)
has a local error bound at (x∗, y∗, z∗).

Proof. From the Mordukhovich criteria [19], it suffices to show

D∗S(0, 0, x∗, y∗, z∗)(0, 0, 0) = {(0, 0)}.

In fact, suppose that (γ, η) ∈ D∗S(0, 0, x∗, y∗, z∗)(0, 0, 0), where γ ∈ ℜn+l and η ∈ K × K.
By Definition 2.2, there holds

(γ, η, 0, 0, 0) ∈ NgphS(0, 0, x
∗, y∗, z∗).

By the definition of limiting normal cone, there are {(rk, pk, xk, yk, zk)} and {(γk, ηk, αk, βk, τk)}
converging to (0, 0, x∗, y∗, z∗) and (γ, η, 0, 0, 0), respectively, with

(γk, ηk, αk, βk, τk) ∈ N π
gphS(r

k, pk, xk, yk, zk).

By the definition of proximal normal cone, for each k, there exists Mk > 0 such that

(γk, ηk, αk, βk, τk)T (r − rk, p− pk, x− xk, y − yk, z − zk)

≤ Mk∥(r − rk, p− pk, x− xk, y − yk, z − zk)∥2.

holds for any (r, p, x, y, z) ∈ gphS. We further observe that (rk, pk, xk, yk, zk) is the unique
optimal solution to the optimization problem

min
(r,p,x,y,z)

Mk∥(r − rk, p− pk, x− xk, y − yk, z − zk)∥2

−(γk, ηk, αk, βk, τk)T (r − rk, p− pk, x− xk, y − yk, z − zk)
s.t. Eξ[F (x, y, z, ξ)] + r = 0, (xi, yi) + pi ∈ Λi, i = 1, . . . ,m.

Here and in the subsequent analysis, we denote by xk := (xk,1, . . . , xk,m) ∈ ℜn1 ×· · ·×ℜnm ,
yk := (yk,1, . . . , yk,m) ∈ ℜn1 × · · · × ℜnm and so on.

In the hope of that the NNAMCQ holds at (rk, pk, xk, yk, zk) for the above problem for
each k, we verify the following system for NNAMCQ conditions:

λF = 0, (λx, λy) = 0,
Eξ[∇xF (x

k, yk, zk, ξ)]λF + λx = 0,
Eξ[∇yF (x

k, yk, zk, ξ)]λF + λy = 0,
Eξ[∇zF (x

k, yk, zk, ξ)]λF = 0,
(λx, λy) ∈ NΛ1((x

k,1, yk,1) + pk,1)× · · · × NΛm((xk,m, yk,m) + pk,m),

which is only satisfied by (λF , λx, λy) = (0, 0, 0) and hence the NNAMCQ holds at
(rk, pk, xk, yk, zk) for the above optimization problem. In consequence, there exist La-
grangian multipliers γ̄k and η̄k such that the KKT conditions hold, that is,

−γk + γ̄k = 0,
−ηk + η̄k = 0,
−(αk, βk) + Eξ[∇xiF (x

k, yk, zk, ξ)]γ̄k + η̄k = 0,
−τk + Eξ[∇zF (x

k, yk, zk, ξ)]γ̄k = 0,
η̄k ∈ NΛ1

((xk,1, yk,1) + pk,1)× · · · × NΛm
((xk,m, yk,m) + pk,m).



A CLASS OF STOCHASTIC SOCCP 279

Taking a limit in the above system, we have from the continuous differentiablity of F and
the observation that γk = γ̂k and ηk = η̂k that Eξ[∇(x,y)F (x

∗, y∗, z∗, ξ)]γ + η = 0,
Eξ[∇zF (x

∗, y∗, z∗, ξ)]γ = 0,
η ∈ NΛ1

(x∗,1, y∗,1)× · · · × NΛm
(x∗,m, y∗,m).

Consequently, by the constraint qualification assumption, we have (γ, η) = (0, 0) and hence
S is pseudo-Lipschitz continuous around (0, 0, x∗, y∗, z∗). This completes the proof.

Recall that a set-valued mapping is called a polyhedral multifunction if its graph is a
union of finitely many polyhedral convex sets. By [22], a polyhedral multifunction is upper-
Lipschitz and hence calm, which implies the existence of local error bounds.

Theorem 5.4. Assume that F (x, y, z, ξ) is affine with respect to (x, y, z) and continuously
integrable with respect to ξ over Ω and ni ≤ 2 for each i. Then the solution map S is upper-
Lipschitz continuous around (0, 0) and hence the SSOCCP (1.1) has a local error bound at
an arbitrary solution (x∗, y∗, z∗).

Proof. By the assumptions, Eξ[F (x, y, z, ξ)] is affine. Note that each second-order-cone
Kni is actually polyhedral and so is each complementarity set Λi. It is easy to see that
the graph of the set-valued map S is a union of polyhedral convex sets and hence S is a
polyhedral multifunction. By [22, Proposition 1], S is upper-Lipschitz continuous at (0, 0).
This completes the proof.

6 Application in Chance-Constrained Optimal Power Flow

The theoretical results given in the previous sections indicate that the SSOCCP (1.1) can
be solved via the minimization approach (1.6). In this section, as a further supplement, we
consider a practical engineering problem.

Consider the transmission grids where the convey power is economical with minimal
losses. Transmission systems balance consumption/load and generation using a complex
strategy. Consider the case of a sudden load increase. In this case, generator frequency will
start to drop. The so-called automatic generation control (AGC) undertakes the adjustment
of generation levels to return frequency to nominal value. The optimal power flow (OPF)
algorithm typically runs as frequently every 15 minutes and provides information for AGC,
which ultimately resets generator output levels over a control area of the transmission grid.

Here, we employ power engineering terms such as “bus” and “line” to describe OPF
[4, 15]. The set of all buses is denoted by V, the set of lines by E , and the set of buses that
houses generators by G respectively. In what follows, we let n := |V|. A line joining buses i
and j is denoted by {i, j}. Then the standard DC-formulation for OPF can be expressed as
the constrained optimization problem

min
(θ,p)

c(p)

s.t. Bθ = p− d, pmin
i ≤ pi ≤ pmax

i , ∀i ∈ G,
|βij(θi − θj)| ≤ fmax

ij , ∀{i, j} ∈ E .

The goal is to determine the vector p ∈ ℜG , where pi is the output of generator i for
i ∈ G, so as to minimize an objective function c(p), which is usually a convex separable

quadratic function of p. θ ∈ ℜ|V| and d ∈ ℜ|V|
+ represent the vector of phase angles and the
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vector of demands respectively. The n × n matrix B made up of line susceptance βij is a
weighted-Laplacian defined as

Bij :=


−βij {i, j} ∈ E ,∑

k;{k,j}∈E βkj i = j,

0 otherwise,

The quantities pmin
i and pmax

i can be used to enforce the convention pi = 0 for each i /∈ G
and, if i ∈ G, pmin

i and pmax
i represent the lower and upper generation bounds which are

generator-specific. fmax
ij is the transmission line limit (typically a thermal limit) for {i, j}

and is assumed to be strictly enforced.
The problem changes when renewable power sources (such as wind, etc.) are incorpo-

rated. We assume that a subset W of buses holds uncertain power sources (e.g. wind farms)
and, for each j ∈ W, we write the amount of power generated by source j at time t as
µj + ξj(t), where µj is the forecast output of farm j in the time period of interest. The
hazard embodied is that the uncertainty ξj(t) can be large, resulting in stochastic changes
in power flows significant enough to overload power lines. Lowering of the thermal limits
(the quantities fmax

ij etc.) can prevent overloads, but it also forces excessively conservative
choices of the generation redispatch, potentially causing extreme volatility of the electricity
market.

Power lines do not fail (i.e., trip) instantly when their flows go beyond the thermal limits.
A line carrying flow that exceeds the line’s thermal limit will gradually heat up, possibly
sag, and may trip or be disconnected by the operator through a variety of processes (such as
a contact). Additionally, the rate at which a line overheats depends on its overload, which
may dynamically change (or even temporarily disappear) as flows adjust due to external
factors, such as fluctuations in renewable outputs. Ideally, the transmission constraint should
be of the form “for each line, the fraction of the time that it exceeds its limit within a
certain time window is small”. Nevertheless, an exact representation of line tripping is not
tractable. Instead, Bienstock et al. [5] propose a static proxy of the ideal model with a
chance constraint, namely, they require the probability that a given line exceeds its limit
to be small. In particular, they use boldface to indicate uncertain quantities. The chance
constraint for line {i, j} is

Prob{fij > fmax
ij } < ϵij , ∀{i, j},

where fij denotes the flow on a given line {i, j}. In the chance-constrained model, it is
assumed in [5] that the wind power fluctuation is independent at different sites. For each
j ∈ W, the (stochastic) amount of power generated by source j is of the form µj + ξj ,
where µj is constant and known from the forecast, and ξj is a zero mean independent
random variable with known standard deviation σj . Since the power injections at each
bus are fluctuating, Bienstock et al. employ the affine control scheme so as to ensure that
generation is equal to demand at all time within the time window of interest. Mathematical
expression becomes pi = p̄i −αi

∑
j∈W ξj , ∀i ∈ G, where the quantities p̄i ≥ 0 is the design

variable representing the average production of the generator i, and αi ≥ 0 is the design
variable satisfying

∑
i∈G αi = 1. The affine control scheme creates the possibility of requiring

a generator to produce power beyond its limit, which is inevitable with high penetration of
wind power.

By applying the chance-constrained optimization ideas to the setting of OPF under
uncertainty, [5] eventually provides the following generic DC-formulation for the chance-
constrained OPF problem that is valid under the assumption of linear power flow and sta-
tistical independence of wind fluctuation at different buses, while using control law to specify
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standard generation responses to the wind fluctuations:

min
(θ̄,p̄,α)

Eξ[c(p̄− (eT ξ)α)]

s.t.Bθ̄ = p̄+ µ− d,
∑
i∈G

αi = 1, α ≥ 0, p̄ ≥ 0,
∑
i∈V

(p̄i + µi − di) = 0,

Prob{p̄g − (eT ξ)αi < pmin
g ) < ϵg, Prob(p̄g − (eT ξ)αi > pmax

g } < ϵg,∀g,
Prob{βij(θ̄i − θ̄j + [B̌(ξ − (eT ξ)α)]i − [B̌(ξ − (eT ξ)α)]j) > fmax

ij } < ϵij ,∀{i, j} ∈ E ,
Prob{βij(θ̄i − θ̄j + [B̌(ξ − (eT ξ)α)]i − [B̌(ξ − (eT ξ)α)]j) < −fmax

ij } < ϵij ,∀{i, j} ∈ E .

The decision variables in this formulation include the affine control α, the standard p̄ and θ̄
used in the standard OPF. For i /∈ W, there holds µi = σi = 0 and, for i /∈ G, p̄i = αi = 0.
The objective is the expected cost incurred by the stochastic generation over the varying
wind power output ξ, and e ∈ ℜn is the vector of all 1’s. In standard power engineering
practice, generation cost function c(·) is convex, quadratic and separable. B̂ denotes the
submatrix obtained from B by removing row and column n /∈ G ∪W for convenience and

B̌ :=

(
B̂−1 0
0 0

)
.

Different from [5] which presents a fully convex deterministic formulation (unfortunately,
their chain of reformulating contains an erroneous expression), we employ the second-order-
cone representation to recast those constraints of the chance-constrained form, which leaves
us the following stochastic programming problem with the second-order-cone constraints on
variables {p̄, α, θ̄, δ, s}:

min
(θ̄,p̄,α)

Eξ

[∑
i∈G

ci2(p̄
2
i + α2

i (
∑
j∈W

ξj)
2) + ci1p̄i + ci0

]

s.t.

n−1∑
j=1

B̂ijδj = αi, 1 ≤ i ≤ n− 1,

n−1∑
j=1

B̂ij θ̄j = p̄i + µi − di, 1 ≤ i ≤ n− 1,

∑
i∈G

αi = 1, α ≥ 0, p̄ ≥ 0,

p̄n = αn = δn = θ̄n = 0,

ϕ−1(1− ϵg)αg

( ∑
k∈W

σ2
k

)1/2

≤ pmax
g − p̄g, ∀g,

ϕ−1(1− ϵg)αg

( ∑
k∈W

σ2
k

)1/2

≤ p̄g − pmin
g , ∀g,

βij |θ̄i − θ̄j |+ βijϕ
−1(1− ϵij)sij ≤ fmax

ij , ∀{i, j} ∈ E ,[ ∑
k∈W

σ2
k(B̌ik − B̌jk − δi + δj)

2
]1/2

≤ sij , ∀{i, j} ∈ E ,

where both δ := B̌α and sij are auxiliary variables and ϕ is the cumulative distribution func-
tion of a standard normally distributed random variable. In order to exploit the stochastic
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second-order-conic problem in a computationally approachable manner, we naturally adopt
the prevailing KKT approach which reformulates the problem equivalently from a program-
ming problem to an inequality system under suitable constraint qualifications. To do this,
we rewrite the above program as

min
(θ̄,p̄,α)

Eξ

[∑
i∈G

ci2(p̄
2
i + α2

i (
∑
j∈W

ξj)
2) + ci1p̄i + ci0

]

s.t.

n−1∑
j=1

B̂ijδj − αi = 0, li, ∀i ∈ {1, . . . , n− 1},

n−1∑
j=1

B̂ij θ̄j − p̄i − µi + di = 0, mi, ∀i ∈ {1, . . . , n− 1},

∑
i∈G

αi − 1 = 0, µ,

pmax
i − p̄i − ϕ−1(1− ϵi)αi

( ∑
k∈W

σ2
k

)1/2

≥ 0, ui, ∀i ∈ G,

p̄i − pmin
i − ϕ−1(1− ϵi)αi

( ∑
k∈W

σ2
k

)1/2

≥ 0, vi, ∀i ∈ G,

fmax
ij − βijϕ

−1(1− ϵij)sij − βij(θ̄i − θ̄j) ≥ 0, ηij , ∀{i, j} ∈ E ,
βij(θ̄i − θ̄j) + fmax

ij − βijϕ
−1(1− ϵij)sij ≥ 0, τij , ∀{i, j} ∈ E ,

sij
...

σk(B̌ik − B̌jk − δi + δj)
...

 ∈ K|W|+1,


πij
...
λkij
...

 ∈ K|W|+1, ∀{i, j} ∈ E ,

αi ≥ 0, ri, ∀i ∈ {1, . . . , n− 1},
p̄i ≥ 0, qi, ∀i ∈ {1, . . . , n− 1},

where {li,mi, µ, ui, vi, ηij , τij , πij , λ
k
ij(k ∈ W), ri, qi} are Lagrangian multipliers. Under some

mild bounded assumptions on wind output ξ, the KKT conditions can be written as

Eξ

[
ci2(2p̄i + α2

i (
∑
j∈W

ξj)
2) + ci1

]
−mi + ui − vi − qi = 0, ∀i ∈ G,

mi + qi = 0, ∀i ∈ {1, . . . , n− 1} \ G,

Eξ

[
2ci2αi(

∑
j∈W

ξj)
2
]
− li + µ+ (ui + vi)ϕ

−1(1− ϵi)
( ∑

k∈W

σ2
k

)1/2

− ri = 0, ∀i ∈ G,

li + ri = 0, ∀i ∈ {1, . . . , n− 1} \ G,
miB̂ii + ηijβij − τijβij = 0, ∀{i, j} ∈ E ,

liB̂ii +
∑
k∈W

λkijσk = 0, ∀{i, j} ∈ E ,

(ηij + τij)βijϕ
−1(1− ϵij)− πij = 0, ∀{i, j} ∈ E ,

p̄n = αn = δn = θ̄n = 0,
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K|W|+1 ∋


πij
...
λkij
...

 ⊥


sij
...

σk(B̌ik − B̌jk − δi + δj)
...

 ∈ K|W|+1, ∀{i, j} ∈ E ,

0 ≤ ri ⊥ αi ≥ 0, ∀i ∈ {1, . . . , n− 1},
0 ≤ qi ⊥ p̄i ≥ 0, ∀i ∈ {1, . . . , n− 1}.

Denote (πij , . . . , λ
k
ij , . . . , ri, qi)

T ∈ K|W|+1 × K1 × K1 by x, (sij , . . . , σk(B̌ik − B̌jk − δi +

δj), . . . , αi, p̄i)
T ∈ K|W|+1 × K1 × K1 by y, and the above system of equations by

Eξ[F (x, y, z, ξ)] = 0. Then, the induced KKT conditions are in the form of (1.1), which, as
argued in Section 4, may be efficiently solvable.

Figure 1: Single line diagram of IEEE 30-bus test system

We performed experiments involving the IEEE 30-bus system as in Figure 1. In our test,
we used the standard quadratic cost functions and system data associated with this case
(provided with [21]), ϵij = 3.27% for all lines, and two sources of wind power were added
at arbitrary buses to meet 18% of demand in the case of average wind. Then we accounted
for fluctuations in wind assuming Gaussian and site-independent fluctuations with standard
derivation set as 40% of the respective means. The results, which are shown in Table 1,
illustrate the control and dispatch decisions that the system regulator makes in the setting of
chance-constrained OPF on those buses holding controllable generators. From the numerical
results, we observed that, as the sample size increases, the convergence is stable, e.g., there
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Table 1: Test results on IEEE 30-bus system

sample size 50 300 1000 2000

total cost 1567.715 1538.961 1539.061 1539.102

bus1 α1=0.062 α1=0.076 α1=0.076 α1=0.076

p̄1=1.143 p̄1=1.407 p̄1=1.407 p̄1= 1.407

bus2 α2=0.930 α2=0.924 α2=0.924 α2=0.924

p̄2=41.748 p̄2=40.737 p̄2=40.737 p̄2=40.737

bus13 α13=0 α13=0 α13=0 α13=0

p̄13=22.294 p̄13=22.294 p̄13=22.294 p̄13=22.294

bus22 α22=0 α22=0 α22=0 α22=0

p̄22=0 p̄22=0 p̄22=0 p̄22=0

bus23 α23=0 α23=0 α23=0 α23=0

p̄23= 9.750 p̄23=9.297 p̄23=9.297 p̄23=9.297

bus27 α27=0.008 α27=0 α27=0 α27=0

p̄27=0.143 p̄27=0 p̄27=0 p̄27=0

is clearly convergent trend toward the controlling and dispatching variables. Therefore, we
believe that the proposed EV approach is promising.

7 Conclusions

To our best knowledge, this is the first attempt to study the SSOCCP (1.1) systematically.
Motivated by the works on its deterministic version, and in order to develop numerical
algorithms for solving (1.1), we first transform it into the minimization problem (1.6) equiv-
alently and then present an approximation method based on the Monte Carlo approximation
and some smoothing techniques. We have given a comprehensive convergence analysis for
the approximation method. We have also derived some results related to error bounds. Fur-
thermore, as an application of the above-mentioned theoretical results, we have performed
experiments on the chance-constrained optimal power flow in the last section.

Note that, except the minimization approach (1.6), there are some other approaches
suitable to dealing with the deterministic version of (1.1); see, e.g., [6] for details. To develop
more approximation methods for (1.1) will be our next target. Moreover, the two-stage
variational inequality problems have received much attention in the recent literature [9,24].
Two-stage stochastic second-order-cone complementarity problems will be another target.
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