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Abstract: We are interested in a numerical method for solving extended multifacility minimax location
problems introduced by Drezner in 1991. For this purpose, we present some formulae of projections onto
the epigraphs of the sum of powers of weighted norms and onto the epigraphs of gauges. By bringing the
extended multifacility location problem into a form of an unconstrained optimization problem where its
objective function is a sum of functions allows us then to use the parallel splitting algorithm in combination
with the introduced projection formulae to solve this kind of location problems. Numerical experiments
document the usefulness of our approach for the discussed location problems.
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Introduction and Preliminaries

As argued in a large number of papers, the proximal method is an excellent tool for solving
in an efficient way optimization problems of the form

n
min ;fz(w) : (1.1)
where H is a real Hilbert space equipped with the scalar product (-, -)3;, where the associated
norm || - |3 is defined by |ly|l# := /(y,y)n for all y € H and f; : H — R = R U {£o0}
is a proper, lower semicontinuous and convex function, ¢ = 1,...,n. At this point let us
recall that for a given function f : H — R, its effective domain is dom f = {z € H :
f(z) < 400} and its epigraph epi f = {(z,7) € H x R : f(z) < r}. We call the function f
proper when f(z) > —oo for all x € H and dom f # ), lower semicontinuous at T € X if
liminf, .z f(z) > f(T) and when the function f is lower semicontinuous at all z € X, then
we call it lower semicontinuous (l.s.c. for short).

Optimization problems of the form (1.1) occur for instance in areas like image processing
[2,8,9,12], portfolio optimization [4,17], cluster analysis [3,11], statistical learning theory [10],
machine learning [6] and location theory [4,7,14,16]. In the main step of the proximal
method it is necessary to determine the proximity operators of the functions involved in the
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formulation of the associated optimization problem. The proximity operator (aica. proximal
mapping) of a proper, lower semicontinuous and convex function f : H — R denoted by
prox is defined by

1
prox;x: H — H, prox;z = argrqriin {f(y) + §||:c - y||?.[} Vo e H. (1.2)
IS

The proximity operator can be understood as a generalization of the projection onto a convex
set, as for a non-empty, closed and convex set A C ‘H we have

proxs, © =Pax Vo € H, (1.3)
where §4 : H — R defined by

0, ifzxzeA,

400, otherwise, (1.4)

(5,4(:6) = {
is a proper, convex and lower semicontinuous indicator function and P 4 is the projection
operator which maps every point = in H to its unique projection onto the set A (see [1]).

From (1.2) follows that the determination of the proximity operators of the functions f;,
i=1,...,n, of (1.1) requires the solving of n subproblems, where a favorable situation exists,
when a closed formula of a proximity operator can be given. This in turn has a positive
effect on the solving of optimization problems from the numerical point of view.

Motivated by this background, our aim is to solve numerically extended multifacility
minimax location problems (see [15]) given by

Bid (1.5)

m
EpPMP i a M — s
( N ) (wl"“,mmr)nel]%{}dx--led 11;115(71 ;WUHJU p1|
where w;; > 0, 8; > 1 and p; € R? are distinct points, j = 1,...,m, i = 1,...,n. In this
framework we first need to rewrite this kind of location problems into the form of (1.1) where
the objective function is a sum of lower semicontinuous convex functions. For this purpose
we introduce an additional variable and obtain for (EP]J\\,/[ #) the following formulation

M, . .
(EPy ) min t= min t
(€1, y@m, t)ERE X .. xRA XR, (@1, @m ,t)ERL X --- xRL xR,

m 8, .
.El’winfL‘j—piH i<t, i=1,...,n
§=

n

= min t+>» 6 /.. (1, s Tm,t) . (1.6)
(@155 ) ERD X - XREXR ; epi(Z wjo._piHﬁi) "
j=1

Now, to apply the proximal method to (EPJJ\\,4 h ) one needs to calculate the proximity op-
erators of the functions involved in the objective function of (1.6). For this reason and
especially in the context of (1.3), we give in Section 2 formulae for the projection onto the
epigraph of the sum of powers of weighted norms. As the power of norm in (1.6) can be
replaced by a gauge function, we present also formulae of projections onto the epigraphs of
gauges.

To point out the benefits of the presented formulae we consider then examples of location
problems in different settings and compare the numerical results with a method proposed by
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Cornejo and Michelot in [14]. The difference between these two methods is that the one given
by Cornejo and Michelot splits the sum of powers of weighted norms by introducing n - m
additional variables. In this situation one gets the following presentation of the extended
multifacility minimax location problem

m n n
M, : Lt . ) .
(EEN™) | min o EF DD Oepi(un o) (@ 1) + D e (Bt o i ) 6
j=1,...,m,i=1,...,n j=11i=1 =1
(1.7)
where 7;(ti1, ..., tim) = Z;nzl tij, © = 1,..,n. In Section 3 we show that this concept

makes the solving process for the considered examples of location problems very slow and
the advantage of our approach more clear. The numerical tests are based on the parallel
splitting algorithm, which can be found for instance in [1].

Finally, we collect some properties of Hilbert spaces, which can be found with proofs for
instance in [1] and [13].

If for a function f : H — R we take an arbitrary « € H such that f(z) € R, then we call
the set

Of(x) :={z" € H: f(y) — f(z) = 2",y —x) Vy € H}

the (convex) subdifferential of f at x, where the elements are called the subgradients of f
at . Moreover, if df(z) # (), then we say that f is subdifferentiable at x and if f(z) ¢ R,
then we make the convention that 0f(x) := 0. If f is Gateaux-differentiable at x € H, then
Of (x) = {Vf(x)}. The set of global minimizers of the function f is denoted by Argmin f
and if f has a unique minimizer, it is denoted by argmin, ¢4, f(x). It holds

x € Argmin f < 0y € 0f(x) Vo € H. (1.8)
It holds
y=prox;z <z —y€df(y) vz € H, Vy € H. (1.9)

In addition, we make for the rest of this paper the convention that % =0and %-OH =0x4.

In the following let Hy x --- X H, be a real Hilbert space endowed with inner product
and norm, respectively, defined by

n

<($17-~-,$n)7(y17~~~7yn)>7-£1><~--><7-[n = Z<$17y1>7{7 and
=1

n
i=1

where (21, ...,2,) € H1 X -+ X Hyp and (Y1, .o, Yn) € Hi X -+ X Hy.

We close this section with a lemma, which presents a formula for the projection onto a
unit ball generated by the weighted sum of norms and generalizes the results given in [18]
to real Hilbert spaces H;, ¢ = 1,...,n. Let w; > 0, ¢ = 1,....,n, and C = {(x1,...,x,) €
Hy X o X My o Y oi willzi||m, < 1}, then the following statement holds.

Lemma 1.1. For all (z1,...,2,) € H1 X -+ X H,, it holds

”(xh "'7xn)||7-11><---><7-Ln

n
(‘rlv"'vxn)7 Zf Z wszz”Hz S 1’
i=1

(Y1, Yyp,), otherwise,

Po(z1,...,zpn) =
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where
e, — Faws, 0
el R0}
with
n
>oowim—1
~  i=k+1
A= —
> wy
i=k+1

and k € {0,1,...,n — 1} is the unique integer such that 7, < X\ < Tpy1, where the values
T0, -y Tn, are defined by 7o := 0 and 7; 1= ||x;||n, /wi, © = 1,...,n, and in ascending order.

Proof. In order to determine the projection onto the set C', we consider for fixed (x1, ..., x,) €
Hi X -+ X H,, the following optimization problem

. 1 2
oo min {22|yi_xi”7{i}' (1.10)

n i=1
_Zl willysllgg; <1
i=

Obviously, if Y1, will@illy, <1, ie. (z1,...,2,) € C, then the unique solution is 7; = z;,
i =1,...,n. In the following we consider the non-trivial situation where > 7" | w;l|2;|l%, > 1,
ie. (21,...,2,) ¢ C and define the function f : Hy X -+ X H,, = R by f(y1,...,¥n) =
i (1/2)]lyi—4]l3,, and the function g : Hix- - -xHp —= Rby g(y1, s yn) = Doiq willyillz, —
1. Hence, by [1, Proposition 26.18] it holds for the unique solution (g, ...,7,,) of (1.10) that

Vs Tp) € =ANOG(W1s o0 Tp) © s — i € =N (Wil - ||l,) (@), i =1,...m,
as well as
A (Z wi||Y; |l — 1) =0and > willFilln, <1,
=1 =1

where A > 0 is the associated Lagrange multiplier of (%, ...,%,). If A = 0, then 7, = 3,
i =1,...,n, and by the feasibility condition we obtain 7" ; w;||#|[3, < 1, which contradicts
our assumption. Therefore, A > 0 and we get by (1.9) that

T — i € =30 (uil - o) (B) © i — T € Ol - o))
Ui = PIOXRy, |||y, Tiv 1=1,...,n.

Using [13, Proposition 2.8] reveals that

Y, = Hi = T, t=1,...

_ T ﬁxw if [|2ll2¢; > Awi, — max{||@ilz, — Mwi, 0} 4
’ OH,“ if Hlﬁ”q{l < Xwi szHHL

and as Y., w;||[;]|2, = 1, we conclude that

> " wimax {||zi]lx, — Mw;, 0} = 1. (1.11)
=1
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Now, we define the function x : R = R by () = Y. | w? max{r; — \,0} — 1. Note, that
there exists A > 7; for all i = 1,...,n, such that /i(X) = —1 < 0. Moreover, k is a piecewise
linear function with (0) = wfn — 1 and its slope changes at A = 7;, ¢ = 1,...,n. To be more
precise, at A = 0 the slope of x is — Y-, w? and increases by wi when A\ = 71. If we continue
in this matter for ¢ = 2, ..., n, the slope keeps increasing and when A > 7,,, k(1) = —1 such
that the slope is 0. In summary, to find the zero of k one needs to determine the unique
integer k € {0,1,...,n — 1} such that x(7;) > 0 and £(7x+1) < 0. In the light of the above,
it holds

k() = i wir — A i w? — 1,
i=k+1 i=k+1

where 7, < A < 75,41, and hence, one gets for \ such that x()\) = 0,

n
> owin -1
i=ht1

Formulae of Epigraphical Projection

The first aim of this section is to give formulae for the projection operators onto the epigraph
of the sum of powers of weighted norms. For this purpose, we give a general formula in our
central theorem, from which we deduce special cases used in our numerical tests.

The second aim is to present formulae of the projection operators onto the epigraphs of
gauges. By using the fact that the sum of gauges is again a gauge (see [21]), we also present
a formula of the projector onto the epigraph of the sum of gauges.

Sum of weighted norms

Let us consider the following function A : Hy X - -+ X H,, — R defined as
W@y, ey wn) = willza||5, (2.1)
i=1

where w; > 0 and 8; > 1,4 =1,...,n. By defining the sets
L={le{l,.,n}:f>1}and R:={re{l,...,n}: 6, =1},

we can state the following formula for the projection onto the epigraph of the sum of powers
of weighted norms, which generalizes the results given for instance in [1,12,13,17].

Theorem 2.1. Assume that h is given by (2.1). Then, for every (z1,...,Tn,&) € Hy X -+ X
H, x R one has

<&

n
(zla"'axn75>7 Zf Zwl”xi‘
i=1

Pepih(xla"'axnvg) = (22)

(U1 sy, 0), otherwise,



294 G. WANKA AND O. WILFER

with
maX{HxT“HT _tho} cR
. = x’!‘a T I
' [E28[ETR
B e J
: (23 e ’ ’
O=¢+ A

where m;(X) is the unique non-negative real number that solves the equation

Ay
w0+ (20" el 1< 1 23)

and X > 0 is a solution of the equation

> wemax{||zr||3, — Awr, 0} + > wil[l@flag, — m(A)* = A+ & (2.4)
re€ER leL

Proof. For given & € R and (z1,...,2,) € H1 X -+ X Hp, let us consider the following
optimization problem

. 1 el 2
S .1 U {2(9 &)+ Z; §Hyi —xill3, ¢ - (2.5)

3 Bi <
X willyillyy, <
i=1 i

It is clear that in the situation when ) . ; lexz||%l < & ie. (z1,...,20,§) € epih, the
unique solution of (2.5) is ¥; = x4, i = 1,...,n, and @ = £. Therefore, we consider in the
following the non-trivial case where > | w;lz;| 7'8{ > ¢, ie (21, ..., 20, &) & epih.

Let us now define the function f: H; X ... X Hy X R = R by f(y1, ..., yn,0) := (1/2)(0 —

)2+ 311 (1/2)]lys — |3, and the function g : Hy X ... X Hyp X R = R by g(y1, .., yn, 0) :=
S willy ||§{Z —0, then by [1, Proposition 26.18] there exists A > 0, such that for the unique

solution (¥, ...,¥,,0) of (2.5) it holds

g, — s € 30wl - [5) @), i=1,..m,

7o (2.6)

Vf@rs s Tps 0) € =X09(Ty, -, Uy, 0) & {

where ) is the associated Lagrange multiplier of (7, ...,%,,0). If X = 0, then one gets by
(2.6) that §, = x;, i = 1,...,n, and 6 = ¢ and by the feasibility of the solution it follows that
Sor willz 7ﬁ-tz < ¢, which contradicts our assumption. Hence, it holds A > 0 and by (1.9)
and (2.6) we have

{xi —7; € 00w -

@] B, i=Loen, [Te=proxg, s @i i = L,
A=X+¢,

0=X\+¢.

Further, from [13, Proposition 2.8] it follows for the case r € R, i.e. 8, =1, that

Ty (2.7)

7. = Ty — Hxi%x“ if |2, |2, > Aw,, _ max{ |z, |3, — Aw,,0}
B U7 if [ [|3, < Awy [ |9,
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and for the case [ € L, i.e. §; > 0, that

_ (A ||, — m(A
e I E P ey
lzella,

- z, (28)
22|34,

where 7;() is the unique non-negative real number that solves the following equation

w®+ (Z2)" = larl 29)
(notice that by (2.9) follows that |z;|/%, — m(\) > 0). Furthermore, the complementary
slackness condition .

by (Z wil|7: 15 — 9> =0 (2.10)

i=1

implies that .
> willglly, =0, (2.11)

i=1

and from here follows by (2.7) and (2.8) that

D willillzs, =D we max{|[zpllx, — Awp, 03+ wi(l[zill, —m(O)* =X+¢ (212)
i=1 reR leL

O

Remark 2.2. In the situation when §; > 1 for all i=1,...,n, we get by summarizing the
formulae (2.3) and (2.4)

1
B;i—1

1i(A)

iy (S willlzsle, =m0 ) — wibié
ni(A)

il (S wilsllae, —ny ()% ) = wifiig

mi(A) + = [l

=

= (@i, —m(N)P 7L i =1,..,n.

(2.13)
By setting x; = ||i||ln, —m:(A) >0, i =1,...,n, formula (2.13) can be expressed by

llill2, — xi Bi—1

it (S wn) ) — e

n
i j i—1
& wif ijxfj — EwiBix T 4 xa = il
=1

n
2B;—1 i—1 Bj i—1 ;
& wBi” T +wiBix] ijXjJ — &wiBix{ T+ xi = @il i=1,...n.
j=1
JF#i

Hence, it holds for every (z1,...,2,,&) € H1 X -++ X Hp X R

n
(5617"'793%75)’ if Z wszl ?-21 <é&,
i=1

Pepih(fﬂh "'71'71,5) =
(Y1, -y Up, 0), otherwise,
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with
- n
||$2H'Hz i=1

where }; > 0, ¢ = 1,...,n, are the unique real numbers that solve a polynomial equation
system of the form

n
28;—1 i—1 j i —1 ;
w?Bix" T+ wipix! > wixy - EwiBix{ T+ xi = lwilla,, i=1,...n.
=
Let us additionally mention that the case where n = 1 was considered for instance in [12].

An important consequence of Theorem 2.1 where §; = 1 for all i = 1, ..., n, follows.

Corollary 2.3. Let h be given by (2.1) where B; = 1 for all i = 1,...,n. Then for all
(T1y ey T, &) € Hy X -+ X Hyy X R it holds

n
(xlv'-'7xn7€)7 Zf Zw’bllleHr Sé—’

i = i=1
Pepin (21, .00 T, &) = (034,094, 0), if € <0 and |z, < —€wi, i=1,....n, (2.14)
(U152 Tp,0), otherwise,
where
il = Awi, 0 . _ -
;= HI{:LX{|$|||H|i w }x“ i=1,...n, and @ =€+ N,
with
n
Z ’LU12T1—€
A= (2.15)
> owi+l
i=k+1

and k € {0,1,...,n — 1} is the unique integer such that 7, < X\ < Tp41, where the values
T0, -y Tn, are defined by 7o := 0 and 7; := ||z;||n, /wi, ¢ = 1,...,n and in ascending order.

Proof. As g; =1 for all i = 1,...,n, Theorem 2.1 yields

n
(X1, ey, &), i D willailla, <&,
i=1

Pepih(xla -~-al‘n,§) =
(U1, s Yn, 0), otherwise,

with

__ max{ile, — N, 0}

P =

i i=1,..,n, and 0 = & + X\,

[l

where X > 0 is a solution of the equation

> " wimax{ |l x, — Mwi, 0} = X + &
=1
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Now, we consider the case where Y 7", w;||z; |, > & and distinguish two cases.
(a) Let £ < 0. If ||@i||l3, + &w; <0 forall i =1,...,n, we have by 0 < 6 = £ + A, i.e.
&> —), that

w, +Ew; > ||willp, — dws Vi=1,...,n, (2.16)

and from here follows that

i=1

But this means that

= Aw;, 0} =0, ie. A= —¢. (2.17)

(yla'--a?n7§) = (O’HU'"aO’HnaO)? (218)
which verifies the second case of (2.14).
If we now assume that there exists j € {1,...,n} such that ||z}, +&w; > 0, then we define
the function g : R — R by

) :iwfmax{Ti—)\,O}—/\—f. (2.19)

=1

Moreover, this assumption yields

Zw max{m; — A\, 0} — A — £<Zw max{7; — \,0} — )\+|| j”H

=1 wj
Now, we choose X > 0 such that i ll2, — wi\ < 0 for all i = 1,...,n, and get

[l
wj

gN) < =X+ < 0.

(b) Let £ > 0. If there exists j € {1,...,n} such that |lz;|, + fw; < 0, we derive a
contradiction. Therefore, it holds ||a; ||, + &w; > 0 for all i = 1,...,n, and for the function
g we have

:wamax{nf/\,O}f/\fﬁgZw%max{nf)\,()}f)\.

i=1 i=1

Now, we can take A > 0 such that [|z;|l», — w;A < 0 for all i = 1,...,n, and derive that
g\ < =X <0.

In summary, we can secure the existence of X > 0 such that g(X) < 0. Additionally, take
note that, if X = 0, then g(0) = 37" | w;l|@;|%, —& > 0. The rest of the proof is oriented on
the Algorithm I given in [18] to determine the projection onto an /;-norm ball.

Since, the values 7, ..., 7, are in ascending order, g is a piecewise linear function in A,
where the slope of g changes at A = 7, ¢ = 0, ...,n. More precisely, at A = 0 the slope of g
is -2, w? + 1) and increases by w? when A = 71. If we proceed in this way, one may see
that the slope keeps increasing when A takes the values 7, k = 2,...,n. In the case when
A > 7, the slope of g is —1.

Hence, to determine A such that g(\) = 0, we have to locate the interval where g changes its
sign from a positive to a negative value. In other words, we have to find the unique integer
k €0,...,n — 1} such that g(7) > 0 and g(7k+1) < 0. Hence, we have

——(i w§+1>A+ i w?r; — €,

i=k+1 i=k+1
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where 7, < A < 7 41. Finally, we can determine A such that g()\) = 0:

n
> wiTi—¢
~ 1=k+1
Y N
> ow?+1
i=k-+1

O

Remark 2.4. From the ideas of the previous proof, we can now construct an algorithm to
determine A of Corollary 2.3.

Algorithm:
LI wil|@illa, <& then A= 0.
2. If € <0 and ||z, < —€w; for all i = 1,...,n, then X = —¢.

3. Otherwise, define 79 := 0, 7; := ||@;||%, /wi, i = 1, ...,n, and sort 79, ..., 7, in ascending
order.

4. Determine the values of g defined in (2.19) at A\ =7;,7=0,...,n.
5. Find the unique k € {0, ...,n — 1} such that g(7x) > 0 and g(7x+1) < 0.

6. Calculate X by (2.15).

Corollary 2.5. Let h be given by (2.1) where 8; =2 and w; =1 for alli=1,...,n, then it
holds

n
L1545 Tn,S),s [ Tillyg, = C
( &), if 3 llwill3, <¢
i=1

Pepih(xh oy Ty g) =
(U1y -y Yn, 0), otherwise,
where

1
oA+ 1

U xi, i=1,...,n, and = & + )\,

and X > 0 is a solution of a cubic equation of the form
M4 (14+9N + 1(1 + 46N + ! £— Z @3l13, | =0. (2.20)
4 4 i
Proof. By Theorem 2.1 we get that

n
(@1, e T, §), 1 30 [lill3,, <€,
i=1

Pcpih(mla ...,’I‘n,f) =
(U1, Tp, ), otherwise,

with

o ||‘ri||Hi _ni(x)

i xi, i=1,...n, and 0 = £ + X, (2.21)
[E[ET
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where 7;(\) is the unique non-negative real number that solves the equation

w A .
)+ XN b, =1, e, (2.22)
2\
and X > 0 is a solution of the equation

n

> (il

=1

w, — (V) = A+ & (2.23)

From (2.22) we get immediately

~ 2\
= ||; e ni(N) = —= Ti||H, t=1,...,n, 2.24
) = llaih, <m0 = 222 Ll (220

ni(X) <1 + %

and in combination with (2.23) we derive

n 2

2) - 1 = -
> (I~ gpghoidn) =%+ € g Sl =% +¢

i=1

& @A+ 10+ - aill3, =0
=1

S AN AL FON + (LHAON+E =D [lz]3, = 0.

i=1

In the end, formula (2.24) implies that
2N
Hi T ot
[EAE7

l[ill2: 1

i
_ -t
2X + 1

Y =

ni=1,..n, (2.25)

which completes the proof. O

The next remark discusses the question whether the solution A > 0 of Corollary 2.5 is
unique.

Remark 2.6. Let (z1,...,2n,£) € H1 X -+ X H, X R be such that Y>° , |lz;]|5, > ¢ and
g : R — R be defined by g(X) := X3 + (1 + A + (1/4) (1 +4E)X + (1/4)(€ = 20, ll=llF,,),
then ¢’(A) = 302 + 2(1 + &)X + (1/4)(1 + 4€) as well as g”(A\) = 6\ + 2(1 + £). From the
zeros of ¢’ we derive the local extrema of g as follows

Ajz = 3(H5)i\/ 9 TR A 36

1 146448 1 1.
- _§(1+§)i,/736 =51+ £:(1-2)

and hence, A\; = —(1/6)(1 + 4¢) and Ay = —(1/2).

Further, if £ > 1/2 & —1+ 2¢ > 0, then g is strongly monotone increasing on R,
g’'(\) =1-2¢ < 0and g”’"(A\2) = —1+2¢ > 0, which means that g has in A; a local maximum
and in Xz a local minimum. As A\; < Ay < 0 and g(0) = (1/4)(§ — >27 [|#4]l3,,) < 0, the
function g has exactly one positive zero in this situation.

1 (1+&?> 1+4¢ 1 \/4(1+2§+§2)—3(1+45)
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fE<1/21—26 >0, then ¢"(A\) =1—2£ >0 and ¢’ (\2) = -1+ 2 < 0 and we
derive a local minimum in A; and a local maximum in Ay. From ¢(0) < 0 and Ay < A\; we
conclude that g has also in this situation exactly one positive zero.

Finally, let us consider the case where & = 1/2, then g is strongly monotone increasing
on Ry, A\ = Ay = —1/2 and ¢”’(A1) =0, i.e. g has at the point —(1/2) a saddle point. From
the fact that ¢”(\) <0 for all A € (—o0,—(1/2)] and ¢”(A) > 0 for all A € (—(1/2), +0), it
is clear that g has again exactly one positive zero.

In conclusion, the function ¢ has in all situations exactly one positive zero, i.e. A > 0 is
unique.

Remark 2.7. In the framework of Corollary 2.5, let us consider the case where n = 1.
Then, by Remark 2.2 we have to find a real number > 0 that solves the equation

2% + (1 = 2)x — lzlln = 0, (2.26)

to get a formula of the projection onto the epigraph of h.

As one may see by (2.20), the arithmetic effort for the case n > 1 is not much higher
compared to the case n = 1. In both situations we have to solve a cubic equation to derive
a formula for the projection onto the epigraph of h.

As a direct consequence of Corollary 2.3 one gets the following well-known statement
(see for instance [1] or [12]).

Corollary 2.8. Let h be given by (2.1) where n = 1, w1 = w > 1 and f; = 1, i.e.
h(z) = w||z||y. Then, for every (z,£) € H xR

(33'75)7 ’Lf’LUHl‘”H S f,
Pepiuwl-x (,€) = § (0,0), if |#]ln < —w,
llz |7 +wé wl|z|| 2 +wE .
(I\xl\;{?w%-l)x’ w;i-&-l ) , otherwise.

For our numerical tests we need two lemmas more.

Lemma 2.9. Forp, € H,i=1,...,n, it holds

>({,C1, ceey xn,f) = Pepi<7§:

i=1

P . Pl T — s 0).
i S will-mill, wiu‘u‘f&)(xl O

Proof. For p; € H;,i=1,...,n one has

(@110 ) € e (zwin o g) o e —pil, <€
i=1 i=1
i=1
< (21, ., 20,E) € epi (ZU’ZH . ||f{> + (p1, -+, Pn, 0).
i=1
Thus, by [1, Proposition 3.17] follows
(xla"'a‘rn7£)

Pepi(i w'i“'—m\lfji) (T1, ey T, &) = Pepi(

i=1

£ will 15, ) #0100 0)
1=1

i=

= P n (1 —p1y e, T — Py &) + (P11, 200y Py 0).
epi<_zlqu\|'”ffi>< s &+ b )

i=
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Lemma 2.10. Let w > 0 and A : K — H be a linear operator with AA* = puld, u > 0,
where K is a real Hilbert space. Then,

1 1 1
PepinA'HH(xvg) = (xvé-) + <\/’U,A* X Id) <Pepiw\/ﬁ||~|H (\/ﬁAxv§> - <\/,EA$’£)> )

where ﬁA* xId:H xR — K xR is defined as (ﬁA* X Id) (y,¢) = ( A*y, C)

Proof. We have

1 1
Sepi(w]| A-[l2) (T3 §) = Gepi(w /- l120) (\/ﬁf%f) = <5epi<wﬁ|~|m ° (\/EA x Id)) (2,).

By [1, Proposition 23.32] (with L = (1/,/;)A x 1d) it follows that

prox; (2,€) = prox,

epiwl A-ll3¢ epi(uwyal-I )0 ( Gz AXId

=(x,) + (ﬁA x Id>* <proxgepim”.,{ (\f ) - (;EAM))

1 1
S Pepiw)ayn(@,8) = (z,8) + (A* X Id) Pepiw /7|l |2 <\//7AI’£> - (WALE)) .

O

Gauges

The next considerations are devoted to gauge functions La.k.a. Minkowski functional) of a
closed, convex and non-empty subset C C H, v¢ : H — R defined by

inf{A>0:2€XC}, f{A>0:2e€IC}#0,
Yo(x) = .
400, otherwise.

Theorem 2.11. Let C be a closed convex subset of H such that 04 € C, then it holds for
every (z,§) € H xR

(‘T7£); Zf’yc(x) Sf,
Pepire (2,€) = { (Pe(domne)(@),€), if z ¢ domye and vo (Padomqe) (@) < € < ve(x),
(y,0), otherwise,

where
_ T 1 5 T
yzx—)\Pco(Ax> and 0 = A+¢

and X > 0 is a solution of an equation of the form

A+E= <x,PCo (;\x>> —)\’
H

2

PCO (i\x)

H
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Proof. Let us consider for fixed (z,£) € H x R the following optimization problem

(y,0) EH XR,
yo (y)<é

min {5092+ 3l 213} (2.27)

If yo(z) <&, ie. (z,€) € epiye, then it is obvious that (7,0) = (x,£). In the following we
consider the non-trivial situation where yo(x) > &.

We define the function f: H x R — R by f(y,0) := (1/2)(0 — £)* + (1/2)|ly — z||%, and
the function g : H x R — R by g(y,0) = vc(y) — 0, then it is clear that f is continuous and
strongly convex and g is proper, lower semicontinuous and convex by [22, Theorem 1]. As
~vc(0) < 1, it follows by [5, Theorem 3.3.16] (see also [5, Remark 3.3.8]) that

0€d(f+ (X))@, 0) (2.28)

and

{(/\g)(y, )=0, {/\(Vc(y) (2.29)

7

9(¥,0) <0,
where (77, 0) is the unique solution of (2.27) and A > 0 the associated Lagrange multiplier.
Furthermore, from [5, Theorem 3.5.13] one gets that

0€d(f+(A9))(@,0) = 0 € 0f(5,0) + I(A\g) (7, 0). (2:30)
If X = 0, then it follows by (1.9) and (1.3)

0e af(yv g) + aédomg(ya a) < 0¢€ (? - 1‘75 - 5) + a(Sdom'yc xm@ﬁ)
& 0e @ - 3779 - 6) + a(scl(dom'yc)xR(?a 6) < (LU - ?75 - 9) S 86cl(dom'yc)><]R(yv 9)

7.0 Y= PC om xT),
= (y’6> = PCl(domfyC)xR(l‘7§) = {Z _ g l(d 'YC’)( )

and thus, it holds by the feasibility condition (2.29) that vc(Pci(dom~e)(2)) < €, from which
follows that Pejdom~e)(2) € dom~ye. If z € dom e, this means that Pejqom ) (2) = = and
again by the feasibility condition (2.29) that vo(z) < &, which contradicts our assumption.
Therefore, if x ¢ dom~yc and the inequalities Yo (Pei(dom o)) < € < vo(z) hold, then

(yv g) = (Pcl(gom’)/c)(x)a 5)
Now, let A > 0, then it follows from (2.30) and (1.9)
0€0(f+ (X)) (@.0) = 0€0f(7.0) + Ag(7.0)
¥ —x € N0 (7), o {y = Proxy,, 7,
0

& V(7,0 € -209(7,0) & {9_ c—%

by combining (2.31) and (2.29) we derive that v¢(7) = £ + A. Finally, as by [22, Lemma 1]
and [22, Remark 3] it holds that 5 = dco, one gets by [1, Theorem 14.3(iii)] the following
equivalences

@) =&+ A (2.32)

- 1 1
S E+A=1¢ (proxxvc x) + dco (Pco ()\x)) = <prox/\70 x,Pco (/\x)>
H
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- - 1 1
& 4+ A=(x—APco | =2 ) ,Pco | =2 .
A A u

Corollary 2.12. Let C CH be a closed convexr cone, then yo = dc and

(x,8), ifreC and £ >0,

Pepire (2,€) = Poxr, (2,§) = {(PC x,max{0,£}), otherwise.

Proof. We use Theorem 2.11. Let x € dom ¢ such that yo(z) > &, then one has from [1,
Proposition 28.22] and [1, Theorem 6.29] that

J=2— APco (/l\x) =x—Pcox=Poux. (2.33)

Moreover, as y¢ = d¢ it holds that domye = C and by (2.29) we have
ve(7) =0,
which yields
Pepire (2,€) = (Pcz,7c (Pcz)) = (Pc ,0).
If x ¢ dom~c = C, then
0= Yc (Pcl(dom’yc)(x)) < 5 < IVC(LU) = +00
and 80, Pepiye (7,€) = (Pei(domye) (7),§) = (P, &), which implies the statement. O

Corollary 2.13. Let C; be a closed convex subset of H; such that Oy, € int C;, i =1,...,n,
and the gauge o : Hy X - -+ X Hy — R be defined by vo (1, ... xn) = >y Yo, (xi). Then it
holds for every (z1,...,xn,&) € H1 X -+ X Hp xR

(xlv ...,.’En,f), Zf zf:l’)’cl(%) é f,

Paping (01, s €) =
(U152 U, 0), otherwise,

where
_ - 1 . _
Y; =z; — APgo ()\xz) ,i=1,...,n, and 0 =X+ ¢ (2.34)

and X > 0 is a solution of an equation of the form

" 1 1
= E e (), -2 e ()
¢ ;lx \X") /., o\ 3"

i

2 ] | 0)

Hi

Proof. AsOy, €intC;, i =1,...,n, it is clear that the gauges are well-defined, i.e. dom~¢, =
Hi,i=1,...,n, and so, domyc = Hi X --- X H,. Further, let us recall that the polar set
C° of the set C can be characterized by the dual gauge yco as

C'={x= (21,0, 2n) €EH1 X - X Hp : Yoo (2) = Yoo (w1, ..., 1) < 1} (2.36)
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This relation holds also for the polar set C? and its associated dual gauge Yoo, i =1,...,n.
Moreover, in [21] it was shown that yco(2) = maxi<;<n{7vco(z;)} and hence, the polar set
in (2.36) can be written as

0 = {(ml,...,xn) EHy X X Hp: lrgiagcn{'yc?(xi)} < 1}
= {(CEl, vy Tp) EHy X oo X Hy ’ch(ﬂci) <1, i=1, ,n}
= {z1 €Hyyop(r) <1} x o X {zn € Hp 1o (wn) <1} =CY x - x ).
From here follows that
Pco(z) =Peoy..xco (@1, -, 2n) = Poo(21) X -+ X Poo(2),
which by using Theorem 2.11 directly implies (2.34) and (2.35). O

Remark 2.14. Like in Lemma 2.10, one can give a formula for the projection onto the
epigraph of a gauge composed with a linear operator A : K — H with AA* = uld, u > 0,

1

Py (€)= (2,6) + (\/ﬁA* X Id) (Pepimc(,) (\/lﬁAx@) - (\}ﬁAx,ﬁ)) .

Moreover, it can easily be observed that for p € H holds (similar to the proof of Lemma 2.9)

Pepivc(-*p)(x’g) = Pepivc (.’I} - D 5) + (p’ 0)'

We close this section with a characterization of the subdifferential of a gauge function
by the projection operator.

Remark 2.15. Let C C H be closed and convex such that 04, € C, then it holds by (1.3),
(1.9), [22, Lemma 1], [22, Remark 3] and [1, Theorem 14.3(ii)] for all z,y € H that

€ 0vc(y) & r+y—ye ey &y=Dprox,, (z+y)
& y=z+y—prox,. (r+y) Sy=a+y-—prox;  (z+y)
& . =Peo(z+y).

From this follows that
Iely) ={zeM:z=Pco(z+y)}.
In addition, if C' is a closed convex cone, then it follows from [1, Theorem 6.29] that

Oely)={zet z=r+y—Pcelz+y)}={zeH:y=Pc(z+y)}.

Numerical Experiments

Our numerical tests are implemented in MATLAB on a PC with an Intel Core i5-8400 CPU
with 2.8GHz and 16 GB RAM. While the numerical tests in [14] were based on the partial
inverse algorithm introduced by Spingarn in [19], we use here the parallel splitting algorithm
from [1, Proposition 27.8].
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Theorem 3.1 (parallel splitting algorithm). Let n be an integer such that n > 2 and
fi : R® = R be a proper, lower semicontinuous and convex function for v =1,...,n. Suppose
that the problem

(PPR) min {Z ﬁ-(x)}
i=1

has at least one solution and that dom fi N (), intdom f; # 0. Let (ux)ren be a sequence
in [0,2] such that ), o pr(2 — px) = 400, let v >0, and let (z;0)7—; € R® x --- x R*. Set

(keN) | rm=1Y
Yik = plrzolx,,fi Tik, 1 =1,..,m,
ax = % éyi,k;
Tik+1 ;_xi,k +pe(ar — e —yik), i=1,...,n.
Then (1 )ren converges to a solution of problem (PPR),

In order to use the parallel splitting algorithm given in the previous theorem, we need
to rewrite the extended multifacility location problem (EPJJ\\,L’B) in (1.5) into an optimization
problem with an objective function, which is a sum of proper, convex and lower semicontin-
uous functions.

The first way to reformulate this location problem is based on the introduction of an
additional variable as presented in (1.6):

n

EpPM#B min t+ 1) T1yeeey Tonst) P . 3.1
( N )(1:1 ..... T t) EREX - xXREXR ; epi(,i:jlwijl.pillﬁi>< ! ) ( )

We define the functions

fi:Ré¥x - xRIEXR =R, fi(z1,...., 2m,t) =t and
fiZRdX“-XRdXR—)@, fi(l'l,...,l‘m,t):(s m (xl,...,mm,t),
epi(,.; wi]‘“'*l’z‘ﬂﬁ’i)

i=2,...,n+1, then dom f; = R% x --- x R? x R and

m
A% +1| €intdom f; = intepi Zwin-—pi Bi

j=1

O]Rd, ceey O]Rd7 11;12845(” ;wij sz
for all 4 = 2,..,n + 1, i.e., it holds that dom f; N (7, intdom f; # (. Therefore, the
sequences generated by the algorithm from Theorem 3.1 converges to a solution of the
location problem (EP]]\\f b ) and the following formulae for the proximal points associated to
the functions fi, ..., fn4+1 can be formulated by using (1.9) and Lemma 2.9

(Y15 U 0) = Prox,, 1, (21, e Ty 1)

g (ZUl, ~--7xm7t) - (ylv 7@m3§) € 8(Vf1)(y17 7ym75) = (ORdv ...,ORd,V)
& xi=7,i=1...m and 0=t —v < Yy, ..U, 0) = (T1, ..., Tp, t — V)
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and

(15 Tm,0) = Prox,; (@1, ..., T, t) = prox,; N (T1y ey Ty, t)
epi jgl “’in‘—PiHﬁi)

= P . (T1, ey T, t)
epl( )

i 2 wijll-—pall®
=1

P m (xl _piamaxm_pivt)+(pi7"'7pi70)' (32)
epi(;lwqij“'”ﬁi)

The second way to rewrite the extended multifacility location problem (EPJJ\\f B ) into an
optimization problem of the form of (PP#) makes use of the ideas of Cornejo and Michelot
given in [14] and splits the sums of weighted norms by n - m additional variables (see also

(1.7)):

n n
M,B :
(EPN ) t ti; g;}lrij crd t+ Z 5CPi(wij H'*Pz‘“ﬁi) (xj’ tij) + Z 56pi Ti (til’ ooy Lims t) ’
Je1, miZh j=1i=1 i=1

where Ti(tﬂ, 7tzm) = Z;nzl tija L= ]., ey N NOW, let

fi:RIx - xREXR™ xR — R, f1(Z,1,t) :=t,
—_——
m—times
fij : Rd X -+ X Rd X R™ xR — R7 fij(%atvt) = 6epi<u;ij“._pi||ﬂi)(‘rj7tij)a

j=1,...,m, i=1,...,n, and

fiiREx X REXR™ xR = R, fi(@,6,t) := epir, (tit, oor timy ), i =1,...,m.

As
dom f; =R% x --- x RY x R™" x R,
domfij = {(5,%:75) (S Rd X+ X Rd X R™ xR : (.Z‘j,tij) c epi(wij” . —piHﬂi)},
t=1,...,n, j=1,...,m,
domﬁ = {(5,?,0 S Rd X e X Rd x R™ xR : (til;---;timat) S epiﬂ-},
i=1,...,n

and

<0]Rda s Oy max {wigIpill ™} + 1, ..., max {wi;lpal| ™} + 1,m max {wyl|pi

1<5<m 1<j<m 1<j<m

ﬁi}+m+1>

€ dom f1 N ﬂ intdom f;; | N m int domﬁ ,

1<i<n, 1<i<n
1<j<m -
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convergence in the sense of Theorem 3.1 can be guaranteed. Now, let 3 := (7, ..., 7,,) and

0 := (i) 1<i<n, 1<j<m>

then one has by (1.9) for the corresponding proximal points of the functions fi, fi;, j =

1,...m,i=1,...n,and f;, i=1,...,n,

(7,0,8) = prox, ;, (F,5,1) = (Oga, .-, O, 0,..,0 ,t — 1)
—_———— ——

m—times mn—times

and by (1.9) and Lemma 2.9

i=1,..

(gv 57 g) = proxl,fij (Evat) < (gait) - (gv gv g) € a(z/f”)@, gva 5)

, N

& (zj.ty) — (yjagij) € a(yaepi(wij\|-7pi\|5i))(yj’§ij> and
Y=a1, Og=tg, 0=t, s=1,...n, I =1,...m, sl #ij,
& (), 05) = prox,s o) (@5, ti5) = Pepiqws; |- —p: 1) (T35 tiz)
= Pepi(wi]-H-“ﬁ'i)(xj 7pi7tij) + (piao) and
y=a, Og=tg, 0=t, s=1,..,n, [ =1,...m, sl #ij, (3.4)
weym, i =1,...,n. Moreover, by (1.9) and [1, Example 28.17] follows
(7.6,6) = prox, + (7,1,t) & (7,1,t) — (7.0,0) € 0(vf:)(,6.0)
(tila ...,tim,t) — (?il, ,gzm,g) € 8(1/5epin) (51'17 7§zm,§) and
(t11y -oos timst) = (0115 0oy Oy 0), L= 1,ccomy 1# 0, (X1, ey Ton) = (T s Um)
(0i1; -, Oim, 0) = prox,s . (ti1, s tims t) = Pepir, (tit, oo tim, 1)
ity ey i, )7 it Yt —t<0,
j=1
- _ _ _ 72”: tij—t m
(91‘1, ...,ﬁim,G)T — ]:71n+1 (1, ey 1, —1)T, if Zl tij —t> 0,
j=
and (41, oo tim, t) = (011, o0y 01, 0), L=1,cn, L0, (21,00 @) = (Uys ooy Upn )

The tables below illustrate the performance of our method using the formulae from
Corollary 2.3 and 2.5 for the projection onto the epigraph of the sum of powers of weighted
norms (EpiSumNorms) compared with the concept proposed by Cornejo and Michelot in [14],
where only the projection onto the epigraph of a weighted norm (EpiNorm) is needed (see
Corollary 2.8). We solved the problem (EPJ]\% #Y in R? and R3 for different choices of given
and new facilities. The performance results are visualized by the associated figures, where
we use the following notations:

NumGivFac: Number of given facilities
NumNewFac: Number of new facilities
Numlt: Number of iterations of the algorithm
MaxNumlt: Maximal number of iterations
CPUtime: CPU time in seconds.
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We used the following parameters for initialization: u,, = 1 for all n € N. Moreover, let us
point out that we tested the algorithm of Theorem 3.1 for different values of the parameter
v, where some results are printed in the tables below and selected ones are visualized in
the corresponding figures (in the tables the best results of the methods EpiSumNorms and
EpiNorm concerning the CPU time and number of iterations are marked in bold, respec-
tively). Notice also that in the context of the problem (3.1) the iterate r of Theorem 3.1 is
of the form rj, = (21, ..., Tm, t) and in the framework of (3.3) of the form 7, = (21, ..., Zm, t, 1)
with = (tij)i=1,....n, j=1,....m, Where x1, ...,z converge to the optimal locations and ¢ to
the optimal objective value.

To be more precise, for our numerical experiments we proceed as follows. The points
P1,---, Pn Were generated by the MATLAB command RANDN and the corresponding weights
ai, ..., a, by RAND. Further, we used in all numerical tests as starting point the origin (i.e.
X1 =....= &y, = Oga) and ran the algorithm of the method EpiSumNorms for all examples
five hundred thousand iterations. Then, we saved the determined solutions as the optimal
solutions T = (T, ..., Ty ) to the associated optimization problems and set the maximal num-
ber of iterations to one hundred thousand (i.e. MaxNumIt=100000). Finally, we ran for all
examples the algorithm of the method EpiSumNorms a second time as well as the algorithm
of the method EpiNorm and noticed the number of iterations as well as the time needed
to generate a solution which is within the maximum bound from the optimal location(s)
T = (T1,...,Tm) of 0.001, i.e. ||T — z| < 0.001, respectively.

First, we consider the situation where 8; =1 for all i = 1, ..., n.

Table 1: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R?

MaxNumlt EpiSumNorms EpiNorm

= 100000 Numlt | CPUtime | Numlt CPUtime
v =0.1 50879 83.8313 | >100000 -
r=1 5076 7.7140 >100000 -
v=>5 989 1.4959 21182 184.7405
v =30 185 0.3054 2180 16.3661
v =100 688 1.1056 2216 16.0718
v = 500 3507 5.7172 15121 122.9190
v = 1000 7012 11.4579 30390 281.2456

1w~

Figure 1: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R? for v = 30
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Table 2: Performance evaluation for NumGiFac 30 and NumNewFac 10 in R?

MaxNumlt EpiSumNorms EpiNorm

= 100000 Numlt | CPUtime | Numlt CPUtime

r=20.1 43058 | 106.5284 | >100000 -

v=1 4306 9.7233 >100000 -

v =10 411 0.9267 26596 639.1180

v=18 269 0.6146 14416 303.8991

v =50 538 1.2406 3478 62.2674

v =100 1122 2.6104 4762 88.3561

v = 1000 11324 | 26.8627 56615 1633.1276
" | \vv’\‘“

Figure 2: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R? for v = 18

Table 3: Performance evaluation for NumGiFac 60 and NumNewFac 20 in R3

MaxNumlt EpiSumNorms EpiNorm

= 100000 Numlt | CPUtime | Numlt CPUtime
v=1 15415 89.1836 | >100000 -
v=10 1541 8.5561 >100000 -

v =098 592 3.3485 28920 5332.9115
v =205 1129 6.3206 15697 | 2784.3976
v =500 2687 15.7556 16369 2831.1355
v = 1000 5346 29.7313 31429 5859.4418
v = 5000 26715 | 163.1581 | >100000 -

In Table 1 it is shown that the parallel splitting algorithm converges very slow when
employed in connection with the method proposed in [14], while our method performs much
better. The corresponding figure shows that our method EpiSumNorms generates after
185 iterations a solution which is within the maximum bound from the optimal solution,
while the method EpiNorm needs 2180 iterations. Take also note that in this example the
location problem has in the form of EpiNorm 125 additional variables, while the examples in
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Figure 3: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R? for v = 98

the Table 2 and 3 have 300 and 1200 additional variables, respectively. For this reason our
method by far outperforms the concept EpiNorm on such optimization problems regarding
the accuracy as well as the CPU speed and number of iterations.

Finally, we consider the situation where w; =1 and 5; =2 for alli =1, ..., n.

Table 4: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R?

Figure 4: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red

MaxNumlt EpiSumNorms EpiNorm

= 100000 Numlt | CPUtime | Numlt | CPUtime
v=0.1 4967 4.6351 >100000 -
r=1 663 0.6409 53618 583.0896
v=>5 306 0.3172 9504 70.9192
v =239 2645 2.8821 2851 21.4682
v =100 6776 7.4103 7120 53.9206
v =500 33904 39.3127 35740 340.2518
v = 1000 67806 84.4253 71456 881.7213

dashed line) in R? for v =5
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Table 5: Performance evaluation for NumGiFac 60 and NumNewFac 10 in R3

311

MaxNumlt EpiSumNorms EpiNorm

= 100000 Numlt | CPUtime | Numlt CPUtime
v=20.1 3391 8.2135 >100000 -
v=1 1042 2.5581 | >100000 -
v=10 8270 20.7564 29000 1713.3125
v =50 2714 6.8445 32168 2042.8242
v =110 1691 4.3914 15167 821.7959
v =445 6669 17.5405 5224 273.9350
v = 1000 15381 41.1793 14533 788.8773

Figure 5: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red
dashed line) in R? for v = 110

The examples in the last two tables draw a similar picture as the examples in the previous
ones. While the method EpiSumNorms generates a solution within the maximum bound
from the optimal solution after few seconds, the method EpiNorm needs several minutes.
This also points up the usefulness of our approach made in Section 2.
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