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formulation of the associated optimization problem. The proximity operator (a.k.a. proximal
mapping) of a proper, lower semicontinuous and convex function f : H → R denoted by
proxf is defined by

proxf x : H → H, proxf x := argmin
y∈H

{
f(y) +

1

2
∥x− y∥2H

}
∀x ∈ H. (1.2)

The proximity operator can be understood as a generalization of the projection onto a convex
set, as for a non-empty, closed and convex set A ⊆ H we have

proxδA x = PA x ∀x ∈ H, (1.3)

where δA : H → R defined by

δA(x) :=

{
0, if x ∈ A,
+∞, otherwise,

(1.4)

is a proper, convex and lower semicontinuous indicator function and PA is the projection
operator which maps every point x in H to its unique projection onto the set A (see [1]).

From (1.2) follows that the determination of the proximity operators of the functions fi,
i = 1, ..., n, of (1.1) requires the solving of n subproblems, where a favorable situation exists,
when a closed formula of a proximity operator can be given. This in turn has a positive
effect on the solving of optimization problems from the numerical point of view.

Motivated by this background, our aim is to solve numerically extended multifacility
minimax location problems (see [15]) given by

(EPM,β
N ) min

(x1,...,xm)∈Rd×···×Rd
max
1≤i≤n


m∑
j=1

wij∥xj − pi∥βi

 , (1.5)

where wij > 0, βi ≥ 1 and pi ∈ Rd are distinct points, j = 1, ...,m, i = 1, ..., n. In this
framework we first need to rewrite this kind of location problems into the form of (1.1) where
the objective function is a sum of lower semicontinuous convex functions. For this purpose
we introduce an additional variable and obtain for (EPM,β

N ) the following formulation

(EPM,β
N ) min

(x1,...,xm,t)∈Rd×···×Rd×R,
m∑

j=1
wij∥xj−pi∥

βi≤t, i=1,...,n

t = min
(x1,...,xm,t)∈Rd×···×Rd×R,

(x1,...,xm,t)∈epi

 m∑
j=1

wij∥·−pi∥
βi

, i=1,...,n

t

= min
(x1,...,xm,t)∈Rd×···×Rd×R

t+

n∑
i=1

δ
epi

(
m∑

j=1
wij∥·−pi∥βi

)(x1, ..., xm, t)

 . (1.6)

Now, to apply the proximal method to (EPM,β
N ) one needs to calculate the proximity op-

erators of the functions involved in the objective function of (1.6). For this reason and
especially in the context of (1.3), we give in Section 2 formulae for the projection onto the
epigraph of the sum of powers of weighted norms. As the power of norm in (1.6) can be
replaced by a gauge function, we present also formulae of projections onto the epigraphs of
gauges.

To point out the benefits of the presented formulae we consider then examples of location
problems in different settings and compare the numerical results with a method proposed by
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Cornejo and Michelot in [14]. The difference between these two methods is that the one given
by Cornejo and Michelot splits the sum of powers of weighted norms by introducing n ·m
additional variables. In this situation one gets the following presentation of the extended
multifacility minimax location problem

(EPM,β
N ) min

t, tij∈R, xj∈Rd,

j=1,...,m,i=1,...,n

t+

m∑
j=1

n∑
i=1

δepi(wij∥·−pi∥βi)(xj , tij) +

n∑
i=1

δepi τi(ti1, ..., tim, t)

 ,

(1.7)
where τi(ti1, ..., tim) :=

∑m
j=1 tij , i = 1, ..., n. In Section 3 we show that this concept

makes the solving process for the considered examples of location problems very slow and
the advantage of our approach more clear. The numerical tests are based on the parallel
splitting algorithm, which can be found for instance in [1].

Finally, we collect some properties of Hilbert spaces, which can be found with proofs for
instance in [1] and [13].

If for a function f : H → R we take an arbitrary x ∈ H such that f(x) ∈ R, then we call
the set

∂f(x) := {x∗ ∈ H : f(y)− f(x) ≥ ⟨x∗, y − x⟩ ∀y ∈ H}
the (convex) subdifferential of f at x, where the elements are called the subgradients of f
at x. Moreover, if ∂f(x) ̸= ∅, then we say that f is subdifferentiable at x and if f(x) /∈ R,
then we make the convention that ∂f(x) := ∅. If f is Gâteaux-differentiable at x ∈ H, then
∂f(x) = {∇f(x)}. The set of global minimizers of the function f is denoted by Argmin f
and if f has a unique minimizer, it is denoted by argminx∈H f(x). It holds

x ∈ Argmin f ⇔ 0H ∈ ∂f(x) ∀x ∈ H. (1.8)

It holds

y = proxf x ⇔ x− y ∈ ∂f(y) ∀x ∈ H, ∀y ∈ H. (1.9)

In addition, we make for the rest of this paper the convention that 0
0 = 0 and 1

0 ·0H = 0H.

In the following let H1 × · · · × Hn be a real Hilbert space endowed with inner product
and norm, respectively, defined by

⟨(x1, ..., xn), (y1, ..., yn)⟩H1×···×Hn
=

n∑
i=1

⟨xi, yi⟩Hi
and

∥(x1, ..., xn)∥H1×···×Hn =

√√√√ n∑
i=1

∥xi∥2Hi
,

where (x1, ..., xn) ∈ H1 × · · · × Hn and (y1, ..., yn) ∈ H1 × · · · × Hn.
We close this section with a lemma, which presents a formula for the projection onto a

unit ball generated by the weighted sum of norms and generalizes the results given in [18]
to real Hilbert spaces Hi, i = 1, ..., n. Let wi > 0, i = 1, ..., n, and C := {(x1, ..., xn) ∈
H1 × · · · × Hn :

∑n
i=1 wi∥xi∥Hi

≤ 1}, then the following statement holds.

Lemma 1.1. For all (x1, ..., xn) ∈ H1 × · · · × Hn it holds

PC(x1, ..., xn) =

 (x1, ..., xn), if
n∑

i=1

wi∥xi∥Hi
≤ 1,

(y1, ..., yn), otherwise,
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where

yi =
max{∥xi∥Hi

− λwi, 0}
∥xi∥Hi

xi, i = 1, ..., n,

with

λ =

n∑
i=k+1

w2
i τi − 1

n∑
i=k+1

w2
i

and k ∈ {0, 1, ..., n − 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values
τ0, ..., τn are defined by τ0 := 0 and τi := ∥xi∥Hi

/wi, i = 1, ..., n, and in ascending order.

Proof. In order to determine the projection onto the set C, we consider for fixed (x1, ..., xn) ∈
H1 × · · · × Hn the following optimization problem

min
(y1,...,yn)∈H1×···×Hn,

n∑
i=1

wi∥yi∥Hi
≤1

{
n∑

i=1

1

2
∥yi − xi∥2Hi

}
. (1.10)

Obviously, if
∑n

i=1 wi∥xi∥Hi
≤ 1, i.e. (x1, ..., xn) ∈ C, then the unique solution is yi = xi,

i = 1, ..., n. In the following we consider the non-trivial situation where
∑n

i=1 wi∥xi∥Hi
> 1,

i.e. (x1, ..., xn) /∈ C and define the function f : H1 × · · · × Hn → R by f(y1, ..., yn) :=∑n
i=1(1/2)∥yi−xi∥2Hi

and the function g : H1×· · ·×Hn → R by g(y1, ..., yn) :=
∑n

i=1 wi∥yi∥Hi−
1. Hence, by [1, Proposition 26.18] it holds for the unique solution (y1, ..., yn) of (1.10) that

∇f(y1, ..., yn) ∈ −λ∂g(y1, ..., yn) ⇔ yi − xi ∈ −λ∂ (wi∥ · ∥Hi
) (yi), i = 1, ..., n,

as well as

λ

(
n∑

i=1

wi∥yi∥Hi − 1

)
= 0 and

n∑
i=1

wi∥yi∥Hi ≤ 1,

where λ ≥ 0 is the associated Lagrange multiplier of (y1, ..., yn). If λ = 0, then yi = xi,
i = 1, ..., n, and by the feasibility condition we obtain

∑n
i=1 wi∥xi∥Hi

≤ 1, which contradicts
our assumption. Therefore, λ > 0 and we get by (1.9) that

yi − xi ∈ −λ∂ (wi∥ · ∥Hi) (yi) ⇔ xi − yi ∈ ∂(λwi∥ · ∥Hi)(yi)

⇔ yi = proxλwi∥·∥Hi
xi, i = 1, ..., n.

Using [13, Proposition 2.8] reveals that

yi =

{
xi − λwi

∥xi∥Hi
xi, if ∥xi∥Hi

> λwi,

0Hi , if ∥xi∥Hi ≤ λwi

=
max{∥xi∥Hi

− λwi, 0}
∥xi∥Hi

xi, i = 1, ..., n,

and as
∑n

i=1 wi∥yi∥Hi = 1, we conclude that

n∑
i=1

wi max
{
∥xi∥Hi

− λwi, 0
}
= 1. (1.11)
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Now, we define the function κ : R → R by κ(λ) =
∑n

i=1 w
2
i max{τi − λ, 0} − 1. Note, that

there exists λ̃ ≥ τi for all i = 1, ..., n, such that κ(λ̃) = −1 < 0. Moreover, κ is a piecewise
linear function with κ(0) = w2

i τi−1 and its slope changes at λ = τi, i = 1, ..., n. To be more
precise, at λ = 0 the slope of κ is −

∑n
i=1 w

2
i and increases by w2

1 when λ = τ1. If we continue
in this matter for i = 2, ..., n, the slope keeps increasing and when λ ≥ τn, κ(λ) = −1 such
that the slope is 0. In summary, to find the zero of κ one needs to determine the unique
integer k ∈ {0, 1, ..., n− 1} such that κ(τk) ≥ 0 and κ(τk+1) ≤ 0. In the light of the above,
it holds

κ(λ) =

n∑
i=k+1

w2
i τi − λ

n∑
i=k+1

w2
i − 1,

where τk ≤ λ ≤ τk+1, and hence, one gets for λ such that κ(λ) = 0,

λ =

n∑
i=k+1

w2
i τi − 1

n∑
i=k+1

w2
i

.

2 Formulae of Epigraphical Projection

The first aim of this section is to give formulae for the projection operators onto the epigraph
of the sum of powers of weighted norms. For this purpose, we give a general formula in our
central theorem, from which we deduce special cases used in our numerical tests.

The second aim is to present formulae of the projection operators onto the epigraphs of
gauges. By using the fact that the sum of gauges is again a gauge (see [21]), we also present
a formula of the projector onto the epigraph of the sum of gauges.

2.1 Sum of weighted norms

Let us consider the following function h : H1 × · · · × Hn → R defined as

h(x1, ..., xn) :=

n∑
i=1

wi∥xi∥βi

Hi
, (2.1)

where wi > 0 and βi ≥ 1, i = 1, ..., n. By defining the sets

L := {l ∈ {1, ..., n} : βl > 1} and R := {r ∈ {1, ..., n} : βr = 1},

we can state the following formula for the projection onto the epigraph of the sum of powers
of weighted norms, which generalizes the results given for instance in [1, 12,13,17].

Theorem 2.1. Assume that h is given by (2.1). Then, for every (x1, ..., xn, ξ) ∈ H1×· · ·×
Hn × R one has

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑

i=1

wi∥xi∥βi

Hi
≤ ξ,

(y1, ..., yn, θ), otherwise,
(2.2)
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with

yr =
max{∥xr∥Hr

− λwr, 0}
∥xr∥Hr

xr, r ∈ R,

yl =
∥xl∥Hl

− ηl(λ)

∥xl∥Hl

xl, l ∈ L,

θ = ξ + λ,

where ηl(λ) is the unique non-negative real number that solves the equation

ηl(λ) +

(
ηl(λ)

λwlβl

) 1
βl−1

= ∥xl∥Hl
, l ∈ L, (2.3)

and λ > 0 is a solution of the equation∑
r∈R

wr max{∥xr∥Hr
− λwr, 0}+

∑
l∈L

wl(∥xl∥Hl
− ηl(λ))

βl = λ+ ξ. (2.4)

Proof. For given ξ ∈ R and (x1, ..., xn) ∈ H1 × · · · × Hn, let us consider the following
optimization problem

min
(y1,...,yn,θ)∈H1×···×Hn×R

n∑
i=1

wi∥yi∥
βi
Hi

≤θ

{
1

2
(θ − ξ)2 +

n∑
i=1

1

2
∥yi − xi∥2Hi

}
. (2.5)

It is clear that in the situation when
∑n

i=1 wi∥xi∥βi

Hi
≤ ξ, i.e. (x1, ..., xn, ξ) ∈ epih, the

unique solution of (2.5) is yi = xi, i = 1, ..., n, and θ = ξ. Therefore, we consider in the

following the non-trivial case where
∑n

i=1 wi∥xi∥βi

Hi
> ξ, i.e. (x1, ..., xn, ξ) /∈ epih.

Let us now define the function f : H1 × ...×Hn ×R → R by f(y1, ..., yn, θ) := (1/2)(θ−
ξ)2+

∑n
i=1(1/2)∥yi−xi∥2Hi

and the function g : H1× ...×Hn×R → R by g(y1, ..., yn, θ) :=∑n
i=1 wi∥yi∥βi

Hi
−θ, then by [1, Proposition 26.18] there exists λ ≥ 0, such that for the unique

solution (y1, ..., yn, θ) of (2.5) it holds

∇f(y1, ..., yn, θ) ∈ −λ∂g(y1, ..., yn, θ) ⇔

{
yi − xi ∈ −λ∂(wi∥ · ∥βi

Hi
)(yi), i = 1, ...n,

θ − ξ = λ,
(2.6)

where λ is the associated Lagrange multiplier of (y1, ..., yn, θ). If λ = 0, then one gets by
(2.6) that yi = xi, i = 1, ..., n, and θ = ξ and by the feasibility of the solution it follows that∑n

i=1 wi∥xi∥βi

Hi
≤ ξ, which contradicts our assumption. Hence, it holds λ > 0 and by (1.9)

and (2.6) we have{
xi − yi ∈ ∂(λwi∥ · ∥βi

Hi
)(yi), i = 1, ...n,

θ = λ+ ξ,
⇔

{
yi = prox

λwi∥·∥
βi
Hi

xi, i = 1, ...n,

θ = λ+ ξ.

Further, from [13, Proposition 2.8] it follows for the case r ∈ R, i.e. βr = 1, that

yr =

{
xr − λwr

∥xr∥Hr
xr, if ∥xr∥Hr

> λwr,

0Hr
, if ∥xr∥Hr

≤ λwr

=
max{∥xr∥Hr

− λwr, 0}
∥xr∥Hr

xr, (2.7)



EPIGRAPHICAL PROJECTION AND MINIMAX LOCATION 295

and for the case l ∈ L, i.e. βl > 0, that

yl = xl −
ηl(λ)

∥xl∥Hl

xl =
∥xl∥Hl

− ηl(λ)

∥xl∥Hl

xl, (2.8)

where ηl(λ) is the unique non-negative real number that solves the following equation

ηl(λ) +

(
ηl(λ)

λwlβl

) 1
βl−1

= ∥xl∥Hl
(2.9)

(notice that by (2.9) follows that ∥xl∥Hl
− ηl(λ) ≥ 0). Furthermore, the complementary

slackness condition

λ

(
n∑

i=1

wi∥yi∥
βi

Hi
− θ

)
= 0 (2.10)

implies that
n∑

i=1

wi∥yi∥
βi

Hi
= θ, (2.11)

and from here follows by (2.7) and (2.8) that

n∑
i=1

wi∥yi∥
βi

Hi
=
∑
r∈R

wr max{∥xr∥Hr
− λwr, 0}+

∑
l∈L

wl(∥xl∥Hl
− ηl(λ))

βl = λ+ ξ. (2.12)

Remark 2.2. In the situation when βi > 1 for all i=1,...,n, we get by summarizing the
formulae (2.3) and (2.4)

ηi(λ) +

 ηi(λ)

wiβi

(∑n
j=1 wj(∥xj∥Hj

− ηj(λ))βj

)
− wiβiξ

 1
βi−1

= ∥xi∥Hi

⇔ ηi(λ)

wiβi

(∑n
j=1 wj(∥xj∥Hj

− ηj(λ))βj

)
− wiβiξ

= (∥xi∥Hi − ηi(λ))
βi−1, i = 1, ..., n.

(2.13)

By setting χi = ∥xi∥Hi
− ηi(λ) ≥ 0, i = 1, ..., n, formula (2.13) can be expressed by

∥xi∥Hi
− χi

wiβi

(∑n
j=1 wjχ

βj

j

)
− wiβiξ

= χβi−1
i

⇔ wiβiχ
βi−1
i

n∑
j=1

wjχ
βj

j − ξwiβiχ
βi−1
i + χi = ∥xi∥Hi

⇔ w2
i βiχ

2βi−1
i + wiβiχ

βi−1
i

n∑
j=1
j ̸=i

wjχ
βj

j − ξwiβiχ
βi−1
i + χi = ∥xi∥Hi , i = 1, ..., n.

Hence, it holds for every (x1, ..., xn, ξ) ∈ H1 × · · · × Hn × R

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑

i=1

wi∥xi∥βi

Hi
≤ ξ,

(y1, ..., yn, θ), otherwise,
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with

yi =
χi

∥xi∥Hi

xi, i = 1, ...n, and θ =

n∑
i=1

wiχ
βi

i ,

where χi ≥ 0, i = 1, ..., n, are the unique real numbers that solve a polynomial equation
system of the form

w2
i βiχ

2βi−1
i + wiβiχ

βi−1
i

n∑
j=1
j ̸=i

wjχ
βj

j − ξwiβiχ
βi−1
i + χi = ∥xi∥Hi , i = 1, ..., n.

Let us additionally mention that the case where n = 1 was considered for instance in [12].

An important consequence of Theorem 2.1 where βi = 1 for all i = 1, ..., n, follows.

Corollary 2.3. Let h be given by (2.1) where βi = 1 for all i = 1, ..., n. Then for all
(x1, ..., xn, ξ) ∈ H1 × · · · × Hn × R it holds

Pepih(x1, ..., xn, ξ) =


(x1, ..., xn, ξ), if

n∑
i=1

wi∥xi∥Hi
≤ ξ,

(0H1
, ..., 0Hn

, 0), if ξ < 0 and ∥xi∥Hi
≤ −ξwi, i = 1, ..., n,

(y1, ..., yn, θ), otherwise,

(2.14)

where

yi =
max{∥xi∥Hi − λwi, 0}

∥xi∥Hi

xi, i = 1, ..., n, and θ = ξ + λ,

with

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i + 1

(2.15)

and k ∈ {0, 1, ..., n − 1} is the unique integer such that τk ≤ λ ≤ τk+1, where the values
τ0, ..., τn are defined by τ0 := 0 and τi := ∥xi∥Hi

/wi, i = 1, ..., n and in ascending order.

Proof. As βi = 1 for all i = 1, ..., n, Theorem 2.1 yields

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑

i=1

wi∥xi∥Hi ≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
max{∥xi∥Hi

− λwi, 0}
∥xi∥Hi

xi, i = 1, ..., n, and θ = ξ + λ,

where λ > 0 is a solution of the equation

n∑
i=1

wi max{∥xi∥Hi
− λwi, 0} = λ+ ξ.
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Now, we consider the case where
∑n

i=1 wi∥xi∥Hi
> ξ and distinguish two cases.

(a) Let ξ < 0. If ∥xi∥Hi
+ ξwi ≤ 0 for all i = 1, ..., n, we have by 0 ≤ θ = ξ + λ, i.e.

ξ ≥ −λ, that
0 ≥ ∥xi∥Hi + ξwi ≥ ∥xi∥Hi − λwi ∀i = 1, ..., n, (2.16)

and from here follows that

λ+ ξ =

n∑
i=1

wi max{∥xi∥Hi
− λwi, 0} = 0, i.e. λ = −ξ. (2.17)

But this means that
(y1, ..., yn, θ) = (0H1

, ..., 0Hn
, 0), (2.18)

which verifies the second case of (2.14).
If we now assume that there exists j ∈ {1, ..., n} such that ∥xj∥Hj + ξwj > 0, then we define
the function g : R → R by

g(λ) :=

n∑
i=1

w2
i max {τi − λ, 0} − λ− ξ. (2.19)

Moreover, this assumption yields

g(λ) =

n∑
i=1

w2
i max{τi − λ, 0} − λ− ξ <

n∑
i=1

w2
i max{τi − λ, 0} − λ+

∥xj∥Hj

wj
.

Now, we choose λ̃ > 0 such that ∥xi∥Hi − wiλ̃ < 0 for all i = 1, ..., n, and get

g(λ̃) < −λ̃+
∥xj∥Hj

wj
< 0.

(b) Let ξ ≥ 0. If there exists j ∈ {1, ..., n} such that ∥xj∥Hj
+ ξwj < 0, we derive a

contradiction. Therefore, it holds ∥xi∥Hi
+ ξwi ≥ 0 for all i = 1, ..., n, and for the function

g we have

g(λ) =

n∑
i=1

w2
i max{τi − λ, 0} − λ− ξ ≤

n∑
i=1

w2
i max{τi − λ, 0} − λ.

Now, we can take λ̃ > 0 such that ∥xi∥Hi − wiλ̃ < 0 for all i = 1, ..., n, and derive that

g(λ̃) ≤ −λ̃ < 0.

In summary, we can secure the existence of λ̃ > 0 such that g(λ̃) < 0. Additionally, take
note that, if λ = 0, then g(0) =

∑n
i=1 wi∥xi∥Hi

− ξ > 0. The rest of the proof is oriented on
the Algorithm I given in [18] to determine the projection onto an l1-norm ball.

Since, the values τ0, ..., τn are in ascending order, g is a piecewise linear function in λ,
where the slope of g changes at λ = τi, i = 0, ..., n. More precisely, at λ = 0 the slope of g
is −(

∑n
i=1 w

2
i +1) and increases by w2

1 when λ = τ1. If we proceed in this way, one may see
that the slope keeps increasing when λ takes the values τk, k = 2, ..., n. In the case when
λ ≥ τn the slope of g is −1.
Hence, to determine λ such that g(λ) = 0, we have to locate the interval where g changes its
sign from a positive to a negative value. In other words, we have to find the unique integer
k ∈ {0, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0. Hence, we have

g(λ) = −

(
n∑

i=k+1

w2
i + 1

)
λ+

n∑
i=k+1

w2
i τi − ξ,
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where τk ≤ λ ≤ τk+1. Finally, we can determine λ such that g(λ) = 0:

λ =

n∑
i=k+1

w2
i τi − ξ

n∑
i=k+1

w2
i + 1

.

Remark 2.4. From the ideas of the previous proof, we can now construct an algorithm to
determine λ of Corollary 2.3.

Algorithm:

1. If
∑n

i=1 wi∥xi∥Hi ≤ ξ, then λ = 0.

2. If ξ < 0 and ∥xi∥Hi ≤ −ξwi for all i = 1, ..., n, then λ = −ξ.

3. Otherwise, define τ0 := 0, τi := ∥xi∥Hi/wi, i = 1, ..., n, and sort τ0, ..., τn in ascending
order.

4. Determine the values of g defined in (2.19) at λ = τi, i = 0, ..., n.

5. Find the unique k ∈ {0, ..., n− 1} such that g(τk) ≥ 0 and g(τk+1) ≤ 0.

6. Calculate λ by (2.15).

Corollary 2.5. Let h be given by (2.1) where βi = 2 and wi = 1 for all i = 1, ..., n, then it
holds

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑

i=1

∥xi∥2Hi
≤ ξ,

(y1, ..., yn, θ), otherwise,

where

yi =
1

2λ+ 1
xi, i = 1, ..., n, and θ = ξ + λ,

and λ > 0 is a solution of a cubic equation of the form

λ3 + (1 + ξ)λ2 +
1

4
(1 + 4ξ)λ+

1

4

(
ξ −

n∑
i=1

∥xi∥2Hi

)
= 0. (2.20)

Proof. By Theorem 2.1 we get that

Pepih(x1, ..., xn, ξ) =

 (x1, ..., xn, ξ), if
n∑

i=1

∥xi∥2Hi
≤ ξ,

(y1, ..., yn, θ), otherwise,

with

yi =
∥xi∥Hi − ηi(λ)

∥xi∥Hi

xi, i = 1, ..., n, and θ = ξ + λ, (2.21)
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where ηi(λ) is the unique non-negative real number that solves the equation

ηi(λ) +
ηi(λ)

2λ
= ∥xi∥Hi

, i = 1, ..., n, (2.22)

and λ > 0 is a solution of the equation

n∑
i=1

(∥xi∥Hi − ηi(λ))
2 = λ+ ξ. (2.23)

From (2.22) we get immediately

ηi(λ)

(
1 +

1

2λ

)
= ∥xi∥Hi

⇔ ηi(λ) =
2λ

2λ+ 1
∥xi∥Hi

, i = 1, ..., n, (2.24)

and in combination with (2.23) we derive

n∑
i=1

(
∥xi∥Hi

− 2λ

2λ+ 1
∥xi∥Hi

)2

= λ+ ξ ⇔ 1

(2λ+ 1)2

n∑
i=1

∥xi∥2Hi
= λ+ ξ

⇔ (2λ+ 1)2(λ+ ξ)−
n∑

i=1

∥xi∥2Hi
= 0

⇔ 4λ
3
+ 4(1 + ξ)λ

2
+ (1 + 4ξ)λ+ ξ −

n∑
i=1

∥xi∥2Hi
= 0.

In the end, formula (2.24) implies that

yi =
∥xi∥Hi

− 2λ
2λ+1

∥xi∥Hi

∥xi∥Hi

xi =
1

2λ+ 1
xi, i = 1, ..., n, (2.25)

which completes the proof.

The next remark discusses the question whether the solution λ > 0 of Corollary 2.5 is
unique.

Remark 2.6. Let (x1, ..., xn, ξ) ∈ H1 × · · · × Hn × R be such that
∑n

i=1 ∥xi∥2Hi
> ξ and

g : R → R be defined by g(λ) := λ3 + (1 + ξ)λ2 + (1/4)(1 + 4ξ)λ+ (1/4)(ξ −
∑n

i=1 ∥xi∥2Hi
),

then g′(λ) = 3λ2 + 2(1 + ξ)λ + (1/4)(1 + 4ξ) as well as g′′(λ) = 6λ + 2(1 + ξ). From the
zeros of g′ we derive the local extrema of g as follows

λ1/2 = −1

3
(1 + ξ)±

√
(1 + ξ)2

9
− 1 + 4ξ

12
= −1

3
(1 + ξ)±

√
4(1 + 2ξ + ξ2)− 3(1 + 4ξ)

36

= −1

3
(1 + ξ)±

√
1− 4ξ + 4ξ2

36
= −1

3
(1 + ξ)± 1

6
(1− 2ξ)

and hence, λ1 = −(1/6)(1 + 4ξ) and λ2 = −(1/2).
Further, if ξ > 1/2 ⇔ −1 + 2ξ > 0, then g is strongly monotone increasing on R+,

g′′(λ1) = 1−2ξ < 0 and g′′(λ2) = −1+2ξ > 0, which means that g has in λ1 a local maximum
and in λ2 a local minimum. As λ1 < λ2 < 0 and g(0) = (1/4)(ξ −

∑n
i=1 ∥xi∥2Hi

) < 0, the
function g has exactly one positive zero in this situation.
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If ξ < 1/2 ⇔ 1 − 2ξ > 0, then g′′(λ1) = 1 − 2ξ > 0 and g′′(λ2) = −1 + 2ξ < 0 and we
derive a local minimum in λ1 and a local maximum in λ2. From g(0) < 0 and λ2 < λ1 we
conclude that g has also in this situation exactly one positive zero.

Finally, let us consider the case where ξ = 1/2, then g is strongly monotone increasing
on R+, λ1 = λ2 = −1/2 and g′′(λ1) = 0, i.e. g has at the point −(1/2) a saddle point. From
the fact that g′′(λ) ≤ 0 for all λ ∈ (−∞,−(1/2)] and g′′(λ) > 0 for all λ ∈ (−(1/2),+∞), it
is clear that g has again exactly one positive zero.

In conclusion, the function g has in all situations exactly one positive zero, i.e. λ > 0 is
unique.

Remark 2.7. In the framework of Corollary 2.5, let us consider the case where n = 1.
Then, by Remark 2.2 we have to find a real number χ ≥ 0 that solves the equation

2χ3 + (1− 2ξ)χ− ∥x∥H = 0, (2.26)

to get a formula of the projection onto the epigraph of h.
As one may see by (2.20), the arithmetic effort for the case n > 1 is not much higher

compared to the case n = 1. In both situations we have to solve a cubic equation to derive
a formula for the projection onto the epigraph of h.

As a direct consequence of Corollary 2.3 one gets the following well-known statement
(see for instance [1] or [12]).

Corollary 2.8. Let h be given by (2.1) where n = 1, w1 = w ≥ 1 and β1 = 1, i.e.
h(x) = w∥x∥H. Then, for every (x, ξ) ∈ H × R

Pepiw∥·∥H(x, ξ) =


(x, ξ), if w∥x∥H ≤ ξ,

(0, 0), if ∥x∥H ≤ −wξ,(
∥x∥H+wξ

∥x∥H(w2+1)x,
w∥x∥H+w2ξ

w2+1

)
, otherwise.

For our numerical tests we need two lemmas more.

Lemma 2.9. For pi ∈ H, i = 1, ..., n, it holds

P
epi

(
n∑

i=1
wi∥·−pi∥

βi
Hi

)(x1, ..., xn, ξ) = P
epi

(
n∑

i=1
wi∥·∥

βi
Hi

)(x1 − p1, ..., xn − pn, ξ) + (p1, ..., pn, 0).

Proof. For pi ∈ Hi, i = 1, ..., n one has

(x1, ..., xn, ξ) ∈ epi

(
n∑

i=1

wi∥ · −pi∥βi

Hi

)
⇔

n∑
i=1

wi∥xi − pi∥βi

Hi
≤ ξ

⇔ (x1 − p1, ..., xn − pn, ξ) ∈ epi

(
n∑

i=1

wi∥ · ∥βi

Hi

)

⇔ (x1, ..., xn, ξ) ∈ epi

(
n∑

i=1

wi∥ · ∥βi

Hi

)
+ (p1, ..., pn, 0).

Thus, by [1, Proposition 3.17] follows

P
epi

(
n∑

i=1
wi∥·−pi∥

βi
Hi

)(x1, ..., xn, ξ) = P
epi

(
n∑

i=1
wi∥·∥

βi
Hi

)
+(p1,...,pn,0)

(x1, ..., xn, ξ)

= P
epi

(
n∑

i=1
wi∥·∥

βi
Hi

)(x1 − p1, ..., xn − pn, ξ) + (p1, ..., pn, 0).
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Lemma 2.10. Let w > 0 and A : K → H be a linear operator with AA∗ = µId, µ > 0,
where K is a real Hilbert space. Then,

Pepiw∥A·∥H(x, ξ) = (x, ξ) +

(
1
√
µ
A∗ × Id

)(
Pepiw

√
µ∥·∥H

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
,

where 1√
µA

∗ × Id : H× R → K× R is defined as
(

1√
µA

∗ × Id
)
(y, ζ) =

(
1√
µA

∗y, ζ
)
.

Proof. We have

δepi(w∥A·∥H)(x, ξ) = δepi(w√
µ∥·∥H)

(
1
√
µ
Ax, ξ

)
=

(
δepi(w√

µ∥·∥H) ◦
(

1
√
µ
A× Id

))
(x, ξ).

By [1, Proposition 23.32] (with L = (1/
√
µ)A× Id) it follows that

proxδepiw∥A·∥H
(x, ξ) = prox

δepi(w
√

µ∥·∥H)◦
(

1√
µA×Id

)(x, ξ)
=(x, ξ) +

(
1
√
µ
A× Id

)∗(
proxδepiw

√
µ∥·∥H

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
⇔Pepiw∥A·∥H(x, ξ) = (x, ξ) +

(
1
√
µ
A∗ × Id

)(
Pepiw

√
µ∥·∥H

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
.

2.2 Gauges

The next considerations are devoted to gauge functions (a.k.a. Minkowski functional) of a
closed, convex and non-empty subset C ⊆ H, γC : H → R defined by

γC(x) :=

{
inf{λ > 0 : x ∈ λC}, if {λ > 0 : x ∈ λC} ̸= ∅,
+∞, otherwise.

Theorem 2.11. Let C be a closed convex subset of H such that 0H ∈ C, then it holds for
every (x, ξ) ∈ H × R

Pepi γC
(x, ξ) =


(x, ξ), if γC(x) ≤ ξ,(
Pcl(dom γC)(x), ξ

)
, if x /∈ dom γC and γC

(
Pcl(dom γC)(x)

)
≤ ξ < γC(x),

(y, θ), otherwise,

where

y = x− λPC0

(
1

λ
x

)
and θ = λ+ ξ

and λ > 0 is a solution of an equation of the form

λ+ ξ =

⟨
x,PC0

(
1

λ
x

)⟩
H
− λ

∥∥∥∥PC0

(
1

λ
x

)∥∥∥∥2
H
.
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Proof. Let us consider for fixed (x, ξ) ∈ H × R the following optimization problem

min
(y,θ)∈H×R,
γC (y)≤θ

{
1

2
(θ − ξ)2 +

1

2
∥y − x∥2H

}
. (2.27)

If γC(x) ≤ ξ, i.e. (x, ξ) ∈ epi γC , then it is obvious that (y, θ) = (x, ξ). In the following we
consider the non-trivial situation where γC(x) > ξ.

We define the function f : H× R → R by f(y, θ) := (1/2)(θ − ξ)2 + (1/2)∥y − x∥2H and
the function g : H×R → R by g(y, θ) = γC(y)− θ, then it is clear that f is continuous and
strongly convex and g is proper, lower semicontinuous and convex by [22, Theorem 1]. As
γC(0) < 1, it follows by [5, Theorem 3.3.16] (see also [5, Remark 3.3.8]) that

0 ∈ ∂(f + (λg))(y, θ) (2.28)

and {
(λg)(y, θ) = 0,

g(y, θ) ≤ 0,
⇔

{
λ(γC(y)− θ) = 0,

γC(y) ≤ θ.
(2.29)

where (y, θ) is the unique solution of (2.27) and λ ≥ 0 the associated Lagrange multiplier.
Furthermore, from [5, Theorem 3.5.13] one gets that

0 ∈ ∂(f + (λg))(y, θ) ⇔ 0 ∈ ∂f(y, θ) + ∂(λg)(y, θ). (2.30)

If λ = 0, then it follows by (1.9) and (1.3)

0 ∈ ∂f(y, θ) + ∂δdom g(y, θ) ⇔ 0 ∈ (y − x, θ − ξ) + ∂δdom γC×R(y, θ)

⇔ 0 ∈ (y − x, θ − ξ) + ∂δcl(dom γC)×R(y, θ) ⇔ (x− y, ξ − θ) ∈ ∂δcl(dom γC)×R(y, θ)

⇔ (y, θ) = Pcl(dom γC)×R(x, ξ) ⇔

{
y = Pcl(dom γC)(x),

θ = ξ,

and thus, it holds by the feasibility condition (2.29) that γC(Pcl(dom γC)(x)) ≤ ξ, from which
follows that Pcl(dom γC)(x) ∈ dom γC . If x ∈ dom γC , this means that Pcl(dom γC)(x) = x and
again by the feasibility condition (2.29) that γC(x) ≤ ξ, which contradicts our assumption.
Therefore, if x /∈ dom γC and the inequalities γC(Pcl(dom γC)(x)) ≤ ξ < γC(x) hold, then

(y, θ) =
(
Pcl(dom γC)(x), ξ

)
.

Now, let λ > 0, then it follows from (2.30) and (1.9)

0 ∈ ∂(f + (λg))(y, θ) ⇔ 0 ∈ ∂f(y, θ) + λ∂g(y, θ)

⇔ ∇f(y, θ) ∈ −λ∂g(y, θ) ⇔

{
y − x ∈ −λ∂γC(y),

θ − ξ = λ
⇔

{
y = proxλγC

x,

θ = ξ − λ,
(2.31)

by combining (2.31) and (2.29) we derive that γC(y) = ξ + λ. Finally, as by [22, Lemma 1]
and [22, Remark 3] it holds that γ∗

C = δC0 , one gets by [1, Theorem 14.3(iii)] the following
equivalences

γC(y) = ξ + λ (2.32)

⇔ ξ + λ = γC

(
proxλγC

x
)
+ δC0

(
PC0

(
1

λ
x

))
=

⟨
proxλγC

x,PC0

(
1

λ
x

)⟩
H
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⇔ ξ + λ =

⟨
x− λPC0

(
1

λ
x

)
,PC0

(
1

λ
x

)⟩
H
.

Corollary 2.12. Let C ⊆ H be a closed convex cone, then γC = δC and

Pepi γC
(x, ξ) = PC×R+(x, ξ) =

{
(x, ξ), if x ∈ C and ξ ≥ 0,

(PC x,max{0, ξ}) , otherwise.

Proof. We use Theorem 2.11. Let x ∈ dom γC such that γC(x) > ξ, then one has from [1,
Proposition 28.22] and [1, Theorem 6.29] that

y = x− λPC0

(
1

λ
x

)
= x− PC0 x = PC x. (2.33)

Moreover, as γC = δC it holds that dom γC = C and by (2.29) we have

γC(y) = θ,

which yields
Pepi γC

(x, ξ) = (PC x, γC (PC x)) = (PC x, 0).

If x /∈ dom γC = C, then

0 = γC
(
Pcl(dom γC)(x)

)
≤ ξ < γC(x) = +∞

and so, Pepi γC
(x, ξ) = (Pcl(dom γC)(x), ξ) = (PC x, ξ), which implies the statement.

Corollary 2.13. Let Ci be a closed convex subset of Hi such that 0Hi
∈ intCi, i = 1, ..., n,

and the gauge γC : H1 × · · · ×Hn → R be defined by γC(x1, ..., xn) =
∑n

i=1 γCi
(xi). Then it

holds for every (x1, ..., xn, ξ) ∈ H1 × · · · × Hn × R

Pepi γC
(x1, ..., xn, ξ) =

(x1, ..., xn, ξ), if
n∑

i=1

γCi
(xi) ≤ ξ,

(y1, ..., yn, θ), otherwise,

where

yi = xi − λPC0
i

(
1

λ
xi

)
, i = 1, ..., n, and θ = λ+ ξ (2.34)

and λ > 0 is a solution of an equation of the form

λ+ ξ =

n∑
i=1

[⟨
xi,PC0

i

(
1

λ
xi

)⟩
Hi

− λ

∥∥∥∥PC0
i

(
1

λ
xi

)∥∥∥∥2
Hi

]
. (2.35)

Proof. As 0Hi
∈ intCi, i = 1, ..., n, it is clear that the gauges are well-defined, i.e. dom γCi

=
Hi, i = 1, ..., n, and so, dom γC = H1 × · · · × Hn. Further, let us recall that the polar set
C0 of the set C can be characterized by the dual gauge γC0 as

C0 = {x = (x1, ..., xn) ∈ H1 × · · · × Hn : γC0(x) = γC0(x1, ..., xn) ≤ 1}. (2.36)
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This relation holds also for the polar set C0
i and its associated dual gauge γC0

i
, i = 1, ..., n.

Moreover, in [21] it was shown that γC0(x) = max1≤i≤n{γC0
i
(xi)} and hence, the polar set

in (2.36) can be written as

C0 =

{
(x1, ..., xn) ∈ H1 × · · · × Hn : max

1≤i≤n
{γC0

i
(xi)} ≤ 1

}
=

{
(x1, ..., xn) ∈ H1 × · · · × Hn : γC0

i
(xi) ≤ 1, i = 1, ..., n

}
= {x1 ∈ H1 : γC0

1
(x1) ≤ 1} × · · · × {xn ∈ Hn : γC0

n
(xn) ≤ 1} = C0

1 × · · · × C0
n.

From here follows that

PC0(x) = PC0
1×···×C0

n
(x1, ..., xn) = PC0

1
(x1)× · · · × PC0

n
(xn),

which by using Theorem 2.11 directly implies (2.34) and (2.35).

Remark 2.14. Like in Lemma 2.10, one can give a formula for the projection onto the
epigraph of a gauge composed with a linear operator A : K → H with AA∗ = µId, µ > 0,

Pepi γC(A·)(x, ξ) = (x, ξ) +

(
1
√
µ
A∗ × Id

)(
Pepi

√
µγC(·)

(
1
√
µ
Ax, ξ

)
−
(

1
√
µ
Ax, ξ

))
.

Moreover, it can easily be observed that for p ∈ H holds (similar to the proof of Lemma 2.9)

Pepi γC(·−p)(x, ξ) = Pepi γC
(x− p, ξ) + (p, 0).

We close this section with a characterization of the subdifferential of a gauge function
by the projection operator.

Remark 2.15. Let C ⊆ H be closed and convex such that 0H ∈ C, then it holds by (1.3),
(1.9), [22, Lemma 1], [22, Remark 3] and [1, Theorem 14.3(ii)] for all x, y ∈ H that

x ∈ ∂γC(y) ⇔ x+ y − y ∈ ∂γC(y) ⇔ y = proxγC
(x+ y)

⇔ y = x+ y − proxγ∗
C
(x+ y) ⇔ y = x+ y − proxδC0

(x+ y)

⇔ x = PC0(x+ y).

From this follows that

∂γC(y) = {x ∈ H : x = PC0(x+ y)} .

In addition, if C is a closed convex cone, then it follows from [1, Theorem 6.29] that

∂γC(y) = {x ∈ H : x = x+ y − PC(x+ y)} = {x ∈ H : y = PC(x+ y)} .

3 Numerical Experiments

Our numerical tests are implemented in matlab on a PC with an Intel Core i5-8400 CPU
with 2.8GHz and 16 GB RAM. While the numerical tests in [14] were based on the partial
inverse algorithm introduced by Spingarn in [19], we use here the parallel splitting algorithm
from [1, Proposition 27.8].
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Theorem 3.1 (parallel splitting algorithm). Let n be an integer such that n ≥ 2 and
fi : Rs → R be a proper, lower semicontinuous and convex function for i = 1, ..., n. Suppose
that the problem

(PDR) min
x∈Rs

{
n∑

i=1

fi(x)

}

has at least one solution and that dom f1 ∩
∩n

i=2 int dom fi ̸= ∅. Let (µk)k∈N be a sequence
in [0, 2] such that

∑
k∈N µk(2− µk) = +∞, let ν > 0, and let (xi,0)

n
i=1 ∈ Rs × · · · × Rs. Set

(∀k ∈ N) rk = 1
n

n∑
i=1

xi,k,

yi,k = proxνfi xi,k, i = 1, ..., n,

qk = 1
n

n∑
i=1

yi,k,

xi,k+1 = xi,k + µk(2qk − rk − yi,k), i = 1, ..., n.

Then (rk)k∈N converges to a solution of problem (PDR).

In order to use the parallel splitting algorithm given in the previous theorem, we need
to rewrite the extended multifacility location problem (EPM,β

N ) in (1.5) into an optimization
problem with an objective function, which is a sum of proper, convex and lower semicontin-
uous functions.

The first way to reformulate this location problem is based on the introduction of an
additional variable as presented in (1.6):

(EPM,β
N ) min

(x1,...,xm,t)∈Rd×···×Rd×R

t+

n∑
i=1

δ
epi

(
m∑

j=1
wij∥·−pi∥βi

)(x1, ..., xm, t)

 . (3.1)

We define the functions

f1 : Rd × · · · × Rd × R → R, f1(x1, ..., xm, t) = t and

fi : Rd × · · · × Rd × R → R, fi(x1, ..., xm, t) = δ
epi

(
m∑

j=1
wij∥·−pi∥βi

)(x1, ..., xm, t),

i = 2, ..., n+ 1, then dom f1 = Rd × · · · × Rd × R and0Rd , ..., 0Rd , max
1≤i≤n


m∑
j=1

wij∥pi∥βi

+ 1

 ∈ int dom fi = int epi

 m∑
j=1

wij∥ · −pi∥βi


for all i = 2, ..., n + 1, i.e., it holds that dom f1 ∩

∩n+1
i=2 int dom fi ̸= ∅. Therefore, the

sequences generated by the algorithm from Theorem 3.1 converges to a solution of the
location problem (EPM,β

N ) and the following formulae for the proximal points associated to
the functions f1, ..., fn+1 can be formulated by using (1.9) and Lemma 2.9

(y1, ..., ym, θ) = proxνf1(x1, ..., xm, t)

⇔ (x1, ..., xm, t)− (y1, ..., ym, θ) ∈ ∂(νf1)(y1, ..., ym, θ) = (0Rd , ..., 0Rd , ν)

⇔ xi = yi, i = 1, ...,m, and θ = t− ν ⇔ (y1, ..., ym, θ) = (x1, ..., xn, t− ν)
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and

(y1, ..., ym, θ) = proxνfi(x1, ..., xm, t) = proxνδ
epi

 m∑
j=1

wij∥·−pi∥
βi

(x1, ..., xm, t)

= P
epi

(
m∑

j=1
wij∥·−pi∥βi

)(x1, ..., xm, t)

= P
epi

(
m∑

j=1
wij∥·∥βi

)(x1 − pi, ..., xm − pi, t) + (pi, ..., pi, 0). (3.2)

The second way to rewrite the extended multifacility location problem (EPM,β
N ) into an

optimization problem of the form of (PDR) makes use of the ideas of Cornejo and Michelot
given in [14] and splits the sums of weighted norms by n ·m additional variables (see also
(1.7)):

(EPM,β
N ) min

t, tij∈R, xj∈Rd,

j=1,...,m,i=1,...,n

t+

m∑
j=1

n∑
i=1

δepi(wij∥·−pi∥βi)(xj , tij) +

n∑
i=1

δepi τi(ti1, ..., tim, t)

 ,

(3.3)

where τi(ti1, ..., tim) :=
∑m

j=1 tij , i = 1, ..., n. Now, let

x̃ := (x1, ..., xm) ∈ Rd × · · · × Rd, t̃ := (tij)i=1,...,n,j=1,...,m,

f1 : Rd × · · · × Rd︸ ︷︷ ︸
m−times

×Rmn × R → R, f1(x̃, t̃, t) := t,

fij : Rd × · · · × Rd × Rmn × R → R, fij(x̃, t̃, t) := δepi(wij∥·−pi∥βi)(xj , tij),

j = 1, ...,m, i = 1, ..., n, and

f̃i : Rd × · · · × Rd × Rmn × R → R, f̃i(x̃, t̃, t) := δepi τi(ti1, ..., tim, t), i = 1, ..., n.

As

dom f1 = Rd × · · · × Rd × Rmn × R,
dom fij =

{
(x̃, t̃, t) ∈ Rd × · · · × Rd × Rmn × R : (xj , tij) ∈ epi(wij∥ · −pi∥βi)

}
,

i = 1, ..., n, j = 1, ...,m,

dom f̃i =
{
(x̃, t̃, t) ∈ Rd × · · · × Rd × Rmn × R : (ti1, ..., tim, t) ∈ epi τi

}
,

i = 1, ..., n

and(
0Rd , ..., 0Rd , max

1≤i≤n,
1≤j≤m

{wij∥pi∥βi}+ 1, ..., max
1≤i≤n,
1≤j≤m

{wij∥pi∥βi}+ 1,m max
1≤i≤n,
1≤j≤m

{wij∥pi∥βi}+m+ 1

)

∈ dom f1 ∩

 ∩
1≤i≤n,
1≤j≤m

int dom fij

 ∩

 ∩
1≤i≤n

int dom f̃i

 ,
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convergence in the sense of Theorem 3.1 can be guaranteed. Now, let ỹ := (y1, ..., ym) and

θ̃ := (θij)1≤i≤n, 1≤j≤m,

then one has by (1.9) for the corresponding proximal points of the functions f1, fij , j =

1, ...,m, i = 1, ..., n, and f̃i, i = 1, ..., n,

(ỹ, θ̃, θ) = proxνf1(x̃, t̃, t) = (0Rd , ..., 0Rd︸ ︷︷ ︸
m−times

, 0, ..., 0︸ ︷︷ ︸
mn−times

, t− ν)

and by (1.9) and Lemma 2.9

(ỹ, θ̃, θ) = proxνfij (x̃, t̃, t) ⇔ (x̃, t̃, t)− (ỹ, θ̃, θ) ∈ ∂(νfij)(ỹ, θ̃, θ)

⇔ (xj , tij)− (yj , θij) ∈ ∂(νδepi(wij∥·−pi∥βi ))(yj , θij) and

yl = xl, θsl = tsl, θ = t, s = 1, ..., n, l = 1, ...,m, sl ̸= ij,

⇔ (yj , θij) = proxνδ
epi(wij∥·−pi∥

βi )
(xj , tij) = Pepi(wij∥·−pi∥βi )(xj , tij)

= Pepi(wij∥·∥βi )(xj − pi, tij) + (pi, 0) and

yl = xl, θsl = tsl, θ = t, s = 1, ..., n, l = 1, ...,m, sl ̸= ij, (3.4)

j = 1, ...,m, i = 1, ..., n. Moreover, by (1.9) and [1, Example 28.17] follows

(ỹ, θ̃, θ) = proxνf̃i(x̃, t̃, t) ⇔ (x̃, t̃, t)− (ỹ, θ̃, θ) ∈ ∂(νf̃i)(ỹ, θ̃, θ)

⇔ (ti1, ..., tim, t)− (θi1, ..., θim, θ) ∈ ∂ (νδepi τi) (θi1, ..., θim, θ) and

(tl1, ..., tlm, t) = (θl1, ..., θlm, θ), l = 1, ..., n, l ̸= i, (x1, ..., xm) = (y1, ..., ym)

⇔ (θi1, ..., θim, θ) = proxνδepi τi
(ti1, ..., tim, t) = Pepi τi(ti1, ..., tim, t)

=


(θi1, ..., θim, θ)T , if

m∑
j=1

tij − t ≤ 0,

(θi1, ..., θim, θ)T −

m∑
j=1

tij−t

m+1 (1, ..., 1,−1)T , if
m∑
j=1

tij − t > 0,

and (tl1, ..., tlm, t) = (θl1, ..., θlm, θ), l = 1, ..., n, l ̸= i, (x1, ..., xm) = (y1, ..., ym),

i = 1, ..., n.

The tables below illustrate the performance of our method using the formulae from
Corollary 2.3 and 2.5 for the projection onto the epigraph of the sum of powers of weighted
norms (EpiSumNorms) compared with the concept proposed by Cornejo and Michelot in [14],
where only the projection onto the epigraph of a weighted norm (EpiNorm) is needed (see

Corollary 2.8). We solved the problem (EPM,β
N ) in R2 and R3 for different choices of given

and new facilities. The performance results are visualized by the associated figures, where
we use the following notations:

NumGivFac: Number of given facilities
NumNewFac: Number of new facilities

NumIt: Number of iterations of the algorithm
MaxNumIt: Maximal number of iterations
CPUtime: CPU time in seconds.
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We used the following parameters for initialization: µn = 1 for all n ∈ N. Moreover, let us
point out that we tested the algorithm of Theorem 3.1 for different values of the parameter
ν, where some results are printed in the tables below and selected ones are visualized in
the corresponding figures (in the tables the best results of the methods EpiSumNorms and
EpiNorm concerning the CPU time and number of iterations are marked in bold, respec-
tively). Notice also that in the context of the problem (3.1) the iterate rk of Theorem 3.1 is
of the form rk = (x1, ..., xm, t) and in the framework of (3.3) of the form rk = (x1, ..., xm, t̃, t)
with t̃ = (tij)i=1,...,n, j=1,...,m, where x1, ..., xm converge to the optimal locations and t to
the optimal objective value.
To be more precise, for our numerical experiments we proceed as follows. The points
p1, ..., pn were generated by the matlab command randn and the corresponding weights
a1, ..., an by rand. Further, we used in all numerical tests as starting point the origin (i.e.
x1 = . . . . = xm = 0Rd) and ran the algorithm of the method EpiSumNorms for all examples
five hundred thousand iterations. Then, we saved the determined solutions as the optimal
solutions x = (x1, ..., xm) to the associated optimization problems and set the maximal num-
ber of iterations to one hundred thousand (i.e. MaxNumIt=100000). Finally, we ran for all
examples the algorithm of the method EpiSumNorms a second time as well as the algorithm
of the method EpiNorm and noticed the number of iterations as well as the time needed
to generate a solution which is within the maximum bound from the optimal location(s)
x = (x1, ..., xm) of 0.001, i.e. ∥x− x∥ ≤ 0.001, respectively.

First, we consider the situation where βi = 1 for all i = 1, ..., n.

Table 1: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

MaxNumIt EpiSumNorms EpiNorm
= 100000 NumIt CPUtime NumIt CPUtime
ν = 0.1 50879 83.8313 >100000 -
ν = 1 5076 7.7140 >100000 -
ν = 5 989 1.4959 21182 184.7405
ν = 30 185 0.3054 2180 16.3661
ν = 100 688 1.1056 2216 16.0718
ν = 500 3507 5.7172 15121 122.9190
ν = 1000 7012 11.4579 30390 281.2456
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Figure 1: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R2 for ν = 30
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Table 2: Performance evaluation for NumGiFac 30 and NumNewFac 10 in R2

MaxNumIt EpiSumNorms EpiNorm
= 100000 NumIt CPUtime NumIt CPUtime
ν = 0.1 43058 106.5284 >100000 -
ν = 1 4306 9.7233 >100000 -
ν = 10 411 0.9267 26596 639.1180
ν = 18 269 0.6146 14416 303.8991
ν = 50 538 1.2406 3478 62.2674
ν = 100 1122 2.6104 4762 88.3561
ν = 1000 11324 26.8627 56615 1633.1276
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Figure 2: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R2 for ν = 18

Table 3: Performance evaluation for NumGiFac 60 and NumNewFac 20 in R3

MaxNumIt EpiSumNorms EpiNorm
= 100000 NumIt CPUtime NumIt CPUtime
ν = 1 15415 89.1836 >100000 -
ν = 10 1541 8.5561 >100000 -
ν = 98 592 3.3485 28920 5332.9115
ν = 205 1129 6.3206 15697 2784.3976
ν = 500 2687 15.7556 16369 2831.1355
ν = 1000 5346 29.7313 31429 5859.4418
ν = 5000 26715 163.1581 >100000 -

In Table 1 it is shown that the parallel splitting algorithm converges very slow when
employed in connection with the method proposed in [14], while our method performs much
better. The corresponding figure shows that our method EpiSumNorms generates after
185 iterations a solution which is within the maximum bound from the optimal solution,
while the method EpiNorm needs 2180 iterations. Take also note that in this example the
location problem has in the form of EpiNorm 125 additional variables, while the examples in
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iterations (log scale)
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Figure 3: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R3 for ν = 98

the Table 2 and 3 have 300 and 1200 additional variables, respectively. For this reason our
method by far outperforms the concept EpiNorm on such optimization problems regarding
the accuracy as well as the CPU speed and number of iterations.

Finally, we consider the situation where wi = 1 and βi = 2 for all i = 1, ..., n.

Table 4: Performance evaluation for NumGiFac 25 and NumNewFac 5 in R2

MaxNumIt EpiSumNorms EpiNorm
= 100000 NumIt CPUtime NumIt CPUtime
ν = 0.1 4967 4.6351 >100000 -
ν = 1 663 0.6409 53618 583.0896
ν = 5 306 0.3172 9504 70.9192
ν = 39 2645 2.8821 2851 21.4682
ν = 100 6776 7.4103 7120 53.9206
ν = 500 33904 39.3127 35740 340.2518
ν = 1000 67806 84.4253 71456 881.7213
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Figure 4: Comparison of the methods EpiSumNorms (blue solid line) and EpiNorm (red
dashed line) in R2 for ν = 5
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Table 5: Performance evaluation for NumGiFac 60 and NumNewFac 10 in R3

MaxNumIt EpiSumNorms EpiNorm
= 100000 NumIt CPUtime NumIt CPUtime
ν = 0.1 3391 8.2135 >100000 -
ν = 1 1042 2.5581 >100000 -
ν = 10 8270 20.7564 29000 1713.3125
ν = 50 2714 6.8445 32168 2042.8242
ν = 110 1691 4.3914 15167 821.7959
ν = 445 6669 17.5405 5224 273.9350
ν = 1000 15381 41.1793 14533 788.8773
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Figure 5: Comparison of the methods EpiSumNorm (blue solid line) and EpiNorm (red
dashed line) in R3 for ν = 110

The examples in the last two tables draw a similar picture as the examples in the previous
ones. While the method EpiSumNorms generates a solution within the maximum bound
from the optimal solution after few seconds, the method EpiNorm needs several minutes.
This also points up the usefulness of our approach made in Section 2.
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