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BRUALDI-TYPE BOUNDS ON NINMUM EIGENVALUES FOR
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Abstract: This paper is devoted to bound estimations on the minimum eigenvalues of M-tensors. To
this end, we explore Brualdi-type inclusion sets in the sense of M-tensors, and establish some Brualdi-type
bounds on the minimum eigenvalues for the Fan product of M-tensors. Numerical examples show the
validity of the conclusions.
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Introduction

Generally, tensor is a higher-order extension of matrix, and hence many concepts and related
properties for matrices such as determinant, eigenvalue and singular value theory can be
extended to higher order tensors by exploring their multilinear algebra properties [14, 18,
19]. Matrices with special structures such as nonnegative matrices and M-matrices can
also be extended to higher order tensors and these are becoming the focus of tensor in
recent research [3-7] and [17-29]. In particular, M-tensors play important roles in the
stability study of nonlinear autonomous systems via Lyapunov’s direct method in automatic
control [10,11,17], spectral hypergraph theory [35] and the sparsest solutions to tensor
complementarity problems [16]. Meanwhile, many practical problems, such as the weak
minimum principle in partial differential equations, characteristic functions in probability
theory and the study of association schemes in combinatorial theory [12], are closely related
to Fan product of M-matrices and Hadamard product of nonnegative matrices. So, Horn et
al. [12] proposed lower bounds on the minimum eigenvalue for Fan product of M-matrices
and upper bounds on the spectral radius for the Hadamard product of nonnegative matrices.
Later, the improved bounds on the Hadamard product involving nonnegative matrices and
Fan product of M-matrices were established in [8,13,15,33]. Recently, Fan product of M-
matrices and Hadamard product of nonnegative matrices were extended to higher order M-
tensors and nonnegative tensors [21,24,25]. Based on Gersgorin-type eigenvalue inclusion
set and Perron-Frobenius theorem, Sun et al. [21] investigated some inequalities for the
Hadamard product of tensors and obtained some bounds on spectral radius of the Hadamard
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product of tensors, and used them to estimate the spectral radius of a directly weighted
hypergraph. Wang et al. [24] established lower bounds on the minimum eigenvalues for the
Fan product of two M-tensors. It should be noted that Brualdi-type inclusion set (Brauer-
type inclusion set) is sharper than Gersgorin-type inclusion set [1,2]. By virtue of the close
relationship between the nonnegative tensors and M-tensors [32,35], we want to establish
sharp Brualdi-type lower bounds for minimum eigenvalues for the Fan product of M-tensors
by diagonal similarity transformation methods.

This paper is organized as follows. In Section 2, we introduce important notation and
recall fundamental results on tensor analysis. In Section 3, we first explore Brualdi-type
inclusion sets in the sense of M-tensors and show that the Fan product of two M-tensors
is an M-tensor. In view of the characterizations of M-tensors, we establish Brualdi-type
inequalities on the minimum eigenvalues for the Fan product when the directed graph of
Fan product is weakly connected. Furthermore, Brauer-type inequalities are proposed on
the minimum eigenvalues for the Fan product when the directed graph of Fan product may
be not weakly connected. Numerical experiments are provided to exhibit the efficiency of
the obtained results.

Notation and Preliminaries

We begin with some fundamental notions and properties related to eigenvalue of tensors
[14,18], which are needed in the subsequent analysis.

Definition 2.1. Let A be an m-order n-dimensional tensor. Assume that Az™~! is not
identical to 0.
(i) We say that (A, z) € C x (C™"\{0}) is an eigenvalue-eigenvector of A if

Azt = \glm1

where (Az™~1); = SN Giig.i Ty T, 2™ = [T T and
iyeenrim=1
(A, z) is called an H-eigenpair if they are both real.
(ii) We call o(.A) as the set of all eigenvalues of A. Assume o(A) # (). Then the spectral

radius and the minimum eigenvalue of A are denoted by
p(A) = max{|A| : A € o(A)}, 7(A) = min{A e R: X € o(A)}.

Based on the connectivity of a graph associated with a polynomial map, Friedland et
al. [9] defined weakly irreducible polynomial maps as follows.

Given a tensor A = (a;,. 4, ), we associate A with a digraph I" 4 as follows. The vertex
set of T4 is V(A) = {1,...,n} and the arc set of T' 4 is E(A) = {(i,7) : ai,..5, # 0,5 €
{i2,. - yim} # {i,...,i}}. A directed graph T4 is called weakly connected if for each vertex
v; € V, there exists a circuit such that v; belongs to the circuit. A directed graph I' 4 is
called strongly connected if for each ordered pair of distinct vertices v; and v;, there is a
path from v; to v;. Further, the tensor A is called weakly irreducible if the directed graph
T" 4 is strongly connected.

The Perron-Frobenius theorem for weakly irreducible nonnegative tensors was established
in [9].

Lemma 2.2. Let A be a weakly irreducible nonnegative tensor of order m and dimension
n. Then, A has a positive eigenpair (A, x), and x is unique up to a multiplicative constant.



BRUALDI-TYPE BOUNDS FOR FAN PRODUCT OF M-TENSORS 331

The following specially structured tensors are extended from matrices [32].

Definition 2.3. A is called a Z-tensor if it can be written as A = ¢Z — B, where ¢ > 0, Z
is a unit tensor with entries

5 1, i =iy = =i,
tt2tm 0 (0 otherwise.

and B is a nonnegative tensor. Furthermore, if ¢ > p(B), then A is said to be an M-tensor,
and if ¢ > p(B), then tensor A is said to be a strong M-tensor. A is a weakly irreducible
M-tensor if B is weakly irreducible.

It is easy to see that all off-diagonal entries of a Z-tensor are nonpositive [32,33], and
(strong) M-tensor is closely linked with the diagonal dominance defined below.

Definition 2.4. For an m-order n-dimensional tensor A, it is called diagonally dominant if

|all| > Z |CL“‘2.Him|, Vi e N.

Oiig...igm =0

A is called strictly diagonally dominant if the strict inequality holds.
Let A be an m-order n-dimensional tensor and D = diag(dy,...,d,) be a positive diag-

onal matrix. Set
m—1

——
Ap=A-D"m YD D
= ai,. i d; " Vdy, . d

with (Ap)i; .., i is - - - di, . Then we have the following conclusion.

Lemma 2.5 ([35]). Suppose A is a Z-tensor and its all diagonal elements are nonnegative
(positive). Then, A is an (strong) M-tensor if and only if there exists a positive diagonal

m—1

——
matriz D such that B=A-D~("=V'D .. D is (strictly) diagonally dominant.

Lemma 2.6 ([30]). Let A, B be order m dimension n tensors. If there is a diagonal non-
m—1

—
singular matriz D such that B=A-D~("=1)'D .. D, then they have the same eigenvalues.

For weakly connected tensors and general tensors, Bu et al. [1,2] gave Brualdi-type
eigenvalue inclusion sets and Brauer-type eigenvalue inclusion sets.

Lemma 2.7 (Theorem 3.1 of [1], Theorem 3.3 of [2]). Let A = (ai;,..4,,) be an m-order
n-dimensional tensor such that the directed graph T 4 is weakly connected. Then,

oA c | zeC:J]lr—aial <][ri(A}

yeC(A) i€y 1€y

If ri(A) # 0 and the directed graph T 4 is not weakly connected, then

a(A) C U {zEC:H|z—aij,,,ij| < HW,-(-/‘U},

Wiy i 7O
(ig,-yim)# (i1, i1)

where ri(A) = Y. |Giiy...in,| and C(A) is the set of circuits for T 4.
5 =0

iig...im
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To end this section, we give the definition for the Fan product of tensors.

Definition 2.8. Let A and B be two M-tensors. Fan product of A and B is defined by
AxB =D = (di,i,..i,,), where

4. { a;.. ibi. 4y ifip=do=... =iy =1,
11%2--.tm .. . .o . 1
—Qiqig...ip Divig. i, Otherwise.

Bounds on the Minimum Eigenvalue for the Fan Product of M-
Tensors

In this section, we shall give some inequalities on the minimum eigenvalue for the Fan
product of M-tensors. We begin our work by collecting some properties of M-tensors,
which is crucial for further considerations.

Lemma 3.1. Let P = (Diyinis...in,) be an M-tensor of order m dimension n.

(i) If the directed graph I'p is weakly connected, then there exists a circuit v € C(P) such
that

[[@ii —7P) <T]7:(P); (3.1)

i€y i€y

(ii) If r;(P) # 0 and I'p is not weakly connected, then there exists pijiy..i,, 7 0 with
(i2y .y im) # (i1,...,11) such that

H(pi_,»...ij -7(P)) < H 74, (P)

j=1

where 7i(P) = Y0 —Diig.in, d T, (P) = 3 —Diyig..ip-
)

in...im = Oiqig..igy=

Proof. Let 7(P) be the minimum eigenvalue of P. Then, it follows from Lemma 2.7 that

[11pi..c —7P) < I r:(P). (3.2)

i€y i€y

where 7;(P) = Y. |Piis..i,, |- Since P is an M-tensor, it follows from Lemma 4.1 in [21]
5 =0

iig...im

that
T(P) < Hél]{rlpll and 7;(P) = ri(P).
So, (3.2) is equivalent to

H(pi...i —7(P)) < Hﬁ‘(P)-

i€y i€y
(ii) A similar argument to the proof of Part (i) leads the desired result. m|

Lemma 3.2. Let P and Q be two M-tensors of order m dimension n. Then, P * Q is an
M-tensor. Furthermore, if P and Q are strong M-tensors, then PxQ is a strong M-tensor.
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Proof. By the definition of P x Q, it holds that

PrQ =] Piilivis if 4o :.2'3... =iy =1,
—Diiy..iyy Qiiy...i,» ~ Otherwise.

Since P and Q are M-tensors, by Lemma 2.5, there exist positive diagonal matrices C, D
such that

m—1 m—1
—(m~—1) —(m-1)
A=P -C c...C, B=9Q-D D...D
with
—(m—1
pi...il = las...i| > Z ... | = Z pir.inle; " Ve, e,
Oiig...ig =0 Oiig...im =0
—(m—1
|gi...i] = |bi...i| > Z bs...i, | = Z 45...i,, |d; (m )dig cody,
Oiig...im =0 Oiig...igy =0
Certainly,
|pzzqzz‘ = |azzbzz|
— —1 — —1
> Y (pigeimle " Ve e) N (g ldy ™ iy L dy,)
Oiig...igm =0 dig .. im =0
> % piiimles ™ ey ity i dy TV diy - diy, (3:3)
Siig..ipg =0
= 5 > |Diis...im Qiia...im |(Cidi)7(M71)Ci2d¢2 .o Cipdi,
i im =
From (3.3), there exists a positive diagonal matrix U = diag(c1dy, cads, . . ., ¢,dy,) such that

|Di...i¢..i| > S Diig.im Qiin..im (Ui)f(mfl)uiz cee Uy,

Siig...im =0

It follows from Lemma 2.5 that P x Q is an M-tensor. Similar to the argument for the first
conclusion, we can obtain the second conclusion. O

In terms of 7(P) and 7(Q), Wang et al. [24] established lower bounds on the minimum
eigenvalue for the Fan product of two M-tensors. However, the minimum eigenvalues of
M-tensors are not easy to calculate [32]. Compared with the minimum eigenvalues of M-
tensors, the spectral radius of the nonnegative tensor can be calculated by many algorithms
[3,9,20,31,34]. Therefore, we introduce a nonnegative tensor associated with the M-tensor
and use its spectral radius to estimate the lower bounds on the minimum eigenvalues for the
Fan product.

Let P = (piyin..i,,) be a strong M-tensor of order m dimension n. Then p;; ; > 0 since
P is a strong M-tensor. Define the related nonnegative tensors of P as

J’P = Dil(,D - P)a
where D is a diagonal tensor whose diagonal entries are the same as that of tensor P and

0, i =iy = = i,
(Jp)iiz...im = _pz?‘u-i:m , otherwise.
e

Obviously, Jp is a nonnegative tensor.
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Bounds for the weakly connected digraph I'(p,)
Based on the characterizations of M-tensors, we can obtain the following Brualdi-type
inequalities.

Theorem 3.3. Let P and Q be two strong M-tensors of order m and dimension n. If Fan
product P x Q is a tensor such that the directed graph I'(p.g) is weakly connected, there
exists a circuit v € C(P x Q) such that

T(PxQ) < %%}pi...i%mia (3.4)
H(pi...i%‘...i —7(PxQ)) < H(pi...iQi...ip(JP)p(JQ))- (3.5)

Proof. From Lemma 4.1 of [21], (3.4) holds. For (3.5), we break the proof into two cases.
Case 1. P and Q are both weakly irreducible. Then, Jp and Jg are weakly irreducible
nonnegative tensors. From Lemma 2.2, there exist two positive vectors u, v such that

p(Jp)ul™ ™ = Jpum L (U)ol Y = Jgum T,

4 i

equivalently,
> |Diin...i | Wiy -+ - Uiy, > | Qi Vi - - - Vi,
e = plp), T ~olJa).  (36)
Di..iu; qi...i0;
Set D = diag(uv1, - .., u,vy). It is obvious that D is a positive diagonal matrix. It follows

from lemma 2.3 that o(P x Q) = o(D'~™(P x Q)D). By Lemma 3.1, (3.6), there exists a
circuit v € C(P % Q) such that

—Diig..ipy Qido...ipy Win + -+ Wi, Vig «+ - Vg,
H(pzquz_T(P*Q)) < H Z 1190 Qita...0 lQ[m_l]’L i 4 '

[m—1]
icy 1€ biig . iy, =0 Ui vi
|p7;i2_“i”l |'U/7;2 .. uirn |q17,21m |Ui2 st Uinz
<[IC X =l )
1€Y Jiig...igy =0 U Siig.. iy =0 Yi
= H(Pii..iQi...iP(JP)P(JQ))-
1€y

Thus, (3.5) is established.
Case 2. Either P or Q is weakly reducible. Let & be order m dimension n tensor with

. 1, ifig =i3 ="+ =iy #1,
Siig.iym —

0, otherwise.

Then both P — €5,Q — €S, Jp + 5 S and Jg + 7 €S are weakly irreducible tensors for

any € > 0. Now, we claim that P —'eS and Q — €S are both strong M-tensors when ¢ > 0
is sufficiently small.

Since P and Q are strong M-tensors, by Lemma 2.5, there exist positive diagonal ma-
trices C, D such that

m—1 m—1

— ——
A=p.c-mVC...C, B=9 - D™ YD...D
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with
|pi...i| = lai. | > > la;. 4, | = > \pnz...im\ci_(m_l)ciz e Cipys
iig...igm =0 iig...im =0
—(m—1
lgi il = bl > >0 b= D Giis..inld; (m )dig cody, .
iig...im =0 iig..im =0
Set m—1] [m=1]
‘777,— d‘m—
L= max{ = G
i#] ‘ ‘
and
|Pi~-~i‘*5__ E _ ‘Pii2-~-im|C;(m71)0i2~~cim |q1:.4i\*5__ Z _ Iqii2"'im‘d;(mril)d’i2“~dim
€= mm R CESVI2 : B =)

i#]

For any 0 < € < ep, it holds that P — eS,Q — €S and (P — €S) x (Q — €S) are strong
M-tensors by Lemma 3.2. Noting that P and Q are two strong M-tensors, for the circuit
v e C(PxQ), wegety e C((P—¢€S)*(Q—¢€S)). Substituting P — €S and Q — €S for P
and Q and letting ¢ — 0 on (3.7), we can obtain the desired results by the continuity of
p(Jp + —==8) and p(Jg + —=8). O

Pi...i qi...i

By the information of the absolute maximum in the off-diagonal elements, we are at the
position to establish the following conclusions.

Theorem 3.4. Let P and Q be two strong M-tensors of order m and dimension n. If Fan
product P x Q is a tensor such that the directed graph I (p.g) is weakly connected, there
exists a circuit v € C(P x Q) such that

T(P*Q) < ?/ellj{]lpzz(hza

[®i..iti.i — (P Q) < [[(iBipi...igi...ip(Jp)p(Ja))?, (3.7)
i€y 1€y
where a; =  max  —Dji,. i, and B = Mmax  —iiy.. i, -
Qig..im = Gig. . im =

Proof. We break the proof into two cases.

Case 1. P and Q are both weakly irreducible. Then, Jp and Jg are weakly irreducible
nonnegative tensors. It follow from Lemma 2.2 that there exist two positive eigenvectors
u = (u?),v = (v?) such that

i

p(Tp)ui™ Y = Tpun ), (o)™ = JguAtm ),

equivalently,
S > . Piia.ci |05, - 07, s > . (i [VF, - - V7,
s 2[m—1] = p(JP)a S 2[m—1] = p(‘]Q)' (38)
Pi...iU; qi...iV;
Without loss of generality, we assume that u,v € R} , . Set D = diag(ujv1, ..., unv,). Then,

(P % Q) = o(D*™(P x Q)D). By Lemma 3.1, (3.9) and the definitions of «;, 3;, there
exists a circuit v € C'(P * Q) such that
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Hie,y(pi...i%'...i o T(P * Q)) S Hie'\/ Z 7pii2.A.iinig[;L.i%:ii’%ll-ﬁimUig‘-~’Uim
=0 i

i im i
2 2 2

2 2 2
S Hie,y( Z pmg..:;?:?lvluulm )% ( Z qzzz..;$?7:12l~]uvlm )
k2 k2

iig.im =0 i Oiig...igy =0
1
< ey (@iBipiigiip(Jp)p(Je))?,

where the second inequality uses the Cauchy-Schwartz inequality. So, (3.8) holds.
Case 2. Either P or Q is weakly reducible. Similar to the proof of Theorem 3.3, we
obtain the desired result. |

Theorem 3.5. Let P and Q be two strong M-tensors of order m and dimension n. If Fan
product P x Q is a tensor such that the directed graph U'(p.q)y is weakly connected, there
exists a circuit v € C(P x Q) such that

T(P*Q) < ?él]{[lpzv%u

H(pi.,.iQi...i —-7(PxQ)) < Hﬁipi...iP(JP)- (3.9)
i€y (ASe]
Proof. The proof is broken into two cases.

Case 1. P is weakly irreducible. Then, Jp is a weakly irreducible nonnegative ten-
sor. By Lemma 2.2, there exists a positive eigenvector w such that (3.6) holds. Set
D = diag(uy,...,u,). Thus, o(P x Q) = o(D'"™(P % Q)D). By Lemma 3.1, (3.6) and
the definitions of f;, there exists a circuit v € C'(P x Q) such that

) (RIS | (i Pl S RIS

[m—1]
e 1€ Giiy.. iy =0 U,
|Diiy i Wiy - - Wi,
<[5 2. [m—1] (3.10)
€Y Giig...ip, =0 Uy;
= Hﬂipi...iP(JP),
i€y

which implies (3.10).

Case 2. P is weakly reducible. Then P — €S is a strong weakly irreducible M-tensor
and Jp + pf iS is a weakly irreducible nonnegative tensor when e > 0 is sufficiently small.
Noting that P is a strong M-tensor, for the circuit v € C(P*Q), we get v € C((P—eS)* Q).
Substituting P — €S for P and letting ¢ — 0 on (3.11), we can obtain the desired results by
the continuity of p(Jp + ;=5). O

Since Fan product is commutative, the inequality (3.10) remains correct if P and Q are
switched. Moreover, the following result can be immediately obtained.

Theorem 3.6. Let P and Q be two strong M-tensors of order m and dimension n. If Fan
product P x Q is a tensor such that the directed graph U'(p.q)y is weakly connected, there
exists a circuit v € C(P x Q) such that

T(P*Q) < ?él]{[lpzv%u

H(pi.,.iQi...i —7(PxQ)) < HaiQi...ip(JQ)- (3.11)

i€y 1€y
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Remark 3.7. There exists two differences between the paper [24] and this paper. The first
difference is that the paper [24] established lower bounds on the minimum eigenvalues for
the Fan product by virtue of Gersgorin-type eigenvalue inclusion set and Perron-Frobenius
theorem, whereas this paper proposed lower bounds on the minimum eigenvalues based on
Brualdi-type eigenvalue inclusion set and diagonal similarity transformation method. The
second difference lies in the fact that the paper [24] gave lower bounds in terms of 7(P) and
7(Q), whereas this paper provided lower bounds in the light of p(Jp) and p(Jg), which are
relatively easy to calculate.

The following example exhibits efficiency of Theorems 3.3-3.6.

Example 3.8. Let P = (pijx), @ = (¢ijx) be two tensors of order 3 dimension 3 with
elements defined as follows:

P =[P(1,:,:),P(2,::),P(3,::)], 2 =[Q(1,:,:),RQ(2,:,:),Q(3,:,:)],

3.0 -1 0 -1 0 -3 0 -
P(1,::) = 0 -1 0 |,P2:5)=| -1 3 0 |,P(3,::)= o o0 -1,
-3 0 -3 0 0 -3 -3 % s

3 -1 0 -1 0 0 o o0 -1
Q(17:7:): -1 0 0 7Q(2a:7:): 0 4 _% aQ(37:7:): 0 _% _% .
1 1
0 0 3 0 -3 -3 -5 -2

It is easy to see that P and Q are both strong M-tensors. By computations, we get
7(P) = 1.0560,7(Q) = 0.7153, p(Jp) = 0.6842, p(Jo) = 0.7328. Obviously, the directed
graph ['(p, o) is weakly connected and has three circuits: 3 — 3,3 -2 — 3,3 -1 — 3. By
Theorem 3.6 of [24], we obtain

7(P* Q) > min {4.5585,5.6146,4.9931} = 4.5585.

By Theorem 3.8 of [24], we get

T(PxQ) > 113213{6.8872, 9.4666, 8.8731} = 6.8872.

By Theorem 3.11 of [24], we deduce

7(Px Q) > max{ min {6.7153,8.7153,9.3577}, min {7.0560, 10.0560, 8.028}} = 7.0560.
1<i<3 1<i<3

Comparing Theorem 3.6 of [24], by Theorem 3.3, for the circuit 3 — 3, we obtain
T(P* Q) > 4.9862;

for the circuit 3 — 2 — 3, it holds that
T(P* Q) > 5.4173;

for the circuit 3 —+ 1 — 3, we deduce

7(P+ Q) > 4.7173.
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Because we don’t know the information of the circuit v, and our aim is to estimate lower
bound of the smallest eigenvalue, we choose the smallest estimation. Thus,

T(PxQ)> min {4.9862,5.4173,4.7173} = 4.7173.
YEC(P*Q)

Comparing Theorem 3.8 of [24], by Theorem 3.4, we get

T(P*Q)> min {8.8804,9.0645,7.8788} = 7.8788.
YEC(P*Q)

Comparing Theorem 3.11 of [24], by Theorems 3.5 and 3.6, we deduce

7(P % Q) > max{min,co(py0){8.2895, 8.8761, 7.5607},
min,eo(py0){9.2672,9.2257,8.1358} } = 8.1358.

Numerical results show that the lower bounds in Theorems 3.3-3.6 are tighter than those of
Theorems 3.10, 3.12 and 3.11 in [24].

Bounds for the general directed graph I'(p,q)

When the directed graph I'(p.o) may not be weakly connected, Brualdi-type inclusion sets
can not be satisfied. To overcome the difficulties, based on Brauer-type eigenvalue inclusion
sets [2], we establish Brauer-type inequalities for the Fan product of two M-tensors.

Theorem 3.9. Let P and Q be two strong M-tensors of order m and dimension n. If
ri(P*xP) # 0, there exists a entry pi,...,, Giy.i,, = 0 with (iz,...,im) # (i1,...,91) such
that

T(PxQ) < l;nlj%}lpzzchw

H(pz‘j...z‘jqz‘j... i, —T(P*xQ)) H Pij...i;qi;...i; P(JP)p(J)]- (3.12)
=1 i

Proof. If P and Q are both weakly irreducible, similar to the proof of Theorem 3.3, by
Lemma 3.1, we obtain (3.13).

If either P or Q is weakly reducible, Then both P—eS, Q—
are weakly irreducible tensors for any € > 0. Similar to the proof of Theorem 3. 3 we
claim that P — €S and Q — €S are both strong M-tensors when e > 0 is sufficiently small.
Observing that P and Q are strong M-tensors, for —p;,...i,, i, .i,, 7 0 in P * Q, we get
—(Piyi, — €)(Qiyori, —€) Z01n (P — €S) % (Q — €8S). Substituting P — €S and Q — €S for P
and Q and letting ¢ — 0, we can obtain the desired results by the continuity of p( )
and p(Jg + 8). So, (3.13) holds. o

Based on Lemma 3.1 and Theorems 3.4-3.6, we propose Brauer-type inequalities for the
Fan product of two M-tensors.

€

Theorem 3.10. Let P and Q be two strong M-tensors of order m and dimension n. If
ri(P*xP) # 0, there exists a entry pi,...;, Giy--i,, # 0 with (iz,...,0m) # (i1,...,41) such
that

T(P*Q) < Elélj{flpzv%u

m

- 1
(Pi;...i;i;...i; — T(Px Q)) H i, Bi;pij..i; Q;..i; p(Jp)p(JQ)) 2.
Jj=1

Jj=1
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Theorem 3.11. Let P and Q be two strong M-tensors of order m and dimension n. If
ri(PxP) # 0, there exists a entry pi, ..., qiy-i,, 7= 0 with (iz,...,0m) # (i1,...,91) such
that

T(P*Q) < ?eli]{}pi.“i%..m

m

(Pij..i;Qi;..i; —T(PxQ)) < H Bi;pi;...i; P(Jp).
J

1

::13

Il
_

J

Theorem 3.12. Let P and Q be two strong M-tensors of order m and dimension n. If
ri(PxP) # 0, there exists a entry pi,...,, qiy-i,, 7= 0 with (iz,...,0m) # (i1,...,91) such
that

T(PxQ) < ?eli]{]lpi.“i%...iv

m

m
H(pij...ijqz'j..AJ T(PxQ)) H @i, qi;..i;p(JQ)-
=1

Conclusion

In this paper, we generalized important inequalities on the minimum eigenvalue for the Fan
product from matrices to tensors. Based on characterizations of M-tensors, we established
Brualdi-type (Brauer-type) bounds on the minimum eigenvalues for the Fan product of two
M-tensors. Numerical experiments are provided to exhibit the efficiency of the obtained
results.

References

[1] C. Bu, Y. Wei, L. Sun and J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors,
Linear Algebra Appl. 480 (2015) 168-175.

[2] C.Bu, X. Jin, H. Li and C. Deng, Brauer-type eigenvalue inclusion sets and the spectral
radius of tensors, Linear Algebra Appl. 512 (2017) 234-248.

[3] H. Chen and Y. Wang, On computing the minimal H-eigenvalue of sign-structured
tensors, Front. Math. China 12 (2017) 1289-1202.

[4] H. Chen, Y. Chen, G. Li and L. Qi, A semidefinite program approach for computing the
maximum eigenvalue of a class of structured tensors and its applications in hypergraphs
and copositivity test, Numer. Linear Algebra Appl. 25 (2018) €2125.

[5] H. Chen, L. Qi, Y. Song, Column sufficient tensors and tensor complementarity prob-
lems, Front. Math. China 13 (2018) 255-276

[6] W. Ding, L. Qi and Y. Wei, M-tensors and nonsingular M-tensors, Linear Algebra
Appl. 439 (2013) 3264-3278.

[7] W. Ding and Y. Wei, Solving multi-linear systems with M-tensors, J. Sci. Comput. 68
(2016) 689-715.

[8] F. Fang, Bounds on eigenvalues of Hadamard product and the Fan product of matrices,
Linear Algebra Appl. 425 (2007) 7-15.



340

[9]

[10]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

G. WANG, Y. WANG AND Y. ZHANG

S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative mul-
tilinear forms and extensions,Linear Algebra Appl. 438 (2013) 738-749.

L. Gao, D. Wang and G. Wang, Further results on exponential stability for impul-
sive switched nonlinear time-delay systems with delayed impulse effects, Appl. Math.
Comput. (2015) 186-200.

L. Gao, D. Wang, Input-to-state stability and integral inputto-state stability for impul-
sive switched systems with time-delay under asynchronous switching, Nonlinear Anal-
Hybri (2016) 55-71.

R. Horn and C. Johnson, Topics in Matriz Analysis, Cambridge University Press, 1985.

Y. Li, F. Chen and D. Wang, New lower bounds on eigenvalue of the Hadamard product
of an M-matrix and its inverse, Linear Algebra Appl. 430 (2009) 1423-1431.

L. Lim, Singular values and eigenvalues of tensors: a variational approach. in: Proceed-
ings of the IEEE Internationaln Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, 2005, pp. 129-132.

Q. Liu, G. Chen and L. Zhao, Some new bounds on the spectral radius of matrices,
Linear Algebra Appl. 432 (2010) 936-948.

Z. Luo, L. Qi, and N. Xiu, The sparsest solutions to Z-tensor complementarity prob-
lems, Optim. Lett. 11 (2017) 471-482.

Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing the positive definiteness
of a multivariate form, IEEE Trans. Automat. Control 53 (2008) 1096-1107.

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40 (2005) 1302
1324.

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, STAM, 2017.

L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimiza-
tion problem, Math. Progaram. 118 (2009) 301-316.

L. Sun, B. Zheng, J. Zhou and H. Yang, Some inequalities for the Hadamard product
of tensors, Linear Multilinear Algebra 66 (2018) 1199-1214.

G. Wang, G. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Dis-
crete Contin. Dyn. Syst. Ser. B. 22 (2017) 187-198.

G. Wang, G. Zhou and L. Caccetta, Sharp Brauer-type eigenvalue inclusion theorems
for tensors, Pacific J. Optim. 14 (2018) 227-244.

G. Wang, Y. Wang and L. Liu, Bound estimations on the eigenvalues for Fan Product
of M-tensors, Taiwan. J. Math. 23 (2019) 751-766.

G. Wang, Y. Wang and Y. Zhang, Some inequalities for the Fan product of M-tensors,
J. Inequal. Appl. 2018 (2018) 257.

G. Wang, Y. Wang and Y. Wang, Some Ostrowski-type bound estimations of spectral
radius for weakly irreducible nonnegative tensors, Linear Multilinear Algebra, (2018)
DOT: 10.1080/03081087.2018.1561823.



[27]

(28]

BRUALDI-TYPE BOUNDS FOR FAN PRODUCT OF M-TENSORS 341

X. Wang, H. Chen and Y. Wang, Solution structures of tensor complementarity prob-
lem, Front. Math. China 13 (2018) 935-9-45.

Y. Wang, G. Zhou and L. Caccetta, Convergence analysis of a block improvement
method for polynomial optimization over unit spheres, Numer. Linear Algebra Appl. 22
(2015) 1059-1076.

Y. Wang, K. Zhang and H. Sun, Criteria for strong H-tensors, Front. Math. China 11
(2016) 577-592.

Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative
tensors I, STAM. J. Matriz. Anal. Appl. 31 (2010) 2517-2530.

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive
definiteness of multivariate homogeneous forms, J. Comput. Appl. Math. 305 (2016)
1-10.

L. Zhang, L. Qi and G. Zhou, M-tensors and some applications, SIAM. J. Matriz.
Anal. Appl. 35 (2014) 437-452.

D. Zhou, G. Chen, G. Wu and X. Zhang, On some new bounds for eigenvalues of the
Hadamard product and the Fan product of matrices, Linear Algebra Appl. 438 (2013)
1415-1426.

G. Zhou, G. Wang, L. Qi and A. Algahtani, A fast algorithm for the spectral radii of
weakly reducible nonnegative tensors, Numer. Linear Algebra Appl. 25 (2018) €2134.

J. Zhou, L. Sun, Y. Wei and C. Bu, Some characterizations of M-tensors via digraphs,
Linear Algebra Appl. 495 (2016) 190-198.

Manuscript received 15 October 2018
revised 29 December 2018
accepted for publication 27 May 2019

GANG WANG

School of Management Science, Qufu Normal University
Rizhao Shandong, 276800, China

E-mail address: wgglj1977@163.com

Y1u WANG

School of Management Science, Qufu Normal University
Rizhao, Shandong, 276800, China

E-mail address: wyijumail@163.com

YUAN ZHANG

School of Management Science, Qufu Normal University
Rizhao Shandong, 276800, China.

E-mail address: zymath1115@163.com



