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with L the lagrangian function associated with the problem minC(x)φ(x, ·). The bi-level
program and the MPCC associated are equivalent for global solutions if a Slater’s constraint
qualification is satisfied for the second level problem. For local solutions, the equivalence can
be ensured under Slater’s constraint qualification and constant rank constraint qualification
[5, Dempe, Dutta, 2012].

One of the methods to solve a MPCC problem is the SQP method, which was studied
for example in [7]. This method permits a numerical resolution of a problem with linear
complementarity constraints with a quadratic rate of convergence under a good assumption.
The authors [19] proposed a penalization method in the case where the complementarity
contraints are not linear, in order to replace the nonlinear complementarity contraints by
linear contraints and apply the SQP method. In [10,12], the authors have studied a penalty
method, but it only allows for a convergence to a C-stationary point under MPCC-LICQ.
In a very recent work [14], the authors propose a partial penalty method and obtain which
allows for a convergence to a M-stationary point under MPCC-NNAMCQ. The authors
[18,20] consider an interior point method, and obtain a super linear rate of convergence. A
method of relaxation of the complementarity constraint was considered in [29], and the paper
studies the stationarity properties of the limit when the relaxation parameter tends to zero.
The authors [25] have worked on the relaxation and penalization of the complementarity
contraint of the MPCC. They have examined the properties of distance between the solutions
of the MPCC and of the relaxed problem; moreover, they have studied the boundness
of the Lagrange multipliers under MPCC-LICQ. In [1] the authors prove that a second-
order aumented Lagrangian method converges to a strongly stationary point if the Lagrange
multipliers are bounded under MPCC-RCPLD; and converges to a C-stationary point if the
Lagrange multipliers are not bounded.

A DC (Difference of Convex functions) reformulation for MPCC has been studied in
many articles, for example in [13, 16, 21]. The introduction and study of the DC algorithm
have been made by [30–33]. In a recent work [13], the authors used the DC algorithm in
LPCCs, and obtained a convergence to a weak stationary point. But at the same time,
they proposed an improvement in order to avoid the weak stationary points which are not
local minimizers, which helps to construct a DC algorithm which converges, under MPCC-
LICQ, to a strong stationary point for MPCC. This paper aims to use a DC reformulation
of a MPCC in order to obtain a new necessary and sufficient condition for a feasible point
for a MPCC to be strongly stationary under MPCC-LICQ. After, the article proposes an
algorithm which, under some assumptions, converges to a point which is a strongly stationary
point under MPCC-LICQ if it is feasible for MPCC.

The article is organized as follows: Section 2 gives the generalities about MPCCs and
the different notions of stationarity for MPCCs. Section 3 gives an optimality condition
of DC programs (see e.g. [30–33]). Section 4 reformulates MPCCs into a DC program.
Section 5 gives an equivalent reformulation for strongly stationarity in MPCCs using the
DC optimality conditions, and use it in Section 6 in order to prove the convergence of the
proposed algorithm to a strong stationary point for MPCC under MPCC-LICQ.

2 Definitions and Preliminary Results

For this article, we work on the vectorial space Rp ×Rm ×Rm, with p ∈ N, m ∈ N∗. When
w ∈ Rs × Rm × Rm, we use the notation w := (x, y, z), with x ∈ Rs, y ∈ Rm and z ∈ Rm.
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We consider the following MPCC:

min f(w)
subject to g(w) ≤ 0 , h(w) = 0

0 ≤ y ⊥ z ≥ 0
(2.1)

where f : Rn → R, g : Rn → Rq, h : Rn → Rr with n := p+ 2m.

The functions gi are supposed C1 and convex on their domain, and h is supposed to be
affine. Therefore, the set

Ω := {w =: (x, y, z) ∈ Rn | g(w) ≤ 0 , h(w) = 0 , y ≥ 0 , z ≥ 0} (2.2)

is a convex set. The MPCC can be written as

min f(w)
subject to w ∈ Ω ∩∆

(2.3)

where
∆ := {w := (x, y, z) ∈ Rn | ⟨y, z⟩ = 0} . (2.4)

The function f is supposed to be a C1 and DC function, which means that there exist
two C1 and convex functions f1 : Ω → R and f2 : Ω → R be such that:

f := f1 − f2. (2.5)

The following definition allows for the normal cone to Ω to be written with Lagrange
multipliers.

Definition 2.1. We say that the constraint set Ω is qualified at a point w ∈ Ω if the
following inclusion holds:

NΩ(w) ⊂

∇g(w)Tλg +∇hT (w)λh −

 0
ν1
ν2

∣∣∣∣ λh ∈ Rq , 0 ≥ g(w) ⊥ λg ≥ 0
0 ≤ ν1 ⊥ y ≥ 0 , 0 ≤ ν2 ⊥ z ≥ 0.


(2.6)

For example if LICQ or MFCQ holds at w ∈ Ω, or if the perturbated set-valued map

M(y) = {w ∈ Rn | G(w) + y ∈ D}, (2.7)

is calm at (0, w), with G(w) := (g(w), h(w), y, z) and D := (R−)
p × {0}q × (R+)

2m, then Ω
is qualified at w ∈ Ω.

Given w ∈ Ω, we define the following index sets of active and inactive constraints:

Ig(w) := {i ∈ {1, . . . , p} | gi(w) = 0}
Icg(w) := {i ∈ {1, . . . , p} | gi(w) < 0}
Iy(w) := {i ∈ {1, . . . ,m} | yi = 0}
Iz(w) := {i ∈ {1, . . . ,m} | zi = 0}

(2.8)

Observe that w ∈ Ω is feasible for MPCC (2.1) if and only if Iy(w)∪ Iz(w) = {1, . . . ,m}.
For this class of problem, there exist many notions of stationary points; two are: the weakly
and the strongly, which are defined below.
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Definition 2.2. A feasible point w of the MPCC is said to be weakly stationary if there
exists a vector of MPCC multipliers (λg, λh, ν̂1, ν̂2) such that:

∇f(w) +∇g(w)Tλg +∇h(w)Tλh − (0, ν̂1, ν̂2) = 0

h(w) = 0, g(w) ≤ 0, λ
g ≥ 0, ⟨λg, g(w)⟩ = 0

∀i /∈ Iy(w) : ν̂1,i = 0

∀i /∈ Iz(w) : ν̂2,i = 0.

In addition, the feasible vector w is called a strongly stationary point if ν̂1,i ≥ 0, ν̂2,i ≥ 0,
for all i ∈ Iy(w) ∩ Iz(w).

Associated with any given feasible vector w of MPCC (2.1), there is a nonlinear program
called the tightened NLP (TNLP(w)):

min f(w)
subject to g(w) ≤ 0 , h(w) = 0

yi = 0, ∀i ∈ Iy(w)
yi ≥ 0, ∀i /∈ Iy(w)
zi = 0, ∀i ∈ Iz(w)
zi ≥ 0, ∀i /∈ Iz(w)

(2.9)

Note that a feasible point of MPCC (2.1) w is weakly stationary if and only if there exists
a vector MPCC multipliers λ = (λg, λh, ν̂1, ν̂2) such that (w, λ) is a KKT stationary point
of the TNLP (2.9). The following definition gives a very important constraint qualification
for MPCC.

Definition 2.3. We say that MPCC-LICQ holds at a feasible point w if for any
(λg, λh, ν1, ν2) ∈ Rq+r+2m, the following implication is true:

∇g(w)Tλg +∇h(w)Tλh − (0, ν1, ν2) = 0
⟨λg, g(w)⟩ = 0

∀i /∈ Iy(w) : ν1,i = 0
∀i /∈ Iz(w) : ν2,i = 0.

 =⇒ (λg, λh, ν1, ν2) = (0, 0, 0, 0). (2.10)

A very important link between the solutions of MPCC (2.1) and the strongly stationary
points:

Theorem 2.4 ([23]). If the MPCC-LICQ holds at a local minimizer w of the MPCC, then
w is a strongly stationary point of MPCC.

We now define the B(ouligand)-stationarity for MPCCs.

Definition 2.5. A feasible point w is said to be a B-stationary point if 0 solves the follow-
ing Linear Program with Complementarity Constraints, with the vector d ∈ Rn being the
decision variable:

min ⟨∇f(w), d⟩
subject to g(w) +∇g(w)d ≤ 0 , h(w) +∇h(w)d = 0

0 ≤ y + d1 ⊥ z + d2 ≥ 0
(2.11)

The B-stationarity for MPCCs are related to the strongly stationary points:

Theorem 2.6 ([28]). If a feasible point for the MPCC is a strong stationary point of the
MPCC, then it is a B-stationary point. Conversely, if w is a B-stationary point of the
MPCC, and MPCC-LICQ holds at w, then w is a strongly stationary point of MPCC.
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3 Generalities about the Minimization of the Difference of Convex
Functions

In this section we give some results about the minimization of the difference of convex
functions. Let X be a Banach space, u : X → R ∪ {+∞} and v : X → R ∪ {+∞} two
convex, proper and continous functions. We consider the following problem

min
x∈X

u(x)− v(x) (3.1)

which is a DC (Difference of Convex functions) problem. By convention +∞−(+∞) = +∞.

If ψ : Rn → R is a proper function, then we define its subdifferential at x ∈ dom(ψ) as
follows:

∂ψ(x) := {x∗ ∈ Rn | ⟨x∗, x− x⟩ ≤ f(x)− f(x)} . (3.2)

If ψ is proper, continous and convex on its domain, then for every x ∈ dom(ψ), ∂ψ(x) ̸= ∅.

The classical first order optimality condition is 0 ∈ ∂(u− v)(x), which leads to ∂u(x) ∩
∂v(x) ̸= ∅. In DC program, there is a stronger first order optimality condition, which is
given in the follow proposition. For more informations, see e.g. [31, 33].

Proposition 3.1. We suppose that dom(u) ⊂ dom(v). A necessary condition for x to be a
solution of problem (3.1) is

∂v(x) ⊂ ∂u(x). (3.3)

Moreover, if v is a polyhedral convex function, the above inclusion is a sufficient condition
for x to be a solution of (3.1).

We recall that a function g : X → R ∪ {+∞} is a polyhedral convex function if there
exist an integer p ∈ N, elements a1, . . . , ap of X∗, some reals b1, . . . , bp, a polyhedral convex
set S ⊂ X such that

∀x ∈ X , g(x) = max
i=1,...,p

(⟨ai, x⟩+ bi) + δS(x) (3.4)

where δS(x) =

{
0 if x ∈ S

+∞ if x /∈ S
.

The assumption dom(u) ⊂ dom(v) ensure that for every x ∈ X, we have u(x)− v(x) >
−∞.

We can observe that the inclusion ∂v(x) ⊂ ∂u(x) is stronger than the classical first order
optimality condition 0 ∈ ∂(u−v)(x). In Section 5, we will relate in MPCC the ∂v(x) ⊂ ∂u(x)
with the strong stationarity and 0 ∈ ∂(u− v)(x) with the weak stationarity.

4 Reformulation of the MPCC into DC Program

We come back to MPCC problem (2.1). The main idea is to penalize the constraint of
complementarity and to formulate the MPCC into a DC program.
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We recall that MPCC (2.1) has the following form

min f(w)
subject to x ∈ Ω ∩∆

(4.1)

where Ω and ∆ given by (2.2) and (2.4). We recall that Ω is a convex set because gi are
convex functions and h is an affine function. Moreover, Ω and ∆ are closed sets.

We define the constant α ≥ 0 by:

α = inf

{
dist(w,∆)

dist(w,Ω ∩∆)
| w ∈ Ω \∆

}
. (4.2)

We can easily verify that α ∈ [0, 1].

In what follows we consider a family of functions Φ : Rn → R satisfying the following
hypothesis:

(H1) For all w := (x, y, z) ∈ Ω , Φ(w) = 0 ⇐⇒ ⟨y, z⟩ = 0. Moreover, Φ(·, y, z) is a
constant function on its domain.

(H2) There exists a constant c > 0 such that for all w ∈ Ω, one has Φ(w) ≥ cdist(w,∆),
where ∆ is given in (2.4).

(H3) The function Φ is concave on the set {w := (x, y, z) ∈ Rn | y ≥ 0 and z ≥ 0}.

(H4) The subdifferential ∂(−Φ) is uniformly bounded on the set {w := (x, y, z) ∈ Rn | y ≥
0 and z ≥ 0}.

Example 4.1. The functions

Φ(x, y, z) =

m∑
i=1

min{yi, zi} (4.3)

and

Ψ(x, y, z) =

m∑
i=1

(
yi + zi −

√
y2i + z2i

)
(4.4)

satisfy all the above hypotheses.

The following proposition allows for a partial penalization of (4.1).

Proposition 4.2. Suppose that α > 0, where α is given in (4.2). Suppose that f : Ω → R
is Lipschitz continous with a constant of Lipschitz L ≥ 0. We consider a function Φ which
satisfies the hypothesis H1, . . . ,H4. Let µ > L

cα , with c > 0 the constant of the hypothesis
H2. The optimization problem

min f(w) + µΦ(w)
subject to w ∈ Ω

(4.5)

admits the same solutions as MPCC (2.1).
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Proof. Suppose that w is a solution of MPCC, which implies that w is a solution of (4.1)
with Ω and ∆ given by (2.2) and (2.4). Let w ∈ Ω and u ∈ Ω ∩∆ be such that ∥w − u∥ =
dist(x,Ω ∩∆). Since f(u) ≥ f(w) and µ > L/cα, we have:

f(w) + µΦ(w) ≥ f(w) + µcdist(w,∆) by H2

≥ f(w) + µcαdist(w,Ω ∩∆) by definition of α

= f(w) + µcα∥w − u∥

≥ f(w) +
µcα

L
|f(u)− f(w)|

≥ f(w) + |f(u)− f(w)| because µ > L

cα
≥ f(w) + f(u)− f(w)

= f(u)

≥ f(w)

= f(w) + µdist(w,∆).

That is true for all w ∈ Ω, then w is a solution of (4.5).

Conversely, assume that w is a solution of (4.5). We first show that w ∈ Ω∩∆. Suppose
that w /∈ ∆ and let w ∈ Ω ∩∆ be such that ∥w − w∥ = dist(w,Ω ∩∆). We have:

f(w) + µΦ(w) = f(w) by H1

= f(w)− f(w) + f(w)

≤ L∥w − w∥+ f(w)

= Ldist(w,Ω ∩∆) + f(w)

≤ L

α
dist(w,∆) + f(w) by definition of α given by (4.2)

≤ L

cα
Φ(w) + f(w) by H2

< µΦ(w) + f(w).

The last inequality results from the inequality µ > L
cα and from the fact that by H2 we have

Φ(w) > 0 because w ∈ Ω \∆. We obtain a contradiction with w ∈ argminΩ f + µΦ, then
w ∈ Ω ∩∆.

Finally, for any w ∈ Ω ∩∆, we have:

f(w) = f(w) + µΦ(w)

≥ f(w) + µΦ(w) because w ∈ argmin
Ω
f + µΦ

= f(w).

That proves that w is a solution of (4.1) which is MPCC (2.1).

We recall that f is a DC function, which means that f = f1 − f2, with f1 and f2 two
convex functions. By the concavity of Φ and by Proposition 4.2, if f is Lipschitz-continuous
on Ω and α > 0, where α is given by (4.2), then for all µ large enough, MPCC problem (2.1)
can be written as the following DC program:

min
w∈Rn

(f1 + δΩ)(w)− (f2 − µΦ)(w). (4.6)
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We recall that the function δΩ is defined as follows:

∀w ∈ Rn , δΩ(w) :=

{
0 if w ∈ Ω

+∞ if w /∈ Ω.
(4.7)

We finish this section with a sufficient and necessary condition for α given in (4.2) to be not
equal to zero, in the case where Ω is bounded and closed.

Proposition 4.3. We suppose that Ω is bounded and closed. Then α = 0 if and only if
there exists an element w ∈ Ω ∩∆, a sequence (wk) ∈ (Ω \∆)N satisfying limwk = w and

lim
k→+∞

dist(wk,∆)

dist(wk,Ω ∩∆)
= 0. (4.8)

Proof. By definition of α, if α = 0 then there exists a sequence (wk) ∈ (Ω \∆)N satisfying

lim
n→+∞

dist(wk,∆)

dist(wk,Ω ∩∆)
= 0. (4.9)

Since the set Ω is compact, there exists a subsequence of (wk)k converging to an element
w ∈ Ω.

Without losing generality, we can suppose that the whole sequence (wk) converges.
Since the sequence (wk) is bounded, the sequence (dist(wk,∆ ∩ Ω))k is also bounded, thus
limk→∞ dist(wk,∆) = 0. Therefore, by continuity of dist(·,∆), we obtain dist(w,∆) = 0,
thus w ∈ ∆, and then w ∈ Ω ∩∆.

The converse is clear by the definition of α.

From the previous proposition, we can deduce that if Ω is bounded, h and g are affine
functions, then α > 0. Before we define the calmness of a multifunction.

Definition 4.4. Let T : X ⇒ Y a multifunction, where X and Y are Banach spaces. Set
(x, y) ∈ Gr(T ) (which means that y ∈ T (x)). We say that T is calm at (x, y) if there exist
r, ε, L > 0 be such that:

∀x ∈ B(x, r) , T (x) ∩B(y, ε) ⊂ T (x) +B(0, L∥x− x∥). (4.10)

We can now prove the following corollary.

Corollary 4.5. Assume that Ω is bounded and closed, and h and g are affine functions.
Then α > 0.

Proof. Let w ∈ Ω ∩∆ and a sequence wk → w with wk ∈ Ω \∆. Let us define the function

G(w) :=

(
h(w), g(w), y, z,

m∑
i=1

min(yi, zi)

)

and the multifunction
M(u) := {w ∈ Ω : G(w) + u ∈ D}

with D := Rp
− × {0}q × Rm

+ × Rm
+ × {0}. We observe that M(0) = Ω ∩∆.
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Since h and g are affine functions, the multifunction M is polyhedral (because its graph
is the union of polyhedral sets), then it is calm at (0, w) by Robinson’s Theorem [26]. By
definition of calmness, there exist r, ε, L > 0 be such that:

∀u ∈ B(0, r) , M(u) ∩B(w, ε) ⊂M(0) +B(0, L∥u∥). (4.11)

For each k, we consider dk ∈ D be such that ∥G(wk)− dk∥ = dist(G(wk), D). The function
dist(G(·), D) is continuous, then dist(G(wk), D) → dist(G(w), D) = 0 because w ∈ Ω ∩∆.
We deduce that ∥G(wk)− dk∥ < r for each k large enough. We deduce from (4.11) that:

M(dk −G(wk)) ∩B(w, ε) ⊂M(0) +B(0, L∥dk −G(wk)∥). (4.12)

Given that G(wk) + dk −G(wk) = dk ∈ D, we have wk ∈ M(dk −G(wk)). Since wk → w,
we deduce that wk ∈M(dk −G(wk)) ∩B(w, ε) for all k large enough. Then, for all k large
enough, we have:

wk ∈M(0) +B(0, L∥dk −G(wk)∥). (4.13)

Since M(0) = Ω ∩∆, we have

dist(wk,Ω ∩∆) ≤ L∥dk −G(wk)∥ = Ldist(G(wk), D).

Given that wk ∈ Ω, we have h(wk) = 0, g(wk) ≤ 0, yk ≥ 0, zk ≥ 0, we have

dist(G(wk), D) =

m∑
i=1

min(yki , z
k
i )

≤ m

(
m∑
i=1

min(yki , z
k
i )

2

) 1
2

by the Cauchy-Scharz inequality

= mdist(wk,∆).

We finally obtain that dist(wk,Ω ∩∆) ≤ Lmdist(wk,∆), then:

dist(wk,∆)

dist(wk,Ω ∩∆)
≥ 1

Lm
> 0. (4.14)

That is true for all w ∈ Ω ∩∆ and for all wk → w with wk ∈ Ω \∆, then by Proposition
4.3, we have α > 0.

5 A New Characterization for Stationarity in MPCC Considering
Optimality Conditions for DC Programs

If w is a local solution of (2.1) and MPCC-LICQ holds at this point, then w is a strongly
stationary point by Theorem 2.4, but moreover w solves (4.6), therefore according to Propo-
sition 3.1, the point w satisfies ∂(f2 − µΦ)(w) ⊂ ∂(f1 + δΩ)(w). If the function f is differ-
entiable, by the equality f = f1 − f2, it is equivalent to

∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w). (5.1)

In this section we will show that under MPCC-LICQ, w is a strongly stationary point
for MPCC if and only if inclusion (5.1) is true with Φ satisfying hypotheses H1-H4 and an
additional assumption. The following technical lemma is useful for the proof of Proposition
5.3 and Theorem 5.4.
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Lemma 5.1. Let Φ : Rn → R satisfying hypotheses H1-H4, let c > 0 be a constant for Φ in
H2 and let w be a feasible point for MPCC (2.1). Assume that the set{(

(y∗i )i∈Iy(w)\Iz(w), (z
∗
i )i∈Iz(w)\Iy(w)

)
| w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w)

}
(5.2)

is a singleton. Then there exists a polyhedral concave function Φ̃ which satisfies hypotheses
H1-H4 with the same constant c > 0 in H2 and such that:

∂(−Φ̃)(w) ⊂ ∂(−Φ)(w). (5.3)

Remark 5.2. The assumption (5.2) is satisfied for example by the function given in (4.4).

Proof. The proof will be divided into two steps.

Step 1: We prove that there exist two elements w∗ = (x∗, y∗, z∗) ∈ ∂(−Φ)(w) and
w∗ = (x∗, y∗, z∗) ∈ ∂(−Φ)(w) satisfying:

x∗ = x∗ = 0
y∗i = y∗i ≤ −c and z∗i = z∗i = 0 if i ∈ Iy(w) \ Iz(w)
y∗i = y∗i = 0 and z∗i = z∗i ≤ −c if i ∈ Iz(w) \ Iy(w)
y∗i ≤ −c , z∗i = 0 , y∗i = 0, z∗i ≤ −c if i ∈ Iy(w) ∩ Iz(w),

(5.4)

with c being the constant defined by H2.

Remember that for w ∈ Rn, we write w := (x, y, z), where x ∈ Rs, y ∈ Rm and z ∈ Rm

with n = s + 2m. Given that w is a feasible point for MPCC (2.1), we have w ∈ ∆, then
hypothesis H1 implies that Φ(w) = 0.

We first assume that Iy(w) ∩ Iz(w) = ∅. Let w∗ = (x∗, y∗, z∗) ∈ ∂(−Φ)(w). Clearly, by
H1, we have x∗ = 0. Let i ∈ Iy(w). We show that y∗i ≤ −c and z∗i = 0.

Consider the vector w := (x, y, z) with z := (z1, . . . , zi−1, zi, zi+1, . . . , zm) and zi > 0.
Given that ⟨y, z⟩ = 0 and yi = 0, we have ⟨y, z⟩ = 0, then by H1, we have Φ(w) = 0.
Therefore:

⟨w∗, w − w⟩ ≤ −Φ(w) + Φ(w) = 0. (5.5)

At the same time, we have ⟨w∗, w−w⟩ = z∗i (zi − zi), which implies that z∗i (zi − zi) ≤ 0 for
all zi > 0. Given that zi > 0 (because Iy(w) ∩ Iz(w) = ∅ and i ∈ Iy(w), then i /∈ Iz(w)),
we can chose zi ∈]0, zi[, which leads to z∗i ≥ 0. If we chose zi > zi, we then obtain z∗i ≤ 0,
which finally proves that z∗i = 0.

Consider now the vector w := (x, y, z) with y := (y1, . . . , yi−1, yi, yi+1, . . . , ym) and
yi > 0. Given that zi > 0, we have ⟨y, z⟩ > 0, which proves that w /∈ ∆. We can easily see
that dist(w,∆) = yi, then the hypothesis H2 gives Φ(w) ≥ cyi. This implies that:

⟨w∗, w − w⟩ ≤ −Φ(w) + Φ(w) ≤ −cyi. (5.6)

At the same time, we have ⟨w∗, w − w⟩ = y∗i (yi − yi) = y∗i yi because yi = 0, which implies
that y∗i yi ≤ −cyi for all yi > 0. We finally obtain that y∗i ≤ −c.
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In the same way, we prove that if i ∈ Iz(w), then y
∗
i = 0 and z∗i ≤ −c. Setting w∗ := w∗,

we obtain the two elements of ∂(−Φ)(w) which satisfy
x∗ = x∗ = 0
y∗i = y∗i ≤ −c and z∗i = z∗i = 0 if i ∈ Iy(w) \ Iz(w)
y∗i = y∗i = 0 and z∗i = z∗i ≤ −c if i ∈ Iz(w) \ Iy(w)
y∗i ≤ −c , z∗i = 0 , y∗i = 0, z∗i ≤ −c if i ∈ Iy(w) ∩ Iz(w).

(5.7)

We suppose now that Iy(w) ∩ Iz(w) ̸= ∅. Consider a sequence wn → w be such that for
all i ∈ Iy(w) ∩ Iz(w), we have i ∈ Iy(w

n) \ Iz(wn). Let a sequence w∗,n ∈ ∂(−Φ)(wn). By
H4, the sequence (w∗,n)n is bounded, then it as a converging subsequence, which we denote
by w∗ its limit. Given that the subdifferential of a convex function has a closed graph, we
have w∗ ∈ ∂(−Φ)(w). For each i ∈ Iy(w) \ Iz(w), we have i ∈ Iy(w

n) \ Iz(wn) for all n
large enough because wn → w, then according to the previous case, y∗,ni ≤ −c and z∗,ni = 0.
Passing to the limit, we have y∗i ≤ −c and z∗i = 0. For each i ∈ Iy(w) ∩ Iz(w), we have
i ∈ Iy(w

n) \ Iz(wn) by construction of wn, then using the same arguments as before, we
prove that y∗i ≤ −c and z∗i = 0. For each i ∈ Iz(w) \ Iy(w), we prove that y∗i = 0 and
z∗i ≤ −c using the same arguments as before.

Consider now a sequence wn → w be such that for all i ∈ Iy(w) ∩ Iz(w), we have
i ∈ Iz(w

n) \ Iy(wn). Let a sequence w∗,n = (x∗,n, y∗,n, z∗,n) ∈ ∂(−Φ)(wn). By H4, the
sequence (w∗,n)n is bounded, then it as a converging subsequence, which we denote by
w∗ := (x, y, z) its limit. Given that the subdifferential of a convex function has a closed
graph, we have w∗ ∈ ∂(−Φ)(w). For each i ∈ Iz(w) \ Iy(w), we have i ∈ Iz(w

n) \ Iy(wn)
for all n large enough because wn → w, then according to the previous case, y∗,ni = 0 and
z∗,ni ≤ −c. Passing to the limit, we have y∗i = 0 and z∗i ≤ −c. For each i ∈ Iy(w)∩Iz(w), we
have i ∈ Iz(w

n) \ Iy(wn) by construction of wn, then using the same arguments as before,
we prove that y∗i = 0 and z∗i ≤ −c. For each i ∈ Iy(w) \ Iz(w), we prove that y∗i ≤ −c and
z∗i = 0 using the same arguments as before.

We have then constructed two elements w∗ and w∗ in ∂(−Φ)(w). Given that the set

(5.2) is a singleton, we deduce that for each i ∈
(
Iy(w) \ Iz(w)

)
∪
(
Iz(w) \ Iy(w)

)
, we have

y∗i = y∗i and z∗i = z∗i . Finally w
∗ and w∗ satisfy:

x∗ = x∗ = 0
y∗i = y∗i ≤ −c and z∗i = z∗i = 0 if i ∈ Iy(w) \ Iz(w)
y∗i = y∗i = 0 and z∗i = z∗i ≤ −c if i ∈ Iz(w) \ Iy(w)
y∗i ≤ −c , z∗i = 0 , y∗i = 0, z∗i ≤ −c if i ∈ Iy(w) ∩ Iz(w),

(5.8)

Step 2: We now construct the function Φ̃. Let the function Φ̃ be defined as follows:

Φ̃(w) :=
∑

i∈Iy(w)\Iz(w) −y∗i min(yi, zi)

+
∑

i∈Iz(w)\Iy(w) −z∗i min(yi, zi)

+
∑

i∈Iy(w)∩Iz(w) min(−y∗i yi,−z∗i zi).
(5.9)

We can easily verify that for all x ∈ Rn, if y ≥ 0 and z ≥ 0, then Φ̃(w) ≥
c
∑m

i=1 min(yi, zi) ≥ 0, and Φ̃(w) = 0 if and only if ⟨y, z⟩ = 0. This ensures that hy-
pothesis H1 is satisfied.
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Since for all nonegative reals α1, . . . , αm, one has
∑m

i=1 αi ≥
(∑m

i=1 α
2
i

) 1
2 , we deduce

that for all y ≥ 0, z ≥ 0, we have

Φ̃(w) ≥ c

m∑
i=1

min(yi, zi)

≥ c

(
m∑
i=1

min(yi, zi)
2

) 1
2

= cdist(w,∆).

Therefore hypothesis H2 is satisfied by Φ̃ with the same constant c as for Φ. Hypothesis
H3 follows from the concavity of the function (a, b) → min(a, b).

Hypothesis H4 follows from the fact that −Φ is a polyhedral convex function; thus, its
subdifferential is uniformely bounded.

In order to prove the inclusion ∂(−Φ̃)(w) ⊂ ∂(−Φ)(w), we compute the subdifferential
∂(−Φ̃)(w), and obtain that ∂(−Φ̃)(w) is the convex hull of the set {w∗, w∗}. Given that
the set ∂(−Φ)(w) is convex and contains the set {w∗, w∗}, we then have ∂(−Φ̃)(w) ⊂
∂(−Φ)(w).

The above lemma permits us to prove the proposition below.

Proposition 5.3. We suppose f is differentiable on Ω. Let a function Φ satisfy hypotheses
H1-H4, and c be a constant satisfying assumption H2. Let µ > L

cα , where α is given by
(4.2). Let w be a feasible point for MPCC (2.1). Assume that the set{(

(y∗i )i∈Iy(w)\Iz(w), (z
∗
i )i∈Iz(w)\Iy(w)

)
| w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w)

}
is a singleton. The point w is a solution of the optimization problem

min ⟨∇f(w), w⟩
subject to w := (x, y, z) , g(w) ≤ 0 , h(w) = 0

y ≥ 0 , z ≥ 0
⟨y, z⟩ = 0.

(5.10)

if and only if the inclusion holds:

∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w). (5.11)

Proof. Given that ∥∇f(w)∥ ≤ L, the function w → ⟨∇f(x), w⟩ is Lipschitz-continuous
with a constant of Lipschitz L. Observe that both MPCC (2.1) and (5.10) have the same
constraint set which can be written as Ω∩∆, where Ω and ∆ are defines in (2.2) and (2.4).

Suppose that w is a solution of the MPCC (5.10). According to Proposition 4.2, w is a
solution of

min ⟨∇f(w), w⟩+ µΦ(w)
subject to w ∈ Ω,

(5.12)

which can be written as follows:

min
w∈Rn

⟨∇f(w), w⟩+ δΩ(w)− (−µΦ(w)) (5.13)
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That is a DC program. According to Proposition 3.1, we have:

∂(−µΦ)(w) ⊂ ∂ (⟨∇f(w), ·⟩+ δΩ(·)) (w) = ∇f(x) +NΩ(w).

Conversely, suppose that ∂(−µΦ)(w) ⊂ ∇f(w)+NΩ(w). According to Lemma 5.5, there
exists a polyhedral concave function −Φ̃ which satisfies the hypotheses H1, . . . ,H4 with the
same constant c > 0 in H2 and which satisfies:

∂(−Φ̃)(w) ⊂ ∂(−Φ)(w). (5.14)

We then have ∂(−µΦ̃)(w) ⊂ ∇f(w)+NΩ(w). Given that −Φ̃ is a polyhedral and convex
function, by Proposition 3.1, w is a solution of:

min
w∈Rn

⟨∇f(w), w⟩+ δΩ(w)− (−µΦ̃(w)) (5.15)

According to Lemma 5.5, the function Φ̃ satisfies assumptions H1, . . . ,H4, then by Propo-
sition 4.2, w is a solution of

min ⟨∇f(w), w⟩
subject to w := (x, y, z) , g(w) ≤ 0 , h(w) = 0

y ≥ 0 , z ≥ 0
⟨y, z⟩ = 0.

(5.16)

Theorem 5.4. We suppose f differentiable on Ω. We suppose f is differentiable on Ω. Let
a function Φ satisfy hypotheses H1-H4, and c be a constant satisfying assumption H2. Let
µ > L

cα , where α is given by (4.2). Let w ∈ Ω be a feasible point for MPCC (2.1). Assume
that the set{(

(y∗i )i∈Iy(w)\Iz(w), (z
∗
i )i∈Iz(w)\Iy(w)

)
| w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w)

}
is a singleton. If w is a strongly stationary point for MPCC, then the following inclusion
holds:

∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w). (5.17)

If moreover MPCC-LICQ holds at w, then the converse holds truly.

Proof. We first suppose that w is a strongly stationary point. By Theorem 2.6, 0 is a solution
of the following problem where d is a decision variable:

min ⟨∇f(w), d⟩
subject to g(w) +∇g(w)d ≤ 0 , h(w) +∇h(w)d = 0

0 ≤ y + d1 ⊥ z + d2 ≥ 0.
(5.18)

By convexity of the functions gi, one has {d ∈ Rn | g(w + d) ≤ 0} ⊂ {d ∈ Rn | g(w) +
∇g(w)d ≤ 0}. Moreover, since h is an affine function and h(w) = 0, one has h(w + d) =
∇h(w)d. Therefore 0 solves the following problem where d is a decision variable:

min ⟨∇f(w), d⟩
subject to g(w + d) ≤ 0 , h(w + d) = 0

0 ≤ y + d1 ⊥ z + d2 ≥ 0.
(5.19)
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According to Proposition 5.3, the inclusion ∂(−µΦ)(w) ⊂ ∇f(w) +NΩ(w) holds.

Conversely, we suppose that ∂(−µΦ)(x) ⊂ ∇f(w)+NΩ(w) and MPCC-LICQ holds. By
Proposition 5.3, w is a solution of the MPCC

min ⟨∇f(w), w⟩
subject to g(w) ≤ 0 , h(w) = 0

0 ≤ y ⊥ z ≥ 0.
(5.20)

According to Theorem 2.4, w is a strongly stationary point for MPCC since MPCC-LICQ
holds at w.

We can observe that the inclusion ∂(−µΦ)(w) ⊂ ∇f(w) + NΩ(w) uses only convex
analysis tools because −µΦ is a convex function and Ω is a convex set, though the constraint
sets of the MPCCs are not convex in general.

Another notion of stationary point for the DC program minw∈W u(w)−v(w), with u and
v convex functions, is that ∂u(w)∩∂v(w) ̸= ∅. This notion applied to the DC reformulation
of MPCC leads to:

∂(−µΦ)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅. (5.21)

The following proposition shows that the above condition is related to the weakly sta-
tionarity of MPCC at w. Before proposition we need a lemma:

Lemma 5.5. Let w a feasible point for MPCC, and w∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w). Then
for all i /∈ Iy(w), one has y∗i = 0 and for all i /∈ Iz(w), one has z∗i = 0.

Proof. Let i /∈ Iy(w) and w
∗ := (x∗, y∗, z∗) ∈ ∂(−Φ)(w). Let y′i in a neighborhood of yi. We

consider w′ := (x, (y1, . . . , yi−1, y
′
i, yi+1, . . . , ym), z). Let x′ ∈ Rn, y′, z′ ∈ Rm be such that

w′ := (x′, y′, z′). We have y′ ≥ 0, z′ ≥ 0 and ⟨y′, z′⟩ = 0 since zi = 0 and yi > 0. Therefore,
one has Φ(w′) = 0, for all y′i in a neighborhood of yi, which ensure that y∗i = 0. In the same
way, if i /∈ Iz(w), one has z∗i = 0.

We now gives a sufficient condition for a feasible point of MPCC to be weakly stationary.

Proposition 5.6. We suppose f is differentiable on Ω and Lipchitz-continuous with L ≥ 0
a constant of Lipschitz. Let a function Φ satisfy hypotheses H1-H4, and c be a constant
satisfying assumption H2. Let µ > L

cα , where α is given by (4.2). Let w a feasible point for
MPCC (2.1). If w satisfies the following property

∂(−µΦ)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅, (5.22)

and the constraint set Ω is qualified at w (see Definition 2.1), then w is a weakly stationary
point for MPCC.

Proof. Since ∂(−µΦ)(w) ∩ (∇f(w) + NΩ(w)) ̸= ∅, there exists an element −w∗ :=
−(x∗, y∗, z∗) ∈ ∂(−Φ)(w) such that −µw∗ ∈ ∇f(w) +NΩ(w). Therefore one has

∇f(w) + µw∗ ∈ −NΩ(w). (5.23)

Therefore, since the constraint set Ω is qualified at w, there exist Lagrange multipliers λg,
λh, ν1, ν2 such that

∇f(w) +t ∇g(w)λg +t ∇h(w)λh −

 0
ν1 − µy∗

ν2 − µz∗

 = 0 (5.24)
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and
0 ≥ g(w) ⊥ λg ≥ 0 , 0 ≤ ν1 ⊥ y ≥ 0 , 0 ≤ ν2 ⊥ z ≥ 0. (5.25)

Let the vector λ = (λg, λh, ν̂1, ν̂2) defined by (ν̂1,i, ˆν2,i) = (ν1−µy∗i , ν2−µz∗i ). Let i /∈ Iy(w),
since w ∈ ∆, we have zi = 0, moreover since yi > 0, one has y∗i = 0 by Lemma (5.5).
Moreover, we have ν1,i = 0 by complementarity condition, which implies that ν̂1,i = 0. In
the same way, if zi > 0, then ν̂2,i = 0. That implies that (w, λ) is a KKT stationary point
of the TNLP (2.9), thus w is a weakly stationary point for MPCC.

6 DCA Algorithm for MPCC

In this section we apply the DC method, which has been introduced by Pham Dinh Tao and
Le Thi [30–33], to MPCC.

We recall that the MPCC that we consider, given in (2.1), can be written as follows:

min f(w)
subject to w ∈ Ω

⟨y, z⟩ = 0,
(6.1)

where the set Ω is given by (2.2). We suppose that α > 0 where α is defined by (4.2), and
consider a function Φ which satisfies hypotheses H1, . . . ,H4, where the hypotheses Hi are
given in Section 4. We suppose that f is L-continuous Lipschitz on Ω. Let c > 0 be the
constant given by hypothesis H2. As we have seen in Section 4, for any µ > L

cα , MPCC
(2.1) is equivalent to

min f(w) + µΦ(w)
subject to w ∈ Ω

(6.2)

Consider the following DC descomposition of f :

f := f1 − f2, (6.3)

with f1 and f2 two convex functions on Ω. That is, the MPCC is equivalent to the DC
program

min
x∈Rn

(f1 + δΩ)(w)− (f2 − µΦ)(w). (6.4)

where we recall that δΩ(w) =

{
0 if w ∈ Ω

+∞ if w /∈ Ω
.

The DC algorithm (abbreviated as DCA), starting from an initial point w0 ∈ Ω, con-
structs two sequences (wk)k and (vk)k by

vk ∈ ∂(f2 − µΦ)(wk), (6.5)

and
wk+1 ∈ ∂(f1 + δΩ)

∗(vk). (6.6)

Remark 6.1. If vk → v and wk → w, given that the subdifferential of a lower semi
continuous function has closed graph, we have v ∈ ∂(f2 − µΦ)(w) and w ∈ ∂(f1 + δC)

∗(v).
Since w ∈ ∂(f1 + δC)

∗(v) ⇔ v ∈ ∂(f1 + δC)(w), we deduce that ∂(f1 + δΩ)(w) ∩ ∂(f2 −
µΦ)(w) ̸= ∅, which is equivalent, under assumption of differentiability of f1 and f2, to

∂(−µΦ)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅. (6.7)
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Therefore, according to Proposition 5.6, all limit w := (x, y, z) of (wk) is a weakly stationary
point for MPCC if Ω is qualified at w and ⟨y, z⟩ = 0.

6.1 A regularized scheme of DCA

Throught this subsection we assume that the functions f1 and f2 are differentiable on Ω,
where f1 and f2 satisfy (6.3). The DCA constructs the sequences (vk) and (wk) by (6.5)
and by (6.6). If Φ is differentiable at wk, we then have:

vk = ∇(f2 − µΦ)(wk). (6.8)

Therefore, we have wk+1 ∈ ∂(f1 + δΩ)
∗
(
∇(f2 − µΦ)(wk)

)
which implies that:

∇(f2 − µΦ)(wk) ∈ ∂(f1 + δΩ)(w
k+1). (6.9)

The above statement is equivalent to wk+1 is a solution of the following convex optimization
problem, which consists of linearizing the concave part of (6.4):

min f1(w)− ⟨∇f2(wk)− µ∇Φ(wk), w⟩
subject to w ∈ Ω.

(6.10)

As you can see, if Φ is differentiable at wk, then wk+1 can be obtained from wk solving a
convex optimization problem. But in general, Φ is not differentiable at wk. We consider the
family of functions Φρ which are defined as follows:

∀ρ ≥ 0, ∀w ∈ Ω ,Φρ(w) :=

m∑
i=1

(
yi + zi + ρ−

√
y2i + z2i + ρ2

)
. (6.11)

You can observe that for any ρ > 0, the function Φρ is differentiable on Rn. The DC
Algorithm regularized scheme consists of, given the vector wk, choosing a real ρk > 0 and
computing the next iterate wk+1 as a solution of this following convex optimization problem:

min f1(w)− ⟨∇f2(wk)− µ∇Φρk
(wk), w⟩

subject to w ∈ Ω.
(6.12)

We call this algorithm “DC Algorithm for MPCC” (DCA-MPCC). We give some properties
about the function Φρ defined above (6.11). First we introduce the following function θ :
R3 → R.

Proposition 6.2. Let θ : R3 → R defined by θ(a, b, ρ) := a + b + ρ −
√
a2 + b2 + ρ2. The

function θ satisfies the following properties:

1. For all a, b ∈ R+, θ(a, b, 0) ≥ 2
2+

√
2
min{a, b}.

2. The function θ(·, ·, 0) is differentiable for all (a, b) ∈ (R+)
2 \ {(0, 0)}, and

∂(a,b)(−θ(·, ·, 0))(0, 0) = B((−1,−1), 1).

3. The function θ is Lipschitz-continuous on R3.

4. For all ρ ≥ 0, θ(·, ·, ρ) is concave on R2.
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Proof. 1. Let a, b ∈ R such that 0 < a ≤ b. We have:

θ(a, b, 0) = a+ b−
√
a2 + b2

=
2ab

a+ b+
√
a2 + b2

≥ 2ab

2b+
√
2b2

=
2

2 +
√
2
a

=
2

2 +
√
2
min{a, b}.

If 0 < b ≤ a we obtain the result by the same calculus. If a = 0 and b ≥ 0 or b = 0 and
a ≥ 0, then θ(a, b, 0) = 0 = min{a, b}, that proves the first result of the Proposition.

2. It is clear that θ(·, ·, 0) is differentiable over (R+)
2 \ {(0, 0)}. The equality

∂(a,b)(−θ(0, 0, 0)) = B((−1,−1), 1) is deduced by the equality ∂∥ · ∥(0) = B(0, 1),
with ∥ · ∥ an euclidian norm.

3. It is easy to verify that for all (a, b, ρ) ∈ R3, for all x∗ ∈ ∂θ(a, b, ρ), one has ∥x∗∥ ≤ 3
√
2,

which ensures that θ is Lipschitz-continuous on R3.

4. We can observe that
√
a2 + b2 + ρ2 = ∥(a, b, ρ)∥ which is convex with respect to its

three variables, then it is convex with respect to (a, b). Therefore, for all ρ ≥ 0, θ(·, ·, ρ)
is a concave function because it is the difference between a linear function and a convex
function.

Since we have Φρ(w) =
∑m

i=1 θ(yi, zi, ρ), we can deduce the following properties about
the function (ρ,w) → Φρ(w)

Proposition 6.3. The function (ρ,w) → Φ(w, ρ) satisfies the following properties:

1. There exists a constant c > 0 such that for all w ∈ Ω, Φ0(w) ≥ cdist(w,∆).

2. For all w ∈ Ω, w∗ ∈ ∂(−Φ0)(w) if and only if (y∗i , z
∗
i ) = −∇yi,ziθ(yi, zi, 0) if (yi, zi) ̸=

(0, 0) and (y∗i , z
∗
i ) ∈ B((−1,−1), 1) if (yi, zi) = (0, 0).

3. The function (ρ,w) → Φρ(w) is Lipschitz-continuous on Rn.

4. For all ρ ≥ 0, Φρ is concave on Rn.

Proof. It is a direct consequence of Proposition 6.2 given that Φρ(w) =
∑m

i=1 θ(yi, zi, ρ).

From the previous proposition, we deduce the following corollary.

Corollary 6.4. The function Φ0 given by (6.11) satisfies hypotheses H1, . . . ,H4 given in
Section 4.

Proof. It is a direct consequence of Proposition 6.3.

The following theorem gives a convergence result for DCA-MPCC.
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Theorem 6.5. We suppose that f is a C1 and a Lipchitz-continuous function with modulus
L ≥ 0 on Ω and Ω is a bounded set. We suppose that f = f1 − f2 with f1 and f2 two C1

and convex functions on Ω. Moreover, we suppose that f1 or f2 is γ-strongly convex on Ω,
with γ > 0. We suppose that α > 0 where α is defined in (4.2). We choose Φρ defined in
(6.11) and let c > 0 be the constant of assumption H2 for Φ0. We construct a sequence
(wk)k with w0 ∈ Ω and wk+1 is a solution of (6.12) with µ > L

cα and ρk chosen such that
ρ2k = o(min{(yki )2+(zki )

2 | i = 1, . . . ,m}), ρk → 0 and
∑

k≥0 |ρk+1−ρk| <∞. The following
statements hold:

1. We have ∥wk+1 − wk∥ → 0.

2. Any limit w := (x, y, z) of the sequence (wk) satisfie

∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅. (6.13)

If moreover ⟨y, z⟩ = 0 and Ω is qualified at w (Definition 2.1), then w is a weakly
stationary point for MPCC.

3. Any limit w := (x, y, z) of the sequence (wk) satisfies

f(w) + µΦ0(w) ≤ f(w0) + µΦ0(w
0) +M

∑
k≥0

|ρk+1 − ρk| (6.14)

where M is the constant of Lipschitz of the function (ρ,w) → Φρ(w).

4. If Ω is bounded and the set

{w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅} (6.15)

is finite, then the whole sequence (wk) converges.

Proof. We prove each statement.

1. If there exist k0 ∈ N such that wk0 = wk0+1 then wk = wk0 for any k ≥ k0. We
suppose that for all k ∈ N, one has wk ̸= wk+1.

If f1 is γ-strongly convex, then one has

f1(w
k+1) ≤ f1(w

k) + ⟨∇f1(wk+1), wk+1 − wk⟩ − γ

2
∥wk+1 − wk∥2, (6.16)

or else by convexity of f1, one has

f1(w
k+1) ≤ f1(w

k) + ⟨∇f1(wk+1), wk+1 − wk⟩. (6.17)

If f1 is not γ-strongly convex, then f2 is γ-strongly convex, and since −µΦρk
is convex,

we obtain

f2(w
k+1)− µΦρk

(wk+1) ≥ f2(w
k)− µΦρk

(wk) +
γ

2
∥wk+1 − wk∥2

+ ⟨∇f2(wk)− µ∇Φρk
(wk), wk+1 − wk⟩.

If f2 is not γ-strongly convex, it is only convex (and f1 is γ-strongly convex), thus one
has

f2(w
k+1)− µΦρk

(wk+1) ≥ f2(w
k)− µΦρk

(wk) + ⟨∇f2(wk)− µ∇Φρk
(wk), wk+1 −wk⟩.

(6.18)
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In both cases, the following inequalities hold:

f1(w
k+1)− (f2(w

k+1)− µΦρk
(wk+1)) ≤ f1(w

k)− (f2(w
k)− µΦρk

(wk))

− γ

2
∥wk+1 − wk∥2 + ⟨∇f1(wk+1)

− (∇f2(wk)− µ∇Φρk
(wk)), wk+1 − wk⟩

≤ f1(w
k)− (f2(w

k)− µΦρk
(wk))

− γ

2
∥wk+1 − wk∥2.

The last inequality holds true because wk+1 solves problem (6.12), thus ∇f1(wk+1)−
(∇f2(wk)− µ∇Φρk

(wk)) ∈ −NΩ(w
k+1).

Finally, using the Lipschitz-continuity of (ρ,w) → Φρ(w) (which it is ensured by
Proposition 6.3), one has (with M ≥ 0 a constant of Lipschitz-continuity of (ρ,w) →
Φρ(w)):

γ
2

∑p−1
k=0 ∥wk+1 − wk∥2 ≤ f1(w

0)− f2(w
0)− f1(w

p) + f2(w
p)

+ µΦρp
(wp)− µΦρ0

(w0) +M
∑p−1

k=0 |ρk+1 − ρk|
= f(w0)− f(wp) + µΦρ0

(w0)− µΦρ0
(wp)

+ M
∑p−1

k=0 |ρk+1 − ρk|.

(6.19)

Since the function f and Φρ0
are bounded from below and the serie

∑
|ρk+1 − ρk| is

convergent, we deduce that the serie
∑

∥wk+1−wk∥2 is also convergent, thus ∥wk+1−
wk∥ → 0.

2. Take a subsequence (wkj ) such that wkj → w. According to Proposition 6.3, the
sequence

(∥∥∇Φρk
(wkj )

∥∥)
j
is bounded, then there exists a subsequence (wkjl )l such

that ∇Φρkjl
(wkjl ) −→ w∗. We show that −w∗ ∈ ∂(−Φ0)(w).

Let i ∈ {1, . . . ,m} such that yi + zi > 0. One has

∂Φρkjl

∂yi
(wkjl ) = 1− y

kjl
i√

(y
kjl
i )2 + (z

kjl
i )2 + ρ2kjl

→ 1− yi√
y2i + z2i

because ρk → 0

=
∂Φ0

∂yi
(w).

In the same way,
∂Φρkjl

∂zi
(wkjl ) −→ ∂Φ0

∂zi
(w). We suppose that y2i + z2i = 0. Then one

has:

(1− y∗i )
2 + (1− z∗i )

2 = lim
k→+∞

(
1− ∂Φ

∂yi
(wkjl , ρkjl

)

)2

+

(
1− ∂Φ

∂zi
(wkjl , ρkjl

)

)2

= lim
k→+∞

(y
kjl
i )2 + (z

kjl
i )2

(y
kjl
i )2 + (z

kjl
i )2 + ρ2kjl
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= 1− lim
k→+∞

ρ2kjl

(y
kjl
i )2 + (z

kjl
i )2 + ρ2kjl

= 1 because ρ2kjl
= o((y

kjl
i )2 + (z

kjl
i )2).

Therefore we have −(y∗i , z
∗
i ) ∈ B((−1,−1), 1). According to Proposition 6.3, we finally

have −w∗ ∈ ∂x(−Φ0)(w).

Since for all j ∈ N, wkj+1 solves the optimization problem (6.12), one has∇f1(wkj+1)−
∇f2(wkj ) + µ∇Φρkj

(wkj ) ∈ −NΩ(w
kj ). From Item 1 of this theorem, we have:

∥wkj+1 − w∥ ≤ ∥wkj+1 − wkj∥+ ∥wkj − w∥ → 0. (6.20)

We deduce that wkj+1 → w. Since f1 and f2 are C1 functions on Ω, NΩ has a closed
graph and ∇Φρkj

(wkj ) → w∗, we obtain:

∇f(w) + µw∗ ∈ −NΩ(w) (6.21)

which implies that
−µw∗ ∈ ∇f(w) +NΩ(w). (6.22)

Since at the same time, −µw∗ ∈ ∂(−µΦ0)(w), we deduce that:

−µw∗ ∈ ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)), (6.23)

which implies that ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅.

According to Proposition 5.6, if ⟨y, z⟩ = 0 and Ω is qualified at w, then w is a weakly
stationary point for MPCC.

3. The inequalities (6.19) imply that:

f(wp) + µΦ0(w
p) ≤ f(w0) + µΦ0(w

0) +M

p−1∑
k=0

|ρk+1 − ρk|

≤ f(w0) + µΦ0(w
0) +M

+∞∑
k=0

|ρk+1 − ρk|.

We deduce that if w is a limit of wp, then we have:

f(w) + µΦ0(w) ≤ f(w0) + µΦ0(w
0) +M

+∞∑
k=0

|ρk+1 − ρk|. (6.24)

4. The set of limits of the sequence (wk) is nonempty because Ω is a bounded set. It is
finite because by item 2 of this theorem, it is included in the set

{w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅} (6.25)

which is finite by assumption. Moreover, item 1 of this theorem implies that the set
of limits of the sequence (wk) is connex. Finally, the set of limits of the sequence (wk)
is a singleton, then the whole sequence (wk) converges.
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The convergence to a weakly stationary point is not satisfactory because in general it
is easy to obtain weakly stationary points. The following algorithm allows for obtaining
strongly stationary points if MPCC-LICQ holds. Before, for any w := (x, y, z) ∈ Ω, we
introduce the following function Φ̃w : Rn → R with, for all w := (x, y, z) ∈ Ω:

Φ̃w(w) :=

m∑
i=1

yi+zi>0

(
yi + zi −

√
y2i + z2i

)
+

m∑
i=1

yi+zi=0

min{yi, zi}. (6.26)

Difference of Convex functions Algorithm Completed for MPCC (DCAC-MPCC)

Step 0: Choose w0 ∈ Ω and ε0 > 0. Set p = 0.

Step 1: Construct a sequence (wk) by wk+1 solving (6.12). The parameters ρk are chosen
such that ρ2k = o(min{(yki )2 + (zki )

2 | i = 1, . . . ,m}), ρk → 0 and
∑

k≥0 |ρk+1 − ρk| <
εp/M , where M is a constant Lipschitz of (ρ,w) → Φρ(w).

Step 2: Let wp the limit of the sequence (wk). If for all w∗ ∈ Ext(∂(−Φ̃wp)(wp)), wp is
a solution of

1

2
∥w∥2 + ⟨∇f(wp)− µw∗ − wp, w⟩withf1(w)− ⟨∇f2(wp) + µw∗, w⟩ (6.27)

then STOP, else go to Step 3.

Step 3: Pick w∗ ∈ Ext(∂(−Φ̃wp)(wp)) be such that wp is not a solution of (6.27), set w̃p

as a solution of (6.27) and go to Step 1 with w0 := w̃p, εp+1 := f(wp) + µΦ0(w
p) −

f(w̃p)− µΦ0(w̃
p) > 0 and p→ p+ 1.

The notation Ext(∂(−Φ̃wp)(wp)) stands for the extremal points for the convex set
∂(−Φ̃wp)(wp). Since ∂(−Φ̃wp)(wp) is a polyhedral set, the set Ext(∂(−Φ̃wp)(wp)) is fi-
nite, then Step 2 consists of solving a finite number of optimization problems. You can
observe that (6.27) has a unique solution. Steps 2 and 3 have been inspired by Section 5.1
in [13].

The following theorem gives a convergence result of DCAC-MPCC.

Theorem 6.6. We suppose that f is a C1 and a Lipchitz-continuous function on Ω with
L ≥ 0 its constant of Lipschitz, that Ω is a bounded set, and that f = f1− f2 with f1 and f2
two C1 and convex functions on Ω. Moreover, we suppose that f1 or f2 is γ-strongly convex
on Ω, with γ > 0. We suppose that α > 0 where α is defined in (4.2). We choose Φρ defined
in (6.11) and let c > 0 be the constant of assumption H2 for Φ0. If the set

{w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅} (6.28)

is finite, then the algorithm DCAC-MPCC applied with µ > L
cα is well defined and converges

in a finite number of iterations of p to a point w = (x, y, z) ∈ Ω which satisfies

∂(−µΦ̃w)(w) ⊂ ∇f(w) +NΩ(w). (6.29)



364 MATTHIEU MARÉCHAL

If moreover ⟨y, z⟩ = 0 and MPCC-LICQ holds at w, then w is a strongly stationary point
for MPCC.

Proof. According to Item 4 in Theorem 6.5, for any w0 ∈ Ω, the whole sequence (wk)
generated by Step 1 in DCACM converges. Then for each iteration p, the element wp is well
defined. Therefore Step 2 is well defined.

We now prove that Step 3 is well defined. Let w∗ ∈ Ext(∂(−Φ̃wp)(wp)) be such that wp

is not a solution of (6.27). We prove that εp+1 := f(wp) + µΦ0(w
p) − f(w̃p) − µΦ0(w̃

p) is
positive where w̃p is a solution of (6.27). Since w̃p solves (6.27) and wp does not solve it,
we have:

f1(w̃
p)− ⟨∇f2(wp) + µw∗, w̃p⟩ < f1(w

p)− ⟨∇f2(wp) + µw∗, wp⟩. (6.30)

The above inequality can be written as follows:

f1(w̃
p)− f1(w

p)− ⟨∇f2(wp) + µw∗, w̃p − wp⟩ < 0. (6.31)

Given that ∇f2(wp) + µw∗ ∈ ∂(f2 − µΦwp)(wp) and f2 − µΦ̃wp is a convex function, we
have:

⟨∇f2(wp) + µw∗, w̃p − wp⟩ ≤ f2(w̃
p)− µΦ̃wp(w̃p)− f2(w

p) + µΦ̃wp(wp). (6.32)

We apply the previous inequality in (6.31) and we obtain:

f1(w̃
p)− f1(w

p)−
(
f2(w̃

p)− µΦ̃wp(w̃p)− f2(w
p) + µΦ̃wp(wp)

)
< 0 (6.33)

which implies
f(w̃p) + µΦ̃wp(w̃p) < f(wp) + µΦ̃wp(wp). (6.34)

Since for any a ≥ 0 and b ≥ 0, we have a+ b−
√
a2 + b2 ≤ min{a, b}, we have:

∀w ∈ Ω, Φ0(w) ≤ Φ̃wp(w). (6.35)

In another way, given that

m∑
i=1

yp
i +zp

i =0

min{ypi , z
p
i } =

m∑
i=1

yp
i +zp

i =0

(
ypi + zpi −

√
(ypi )

2 + (zpi )
2

)
= 0 (6.36)

with wp := (xp, yp, zp), we deduce that:

Φ0(w
p) = Φ̃wp(wp). (6.37)

Given that w̃p ∈ Ω, by (6.34), (6.35) and (6.37), we have:

f(w̃p) + µΦ0(w̃
p) < f(wp) + µΦ0(w

p). (6.38)

Therefore, εp+1 > 0. This finally proves that Step 3 is well defined, then the algorithm is
well defined.

We now prove that the algorithm finishes in a finite number of iterations of p. According
to Item 3 in Theorem 6.5, we have, for any iteration p:

f(wp+1) + µΦ0(w
p+1) ≤ f(w0) + µΦ0(w

0) +M
∑
k≥0

|ρk+1 − ρk|
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< f(w̃p) + µΦ0(w̃
p) +M

εp+1

M
by construction of (ρk)k

= f(w̃p) + µΦ0(w̃
p) + f(wp) + µΦ0(w

p)− f(w̃p)− µΦ0(w̃
p)

= f(wp) + µΦ0(w
p).

This proves that for any iteration p, we have wp+1 /∈ {w0, . . . , wp}. At the same time,
according to Item 2 in Theorem 6.5, for any iteration p, we have

wp ∈ {w ∈ Ω | ∂(−µΦ0)(w) ∩ (∇f(w) +NΩ(w)) ̸= ∅}

which is a finite set. Then the algorithm converges in a finite number of iterations of p.

Let p be the last iteration of the algorithm. Let w∗ ∈ Ext(∂(−Φ̃wp)(wp)). Given that
p is the last iteration, wp solves (6.27), then the first order optimality condition leads to
wp +∇f(wp)− µw∗ − wp ∈ −NΩ(w

p), which implies that µw∗ ∈ ∇f(wp) +NΩ(w
p). That

is true for all w∗ ∈ Ext(∂(−Φ̃wp)(wp), then

Ext(∂(−µΦ̃wp)(wp)) ⊂ ∇f(wp) +NΩ(w
p).

Since ∂(−µΦ̃wp)(wp) = conv
(
Ext(∂(−µΦ̃wp)(wp))

)
and ∇f(wp) +NΩ(w

p) is a convex set,

we deduce that:
∂(−µΦ̃wp)(wp) ⊂ ∇f(wp) +NΩ(w

p). (6.39)

We assume that ⟨yp, zp⟩ = 0 and MPCC-LICQ holds that wp. The function Φ̃wp clearly
satisfies assumptions H1, H3 and H4 in Section 4. According to Inequality (6.35), the
function Φ̃wp satisfies assumption H2 with the same constant c as for Φ0. We can observe
that the function Φ̃wp satisfies the assumption (5.2) at wp, then according to Theorem 5.4,
wp is a strongly stationary point for MPCC.

7 Numerical Examples

To give more validation of our theoretical results, we test the algorithm on a set of MPCCs
derived from MacMPEC collection [17]. The experiments were performed on Windows
10 Pro, with 3.20 GHz Intel using 5 cores and 8GB RAM. The DCAC-MPCC has been
implemented in MATLAB (R2014a).

We only consider the case where g and h are affine functions. In Step 1, we consider the
DC-descomposition f(w) = f1(w)−f2(w) with f1(w) := 0.5α∥w∥2 and f2(w) := 0.5α∥w∥2−
f(w) with α > 0 large enough in order that f2 is strongly convex on Ω. We solve (6.12) using
quadprog on MATLAB. Step 1 finishes when ∥wk+1 − wk∥∞ < 10−1. When we consider a
smaller tolerance, the number of iterations of p decreases but at the same time, the number
of iterations in Step 1 increases, then the CPU time of the whole algorithm increases also.

In Step 2, we know that (6.27) has a unique solution. Given w̃p a solution of (6.27), we
deduce from the uniqueness of solution of (6.27) that wp is a solution of (6.27) if and only
if wp = w̃p. Then, for each w∗ ∈ Ext(∂(−Φ̃wp)(wp)), we test if ∥wp − w̃p∥∞ < 10−3, where
w̃p is the solution (6.27). The program (6.27) is also solved by quadprog on MATLAB.

We obtained the following results. The real value is the optimal value of the optimiza-
tion problem, the obtained value is the value that we obtained. The number of iterations
corresponds to the number of iterations of p in DCAC-MPCC.
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Name Real value Obtained value Iterations n m q r
bilevel1 0 −7.1054 · 10−15 1 16 6 1 8
bilevel2 -6600 -6600 46 32 12 0 16
ex9.1.2 -6.25 -6.25 2 10 4 0 5
ex9.2.1 17 17 2 10 4 0 5
flp4.1 0 3.6472 · 10−4 1994 110 30 30 30
bard1 17 17 4 8 3 0 3
bard1m 17 17 4 8 3 0 3

8 Conclusion and Future Works

To our knowledge, this algorithm is the first DC Algorithm which allows for converging to
a strongly stationary point for MPCC. In this paper we do not prove that this algorithm
converges to a feasible point for MPCC, which is a weakness of this article and constitutes a
possible extension of this work. In a future work a natural extension would be to consider the
case where Ω is not convex, for example, with a linearization of the constraints. Moreover,
numerical simmulations could be made. A new work (see e.g. [22]) proposes an acceleration
of DCA. This acceleration could be applied to a DC algorithm for MPCCs.

References

[1] R. Andreani, L.D. Secchin and P.J. Silva, Convergence properties of a second order
augmented Lagrangian method for mathematical programs with complementarity con-
straints, SIAM Journal on Optimization 28 (2018) 2574–2600.

[2] D. Aussel, R. Correa and M. Marechal, Electricity Spot Market With Transmission
Losses, Journal Of Industrial And Management Optimization 9 (2013) 275–290.

[3] R. Fletcher and R. Leyffer, Solving mathematical programs with complementarity con-
straints as nonlinear programs, Optimization Methods and Software 19 (2004) 15–40.

[4] M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel
programming problem, Journal of Global Optimization 33 (2005) 465–475.

[5] S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical pro-
gram with complementarity constraints?, Mathematical Programming 131 (2012) 37–48.

[6] C.J. Day, B.F. Hobbs and J.S. Pang, Oligopolistic competition in power networks: A
conjectured supply function approach, IEEE Transactions on Power Systems 17 (2002)
597–607.

[7] R. Fletcher, S. Leyffer, D. Ralph and S. Scholtes, Local convergence of SQP methods
for mathematical programs with equilibrium contraints, SIAM Journal on Optimization
17 (2006) 259–286.

[8] R. Henrion, J. Outrata and T. Surowiec, Strong Stationary Solutions to Equilibrium
Problems with Equilibrium Constraints with Applications to an Electricity Spot Market
Model, WIAS, 2009.

[9] B.F. Hobbs and J.S. Pang, Strategic Gaming Analysis for Electric Power Systems: An
MPCC Approach, IEEE transactions on power systems 15 (2000) 638–645.



A DCA FOR MPCCS CONVERGING TO A S-STATIONARY POINT 367

[10] X.M. Hu and D. Ralph, Convergence of a penalty method for mathematical program-
ming with complementarity constraints, Journal of Optimization Theory and Applica-
tions 123 (2004) 365–390.

[11] X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity
markets with locational prices, Operations research 55 (2007) 809–827. 809-827.

[12] A.F. Izmailov, M.V. Solodov and E.I. Uskov, Global convergence of augmented La-
grangian methods applied to optimization problems with degenerate constraints, in-
cluding problems with complementarity constraints, SIAM Journal on Optimization 22
(2012) 1579–1606.
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