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Abstract: High-dimensional data are commonly encountered in various scientific fields, such as information
technology, biology, economics and so on. This poses great challenges to modern statistical analysis and
optimal computation. First, the high dimensionality often induces the collinearity of variables. Second, the
error of high-dimensional data may be heavy-tailed. In order to deal with these two issues, we introduce
the penalized quantile regression with the elastic net penalty that combines the strengths of the quadratic
regularization and the lasso shrinkage. By smoothing quantile loss function with the Huber smooth function,
we give the smoothing quantile regression with elastic net penalty (SQEN). In this model, the regularizer
which leads to a grouping effect can treat collinearity well and the Huber smooth loss is suitable for heavy-
tailed data. In high-dimensional setting, we derive the statistical consistent property of the SQEN estimator.
To make the SQEN practically feasible, we propose an efficient iterative SQEN-MM method and establish
its global convergence. From numerical results, we can see our method can solve SQEN model efficiently
and effectively.
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Introduction

High-dimensional data sets are easier to be collected because of the advent of modern technol-
ogy, which are commonly encountered in various scientific fields, such as information technol-
ogy, biology, economics and so on. Such data make great unprecedented challenges and op-
portunities for statistical analysis and optimal computation. The word “high-dimensional”
refers to the situation where the number of unknown variables is larger than the number of
samples in the underlying data. It is impossible to tackle such kind of data without addi-
tional assumptions. One natural assumption is the sparsity of the true coefficients. That is
to say, only a few unknown variables can affect the value of the response.

Regularization methods are popular ways to select sparse variables since the ordinary
least squares method is not consistent in the high-dimensional setting. Methods based on [y
penalization or constrained /; minimization have been extensively studied, see [5,6,15,17,19,
20]. To be more specific, Tibshirani [17] proposed a technique for high-dimensional linear
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regression model, which is the so-called LASSO and is a penalized least squares method
imposed an l;-penalty on the regression coefficients. Owing to the nature of the I;-penalty,
the LASSO does both continuous shrinkage and automatic variables selection simultaneously.
Zou et al [20] proposed a new method for variables selection which penalized least squares
with elastic net penalty. The elastic net has a grouping effect, where strongly correlated
predictors tend to be in or out the model together. The above LASSO type methods have
nice properties under the Gaussian assumption. However, the Gaussian assumption may
not hold in practice, especially in the high-dimensional setting.

Quantile regression introduced by Koenker et al. [10] performs well in the situations where
the noises are heavy-tailed or heterogeneous, which includes the least absolute deviation
(LAD) regression as one special case. Quantile regression has been widely studied in many
different areas such as economics, survival analysis, technology, sociology and biology and so
on, see [7,11-14] for more details. Recently, regularized quantile regression was studied for
high-dimensional sparse model, see, [1,2,4,8,9,18,21]. For instance, Wang [18] studied the
l1-penalized LAD regression and showed the estimator achieves near oracle risk performance
with a nearly universal penalty parameter. Aravkin et al. [1] considered quantile regression
with [y and [; penalties and substituted the quantile loss function with Huber smooth
function. They proposed a generalized orthogonal matching pursuit (OMP) method for
variable selection. Fan et al. [4] constructed a penalized quantile regression with the weighted
l1-penalty (WR-LASSO) and established the oracle properties of the estimator. Mkhadri
et al. [16] discussed a coordinate descent algorithm for computing the penalized smooth
quantile regression (cdaSQR) with convex and nonconvex penalties.

Motivated by the above arguments to handle the high-dimensional sparse model, we
consider quantile regression with elastic net penalty (QEN) to regress the heavy-tailed and
collinear high-dimensional data. Although the quantile loss function is convex, it isn’t
smooth. In order to get an efficient algorithm to solve the optimization problem, we will
take advantages of the Huber smooth function. By replacing the quantile loss function with
the Huber smooth function, we obtain the smoothing quantile regression with elastic net
penalty (SQEN). We show that such model not only can produce a sparse solution, but also
has grouping effect property. Meanwhile, our analysis shows that the SQEN estimator has
statistical consistent properties. In order to get the SQEN estimator, we propose an iterative
method based on the majorize minimize (MM) technique, which is called SQEN-MM. We
then establish its global convergence. Finally, we illustrate the efficiency of the SQEN-MM
algorithm by some numerical experiments.

The remainder of the paper is organized as follows. In section 2, we introduce the elastic-
net penalized smoothing quantile regression model and show its grouping effect property.
Then, we derive the statistical properties of the estimator in Section 3. In Section 4, we
establish the algorithm of the SQEN-MM and show its convergence. In Section 5, numerical
experiments are reported to show the efficiency of the proposed method. Finally, we make
some conclusions in Section 6.

Elastic-Net Penalized Smoothing Quantile Regression

In this section, we first introduce the quantile regression with elastic net penalty (QEN).
Then, we construct the smoothing quantile regression with elastic net penalty (SQEN) via
smoothing the general quantile loss function by the Huber smooth function. Finally, we show
that the SQEN model has a grouping effect property which is important to collinearity.
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Consider the high-dimensional linear regression model
y=XB+e, (2.1)

where X = (x1,X2,...,%,)" = (X1,X2,...,X,) is a n x p design matrix with p >> n.
Here the elements of x; denote the values of predictors for i-th sample, the elements of
X, represent the values of j-th predictor for n samples. Throughout the paper, we use
bold letters to represent column vectors. y = (y1,y2,...,4n)" is a n-dimensional re-
sponse vector, B8 = (b1, 02,...,8p)" is a p-dimensional regression coefficient vector, and
e = (e1,€2,...,&,)" is the n-dimensional measurement error/noise vector with all compo-
nents €;(i = 1,2,...,n) being independently distributed and satisfying Pr(e; < 0) =
for some known constant 7 € (0,1). In our model, there is no intercept, so we assume
X = (X1,Xs,...,X,) with each vector X; being normalized such that ||X;||s = y/n for
i=1,2,...,p. Under this model, for a given x;, x7 3 is the conditional rth-quantile of y;.
For the high-dimensional linear regression problem, a key assumption is the sparsity of the
true coefficient vector 3%, which means that the proportion of nonzero coefficients is small.
Sparsity guarantees the model identifiability and enhances the model fitting accuracy and
interpretability. Here, we denote the number of nonzero coefficients by s. Without loss of
generality, we assume 3" = ((87)",07)" with B8] € R*,0 € RP~%, that is, only the first s
entries are nonzero. We rewrite the design matrix X as X = (5,Q) where S = (X1,...,X;)
the submatrix of X corresponds to the covariates whose coefficient are nonzero. We view
those covariates as signal covariates and the rest as noise covariates. Here, the submatrix
Q = (Xs41,-..,X,) corresponds to the noise covariates whose coefficients are zero.

In order to estimate sparse regression coefficient vector 3%, we propose the quantile
regression with elastic net penalty (QEN)

min {pr yi — xIB) +m1||ﬁ||1+m2||ﬁ||2} (2.2)

BERP

The quantile loss function is defined as p,(z) = (7 — 1(z < 0))z, 7 € (0,1), with 1(-) being
the indicator function, ||B|l; = Y.7_,|8:| is the l;-norm of B, ||B|l2 = />_+_, 87 is the
lo-norm of B, and A; > 0, Ay > 0, are the penalized/regularization parameters. We call
nA1||B]l1 + nA2||B]|3 the elastic net penalty term.

The quantile loss function in model (2.2) is strongly convex but nonsmooth. It is difficult
to calculate the sub-differential of the objective function. One way to study nonsmooth
model is to adopt a smooth loss function to substitute the nonsmooth loss function. In this
paper, we will use the quantile Huber smooth function to take the place of the quantile loss
function.

For any given 7 € (0,1) and ¢ > 0, the quantile Huber smooth function is defined as

(r—1)0— 20D g e (—oo, (r — 1)d),

pr(0,0) =4 & 9 c(r—1)8 70,
70—%, 0 € (16, 400).

It is obvious that this function is convex. By the definition of p,(6,), we can obtain the
following differential proposition. The proof of the proposition is simple, which is omitted
for brevity.

Proposition 2.1. For any fited 6 > 0 and 7 € (0,1), the function p,(y; — x73,06) is
continuously differentiable with respect to 3 € RP. Moreover, its first order partial derivative



372 B. CHEN, L. KONG AND N. XU

with respect to 3 is

_(T - 1)Xi7 01 € (—OO, (T - 1)5)7
Vppr (v — xIB,6) = —xiphyi —xIB.0) ={ ~%xi 6, € [(r— 13,73,
—TX;, 0; € (T(57 +OO)

where 0; =y; —x[B3 for alli=1,2,...,n

Now the model (2.2) can be smoothed as smoothing quantile regression with elastic net
penalty (SQEN)

'ggél ®.(8,0) = {ST(['], 6) +nAi]|Bl + nAzHrB”%} J (2.3)
where S;(8,0) = >0, p-(yi — x7B,6). Let B,Eé stand for the solution of (2.2), (2.3),
respectively. It is obvious that [Ai(; — B when § — 0. Therefore, in order to obtain the
optimal solution of (2.2), we can take advantage of p,(-,d). So we will mainly discuss
the properties about the problem (2.3). Based on this model, we will propose an effective
method to purse the sparse solution of high-dimensional linear regression in Section 4. In
the following, we will show model (2.3) possesses an important property—grouping effect.
First, let’s consider an extreme situation.

Proposition 2.2. Letﬁ be the minimizer of (2.3). If we assume X; = X;,1,75 € {1,2,...,p},
then B; = B; for any A1, A2 > 0.

Proof. Assume @- #* B\j. We construct ,@* as follows

- B, if ki and k # §,
" 3B+ By, ifk=iork=j

Since X; = X, it is obvious that XB* = X,@, which means that xf,@* = X;f,@, for i =
1,2,...,n. Thus 37", pr(y; — xZ-T,B*,é) =" oy — xiTB,(S). Considering two simple
. . =~ = = Bi+8:\ 2 S o
inequalities |1(8; + 3;)| < 5(|8i| + |5,]), and (%) < 5(B7 +B2), we have ®,(3 ,6) <
®.(8,0). Therefore, B can’t be the minimizer of model (2.3), which is a contradiction. So

we obtain the desired result B\l = 37 O
This proposition exhibits that when two predictors X;, X; are equal, then their coeffi-

cients Bz and Bj will also be equal. In the next theorem, we will generalize this result and
establish an upper bound for the difference |8; — ;| by using the sample correlation between
X@ and Xj.

Theorem 2.3. Given data (y,X) and parameters A1, A2 > 0, the predictors are standard-
ized, i.e., ||X;lla = vn,i=1,2,...,p. Let B be the SQEN estimator. Suppose that ﬁlﬁj > 0.
Then

B~ Byl < 55V ) (24)

where p = fXTXJ 1s the sample correlation.

Proof. 1f ﬁiﬁj > 0, then we have sign(ﬁi) = sign(gj). From the first order optimal condition
of the elastic-net penalized smoothing quantile regression problem (2.3), we obtain that

0 € 9 (S,(8.6) + MBIl +nralIBI3) |5_s (2.5)
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Let p, = (p,(y1 — XIB.0), p(v2 — x3B,0), ..., p-(yn — X18,8))", then we can obtain
08S5:(B,0) = —X"p.. Therefore, for nonzero 3; and f3;, we have

0= —XFp, +nsign(5;) + 2nXa /3,
0=-Xip, + n)\lsign(gj) + QnAQBj.

Note that sign(;) = sign(gj), we obtain
0=—(X; — X;)"p, +2nXa(Bi — B)).

Then, we have |Bl . Bj| = ﬁ\(xl — X,)"p-|. Clearly, ||p,||2 < v/n and hence

B~ Byl = o |Xs = X"
< o X = X el
< s VIR + %[ - 27,
Si 2(1—p).

O

Note that, when p — 1, BZ' and B\j tend to be equal which means that strong correlated

predictors tend to have the same coefficients. Thus, in the estimation model, they will be

in or out of the model together. It has been pointed out that LASSO doesn’t possess this
property in [20]. This is why we use elastic net penalty in this paper.

Statistical Property

In this section, we will establish statistical consistent properties of SQEN. We start with some
notations. Following the terminology in [3], we define the oracle regularized estimator (ORE)
as 3° = (,6'(1)T, 07)* with ﬂtl) € R* and 0 € RP~* being the vector of all 0, which minimizes
. (3,0) over the subspace {8 = (87,83)" € R? : B, = 0 € RP~*}. We claim that the ORE
is consistent with the true coefficient vector. We then show that the SQEN estimator enjoys
the same property as the ORE when some conditions are met. In order to do so, we need
introduce some conditions.

Condition 3.1. If f;(z) and F;(z) are the density function and distribution function of
the error ¢;, respectively. Then we assume that there exists universal constants c¢; > 0 and
¢o > 0 such that for any z satisfying |z| < ¢, fi(2) is uniformly bounded in (0, c0) and

|Fj(z) — F;(0) — 2 £;(0)] < cpz?. (3.1)

Condition 3.1 is commonly used in noise distribution, which says the Lipschitz property
of fi(x) around the origin. For instance, the Laplace distribution and stable distributions
including the normal distribution, Cauchy distribution all satisfy this condition.

Condition 3.2. Let H = diag(f1(0),..., f»(0)) € R™*™ be a diagonal matrix. The eigen-
values of %STH S are sandwiched as

O<A1<A<1STHS) < Ay < 0.
n
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Furthermore,
Kn = max|z;| = o(v/ns™h). (3.2)
0.

Condition 3.2 is on the submatrix S and the magnitude of the entries of X. It is worth
to note that the above condition on k,, is satisfied with asymptotic probability one when
the design matrix is generated from some distributions. If the entries of X are independent
copies from a subexponential distribution, the bound on k, is satisfied with asymptotic
probability one as long as s = (y/n/logp); if the components are generated from sub-
Gaussian distribution, then the condition on &, is satisfied with probability tending to one

when s = o(y/n/logp)

Condition 3.3. Let v, = C1(y/s(logn)/n +v/sA1 +2Xz||37]|2) with C; > 0 a constant. It

holds that
A1
< —_

1
7QTHS ’
n 2,00 27”

where ||A|l2,00 = sup||Ax||/||X[|2 for a matrix A and a vector x. Furthermore, log(p) =
z#0
o(n®) for a constant b € (0,1).

Condition 3.3 is on the correlation of columns in the design submatrix @ and S of X.
Note that the optimal A; should be larger than \/(logp)/n when the data has heavy-tailed
€rrors.

The following theorem states that the ORE can estimate the correct sign of the true
coeflicient vector with probability tending to one, which tells that how well one can do with
the assistance of the oracle information on the location of signal covariates.

Theorem 3.1. Let v, = C1(2y/s(logn)/n + v/sA1 + 2X2||B71]l2) with a constant Cy > 0 .
Assume Conditions 3.1 and 3.2 hold if (v/sA1 + 2X2||B7|l2)v/skn — 0, and § is sufficiently
small, then there exists some constant ¢ > 0 such that

P(|B) = Billz <) =1 —n"c. (3.3)

If in addition ’Y;llgl_ig |81,| = oo, then with probability at least 1 —n~°°,
<i<s

sign(8Y) = sign(B7), (3.4)
where the above should be understood componentwisely.

Proof. The proof is motivated by Theorem 1 in [4], where they deal with [;-norm penalized
quantile function. Here we consider a different case, elastic-net penalized smoothing quantile
regression model. For a given deterministic M > 0, we define the set

Bo(M) ={B € R : |3~ B"|l2 < M,supp(B) C supp(B8")}. (3.5)

Then, define the function

Zn(M) = sup L (S7(B,0) — S(8",9)) —E[S-(B,0) — (8", 0)]| - (3.6)
BeBo(M) T

Observing that 3" is the minimizer of the function E(S,(8,4)) for any 8 = (87,0")" €
Bo(M) with M = o(x;'s~'/?), we immediately obtain that the first order derivation of
E[S-(83,0) — S-(B8",0)] is zero at the point 3 = @*. Then, we can control E[S,(3,4) —
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S (B%,0)] in terms of Z,(M). In addition, if we can show that for any B8 = (87,0")" €
Bo(M) with M = o(r;'s~1/?),

E[S-(8,9) — 5:(5",0)] = ghnllB, - il (37)

we will easily establish the convergence in Theorem 3.1.
We start to prove (3.7). Taking a; = |S7 (8, — 87)|, we have for any 8 € Byo(M),

a; < [[Sill2[I8, — Bill2 < VsknM — 0. (3.8)
We consider two cases of a; = [ST(3; — 87)|- When a; < §, we can obtain that

pT(gi — Qi 5) - p‘r(giaé)

(I =7)as, g; < (1 —1)4,

—as(ei— (T =108+ (1= 7)a;, (t1—1)0<e; <(r—1)0+a;,
= 25 (—2e5a; + a?), (r—1)6+a; <e <76,

(e — (16 + a;))? — Ta;, 76 < g; <16 + a;,

—Ta,, € > 70+ a;.

(1= 7)ai, g; < (1 —1)4,

—5(e — (T =1)8)2 + (1 — 7)a, (t=1d<e <(r—-1)+ay,
B 2 (—2g50;+a?) — (1= 7)a; + (1 = 7)a;, (1—1)6+a; <& <0,
B %(—2&'02’ + a?) + Ta; — Ta;, 0<eg <76,

2—15(51» — (76 + a;)? — Ta;, 70 <e&; <716+ a,

—Tay, g; > T0 + a;.

Using the indicator function, we have
pT(si—ai,é)pr(si,d) =0 — I+ I3+ 1+ I5, (39)
where

I = 2i(51- = 1)0)2 (= 1) <& < (r—1)6 + as),

I = (215(_2% +a?)—(1- T)ai> A{(r—1)6+a; < & <0},
I, = (216(—2@6% +a?) + Tai> -1{0 < ¢; < 76},

Is — 2% (61 — (76 + a5)? - 1{r6 < 25 < 76 + ;).

Hence E [p-(g; — ai,0) — pr(g4,0)] = E[I1] — E[I2] + E[I5] + E[14] + E[I5]. Because Pr(e; <
0) = 7,E[1{e; <0}] = 7, we can directly calculate

E[Iﬂ :E[(l —T)ai . 1{52‘ < 0} —Ta; - 1{Ei > OH =0,

and

E(I;) =E 2—15(52 —(r=10)*1{(r-1)5<e; < (1—1)0 +a;}
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_E B/Oais-l{s+(71)5§6i < (7= 1)5 +a;}ds
. % /0 s E[1{s+ (r—1)5 <& < (r—1)5 +as}]ds (by Fubini’s theorem)
% /0 s (Fi((T = 18+ a:) — Fi(s + (1 — 1)8))ds
- (15/0 s+ (£:(0)(ai — 5) + o(1)(a; — s))ds (by Condition (3.1))
= 0+ o)
Similarly,
Bl = (f,(0) + o1)) — L (T 1)
(L] = (£(0) + (1)) 40T
E[f] = Z%fim) + %0(1).
Hence, combining the above analysis on E(/;),i = 1,...,5, we obtain

E [pr(ei — ai,0) — pr(gi,0)] = E[lh] — E[I2] + E[I5] + E[14] + E[I5]
3 a3
0 (50 + o)
—(r = 1)2%8a; —aZ(t — 1)

2
72a;0 + Ta? aj a}
f(fi(o) +o(1)) + @fi(o) + @0(1)
2. 2 (r— 1260 — a2(r —
T a;0 +Ta; — (1 21) da; — az( 1)(fz(0) +o(1))

= ?fz(o) + B) fZ(O) —+ 5 0(1).

+ (£i(0) + o(1))

where the o(1) is uniformly over all i = 1,...,n. When a; > §, we can obtain the same result.
And when ¢ is sufficiently small and tends to 0, we easily obtain E [p, (e; — a;,0) — p,(€4,9)] >

@ fi(0). Furthermore, by Condition 3.2,
3 Y

E [57'(/6a5) - 57(6*76)] = ZE [pT(gi - ai,(S) - pT(ai?CS)]

n

> @i £:(0)

i=1

Y

Wl W~ Wl

(81 = B1)"STHS(B, — B71)

N8y — Bill3.

Y
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So the inequality (3.7) holds for any 3 € (8T,07)™ € By(M), but 8° = ((89)",07)™ may
not be in the set. Thus, we let 3 = ((E?)T, 07)*, where
By = up) + (1 —w)B;, with u = M/(M + 8} - B]-2). (3.10)
which falls in the set By(M). Then, by the convexity and the definition of 37,
®-(B,0) < ud,(B7,0) + (1 - u),(B},0) < &, (B7,0) = &-(8%,5).  (3.11)
Using this and triangle inequality, we have
E [$.(8,6) - 5-(8",9)]
= {5:(8",0) ~E[5-(8",0)]} - {$:(8,6) ~ E | 5-(B,9)| }
+0.(8,0) — (8", 8) + M |81 [ — nA1 1Byl + nAallB 113 — nAal1B, |13
< nZu(M) + 1|8 = Byl + 200 (87,81 — Br) — nhallB1 — By}
< nZu (M) +1y/5M 185 — Bullz + 2021851120185 — B ll2 — nallB; — Byll3-
Define the event I',, = {Z,(M) < 2Mn~/2\/slogn} . Then by Lemma 1 in [4], we have
Pr(I',,) > 1 — exp(—cos(logn)/8). (3.12)
On the event T';,, by (3.12), we have

E[S:(8,8) - $,(8",8)] < 2M+/sn(log m)+n(v5Ai+2Xa|81 |2) M —nXa |81~ By |3 (3.13)

Taking M = 2v/s/n + /sA1 + 2X2||B7|l2, by Condition 3.2 and the assumption (A;+/s +
22|85 |2)v/5kn — 0, we can check that M = ok, 's~/?). Combining these two results
with (3.7), we obtain that on the event ',

3 (a3 nllBy - 813
< (2\/sn(log 1) + /s + 2n/\2||ﬁ’1‘|\2) (2\/5/71 5N+ 2/\2”6’{”2) . (3.14)

hence
P * 3 * *
1B, =813 < g5 (2v/sogm)/n+Vah +20 (181 2) (2V/3/n + VX +2%]18]2)
(3.15)
which entails that
181 = Bull2 < O (Vads + 201852 + 2v/s(log m)/n ) - (3.16)

Note that ||87 — B, ]l2 < M implies ||8% — 8%|l2 < 2M. Thus, on the event I',, we have
189~ Bll2 < O (Ve + 2083 | +2/s(logm)/n ). (3.17)

Thus Pr(||8) — B%]l2 < n) > 1 — n~° holds. From above analysis the second result follows
immediately. O
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As shown in Theorem 3.1, the consistency rate of ﬁ? in terms of the ls-norm is given by
Yn. The first component of ~,,Ci+/s(logn)/n, is the oracle rate within a factor of logn,
and the second component Ci(y/sA1 + 2X2||B7||2) reflects the bias due to penalization.

Though the ORE has the consistent property which helps us to understand the utility
of the oracle information on finding the locations of signal covariates. However locations of
signals are unknown. An important question is that whether the SQEN estimator performs
well when there is no oracle information. The following theorem will give an answer, which
shows that the SQEN estimator enjoys the same property as ORE with probability tending
to one when A\; and A, are appropriately chosen.

Theorem 3.2. Let vy, = C1(2y/s(logn)/n++/sA\1+2X2||B7|l2) with Cy > 0 a constant. Sup-
pose Conditions 3.1-3.3 hold. In addition, assume that V8% 2k2 (logy n)? = 0(nA3), A\ sk, —

0, (v/sA1 + 2X2||B112)V/skn — 0 and A1 > 24/(1+¢) logp /m where ¢ is some positive con-

stant. Then, there exists a global minimizer ,8 (ﬁl ,ﬁ2) of (8, 0) which satisfies
(1) ﬁz =0,
(2) 1181 = Bill2 < vn,
with probability at least 1 — O(n=°%).
In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.3. Consider a ball in R® around 3, N = {8 = (B1,85)" € R? : B, =
0,18, — Bill2 < Y} with some sequence 7, — 0. Assume that \/1+ v,s%/2k2 logon =
o(v/nA1), vnAi(logp) =12 — oo, and k27, = o(\1). Then under Conditions 3.1-3.3, there
exists a constant ¢ > 0 such that

Pr< sup Q"0 (y =SB, 0)ll EnM) <0@(P™), (3.18)
BEBo(M)

where

T—1, uwée (—oo,(r—1)J),
pfr(ua 6) - %a u € [(T - 1)63 7_6]7 (319)
T € (79, 400).

Proof of Lemma 3.5. For a fixed j € {s+1,...,p} and B = (B],33)" € N, define
V8. (Xi7yl) = Tij [PT( Tﬁ 5) (Eiﬂ 5) —-E [pfr(yi - X;Fﬂv 5) - p;_(;—;h 6)]] ) (3'20)

where x7 = (%;1,...,%;p) is the i-th row of the design matrix X. In order to prove this
lemma we will do the following decomposition:

sup H Q" p(y —SBy)

1
] < $H>HQTEUﬁ(ySB1)PQ@u5HH
oo BeN || T

T
H Q") (e, )HOOJrr?g};uﬁ)mZIvm Xi, ¥i)|
=1+ 1+ Is,
where
n=sup |07 Blpry - 50 - (0] (3:21)

BEN

oo
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b-H Q" (e, >H , (3.22)
o0

Iy = v 3.23

3 rygggg%anx yi)- (3.23)

If we can prove that I; < A1/2 + o(A1),I2 = o(A1),Is = o,(A1) with probability at least
1—0(p~©), then the lemma will be proved. Now we proceed to prove (3.21). Note that Iy
can be rewritten as

Zwu [0} (€4, 8) — ple(yi — x1B)]| - (3.24)

I, = maxsup
Jj>s ,GEN

Note that
phles,8) =7 -1{e; > 18} + (1 — 1) - 1{e; < (1 — 1)8} + % (1 —1)8 < & < 76}
=7-1{e; >70t+ (7 —1) - 1{e; < (7 — 1)d}

+/ 1{sd <eg; <7}ds+ (7 —1)-1{(7 — 1)d < ¢; <76},
T—1

and

i = x2B) = 7 Ly = xIB > 76} + (r = 1) - 1y — xIB < (7 — )0}
$ BB )5 < - x1B < )
=7 1e > 76+ ST(B, — B} + (1= 1) - 1{es < (r— 15+ ST(8, — B])}
S8 =B (e - vy <c - 878, - B < 70)
=7 1e > 76+ ST(B, — B+ (7~ 1) 1{ei < (7~ 10+ 57(8, - B}
4 [ 1sb 858, - 1) <1 < 704 T8, - B

+ (=1 Y (7 -1)6+Si (B, —B1) <& <76+ 87 (B, — B)}-

Hence we have that

Elp. (g4,0)] = 7(1 — F;(10)) + (r — 1) F;((r — 1)) + /T_l [F;(T0) — F;(sd)] ds
+ (1 = 1)(Fi(r0) — Fi((T — 1)9))

=7— / F;(sd)ds
T—1

where Fj(t) is the cumulative distribution function of ;. Moreover,
Bl (i X8)] = 71— Fi(rd + 81(8, — 1) + ( — DF((r — 15+ S1(8, - 1)
+ [ (RGo+ 816, - B1) - Fi(s3+ 818, ~ 1)) ds
(= D(E(+ (3, — B1)  Fi((r — 15 +S7(8, — B)
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. / Fi(s6 +ST(B, — B7))ds
T—1

<T (s )ds) _ (T _ / Tl Fi(s0+ST(8, ﬁ’{))ds)
/ Fi(s0+ ST(8, — 87)) — Fi(s6)ds
/

Thus

Elp,(c:,8) — 0, (yi — xIB)

—B1)fi(0) + 87 (B, — B1)o(1)] ds
=87 (81 = B1)fi(0) + S (B, — Bi)o(1).

Thus for any j > s,

injE[plr(Eiv = pr(yi —x; B)] me = B0 +le]ST B1)o(1).
=1

(3.25)
This together with (3.24) and Cauchy-Schwarz inequality entails that

Z aij0( - B, (3.26)

—|— max

h< | L, - 57

where H = diag(f1(0),..., fn(0)). We consider the two terms on the right-hand side of
(3.26) one by one. By Condition 3.3, the first term can be bounded as

181 = Bill2 < Ax/2. (3.27)

2,00

1 T *
FCECA

1
i
00 n

By Condition 3.2 the second term of (3.26) can be bounded as

> xiST(By
1=1

Since B € N, it follows from the assumption k27, = o(\1) that

> ST (81 — Bi)o(1)
i=1

Plugging the above inequality and (3.27) into (3.26) completes the proof of (3.21).

By Hoeffiding’s inequality, if A; > 24/(1 + ¢)(logp)/n with ¢ is some positive constant,
then

max
Jj>s

< Fn Z Si (8 Jo(1)| < nv/p = sk, |18y — Bi20(1).

< Chpy2o(1) = o(A1). (3.28)

max
j>s

2)\2
Pr(IQ" (e ) 2 nA) € 3 2exp< )

j=s+1 421 1 7,]
:2exp(logp—s—n)\1/4)
=O0(p~°).
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Thus, (3.22) holds with probability at least 1 — O(p~¢).

We now apply Corollary 14.4 in [3] to prove (3.23). To the end, we need to check three
conditions of this corollary. For each fixed j, define the function space I'; = {y3,; : B € N'}.
From the expression of vg ;, E[yg,;(x;,y;)] = 0 for any vg ; € I';. Since p (-, ) is bounded,
we have

n

S ) = -3 (i —X78,0) — e 0) ~ B s~ XT8.6) — e, )

<A4.

1/2
Thus |1yl = (£ Sy 73, @am) <2
We will calculate the covering number of the functional space I';, i.e., N(-,I';,] - |l2).

For any 8 = (87,82)" € N and 8 = (EI,,@;P € N, by Condition 3.1 and the mean value
theorem,

Elo, (y: — %7 B,0) — pi(e:,0)] — Elp) (i — X} B,8) — plp(:,0)]
_ / IF(s0) = Fi(s5 + 87(8y ~ B)] s

_/:_1 {Fi(s(s)—FZ-(S(S‘f’SiT(Bl —B1))| ds

:/T [ (55+ST(B1—ﬁT))—Fi(S5+S?(51‘5T))} ds

/ fi(a10)SE (B, — By)ds

- fz(alz) (B /61) (329)

where aj; lies on the segment connecting SZ»T(B1 — B7) and ST(B; — B7). Since fi(u)s are
uniformly bounded and &,, = max;;|x;;|, we have

2B [0 (5s = X1B,6) = pr(eis8)] — 2, E [ (yi = xIB,0) = pl(i,0)]|
< Oy 8181 = B)| < CllaySill2llB) = Bulla
< CVsni 1By = Ball2 (330)

where C' is a positive constant. Considering the definition of A, it is easy to know that
for any 8 = (87,83)" € N, we have ||B||2 < 2v,. Then from Lemma 14.27 in [3], N in
R® can be covered by (1 4 4+, /6)® balls with radius 0 < § < 2,. It follows from (3.30)
that the 2! ~*-covering number of T'; is N (227%, T}, || - [|2) < 7 (1 + C~'2%4,x2/5)°, where

0<k< logTZn. Thus, after some simple calculations, we obtain
log (14 N (22771, - |l2))
<log14 + slog (1 4+ C~'2%, k2 /s)
<log14 + 0712’“7"53/2/1%
<4 (1 + C_lyns3/2mi) 22k,
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Hence, conditions of Corollary 14.4 in [3] are checked and we obtain that for any ¢ > 0,

va Xi, i) f<

6\/1 + C~1y,8%/2k2 logyn + 4 + 4t)>

2
< 4dexp (_né)

Taking ¢t = 1/C(logp)/n with C' > 0 large enough constant, we can get that

sup
BeN |V

Z 'Yﬁ,j Xi, Yi)

Pr | maxsup
Jj>s ,@EN

18 \/1 + C~17,5%/2K2 log, n)
N

<4(p— s)exp (Clggp) — 0.

Hence, if \/1 + 7,53/2k2 logy n = o(y/n\1), then (3.23) holds with probability at least 1 —
o(p~¢). Now, the proof of this lemma is completed.

Based on the above lemma, we can complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Since 3 = ( (1)T,0T)T € RP? satisfies the KKT condition, then

,@ is a minimizer of ®,(3,5). To prove Theorem 3.2, we only need to verify the following
condition

Q" p(y = 5B, 8)|| . < nAi, (3.31)

where p/ (u,8) = (p-(u1,9),..., 0, (un,d))" for any vector u = (uq,...,u,)"T € R™ with
po(u;, 6) defined as before. The KKT condition and the strong convexity of ®.(3, ) ensure
that 3 is a global minimizer of ®,(3,¢). Define events

={I8} - Bil2 <}, A2 = {;up 1Q" - (y — SBY, 6)l|se < Ml} 7 (3.32)

where 7, is defined in Theorem 3.1 and
N={B=(B1.82)" €R”: B, =0,[8, = Bil2 < m}. (3.33)

Then by Theorem 3.1 and Lemma 3.3, Pr(4; N A2) > 1 — O(n~°). Since B € N on the
event Aj, the inequality (3.31) holds on the event A; N A;. Now the proof of Theorem 3.2
is completed. O

Until now, we have established model selection consistent property of the SQEN estima-
tor. It ensures a good statistical behavior. In the next section we will consider how to solve
the optimization problem (2.3) which is another crucial issue.

Optimization Algorithm

In this section, we will construct an efficient algorithm based on the Majorize-Minimize
(MM) technique. Moreover, we will prove the convergence of this algorithm. Finally, we
will show that the solution sequence generated by this algorithm converges to the optimal
minimizer of (2.3).
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In order to obtain the optimal solution of the model(2.3), we will take advantage of
majorized function of S;(3,9), which is defined as

L5+§

M (B, @, 0) = Sz(,0) + (Vg Sr(t,0), 8 — o) +

where £ > 0 is sufficiently small, VgS;(e,8) = >0 | —aip) (y; — X7 a ,0) (if it is not am-
biguous, we shortly writeVS; (e, d) = VgS (a,8)), @ € R? and Ls = $Apax (X" X). Thus,
for any 3 # a € RP, we have

18 — I3,

M: (8, a,0) > S:(8,0) and M, ¢(8,8,9) = S-(B3,0). (4.1)
By virtue of M, ¢(8, o, d), we consider the following optimization problem
841 = angmin {M-(8.8°,0) + nhi 8] + nAo[813) (42)
€RP

where 8° is a given initial point. The following, we will show that we can solve this opti-
mization problem in stead of (2.3). Namely, we need to demonstrate Jc g ,8 and ,8 is the
optimal minimizer of (2.3). Now, let’s show this step by step. First lets give the analytic
expression of B5T1. The following theorem will show this result.

Theorem 4.1. If B is a global minimizer of MTg(ﬁ,a 9) + n)\1|\,3||1 + nX2||B]|2 for any
fized 7 € (0,1),06,€, A1, A2 > 0, € RP and Ls = tAmaa(X7X), then B can be analytically
expressed by

B =

L ~ ~ A
#—_”:g%sign(ﬁ) o max{|ﬂ| — LZ-:E’O} , (4.3)

where B = o — VS-(a,8)/(Ls + £), “o” is the Harmard product of two vectors, and ||
represents the vector as the same dimension of 3 and its components are the absolute value
of corresponding one of 3.

Proof. For the definition of ,@, we have
B = aggr];}in {M; £(B, @, 8) + nhi|Bll1 + nAal| B3}
ERP

= argmin {ST(a, 0) +(VgS-(a,9),8 —a) + Ls +£
BERP

18—l + nA Bl +nA2||ﬁ||2}

L5+§

= argmin {(VgST(a, 0),8—a)+
BERP

18— a2 + nnllB] +m2||ﬁ|2}

Ls+¢

_ argmin{ 18— Bl + A1l +n/\2||ﬁ2}

BERP
here B = o — VS (e, 0)/(Ls +&). Hence, for any i € {1,2,...,p},
B; = argmin {Ls;f(ﬁi — Bi)? + nAdlBil + W\zﬂf} = f(Bi)- (4.4)

Bi€R

Denoting A := Ls + &, then f(8;) will be

~ 2 ~ ~ 2
(3 +ndo) (8- mmt) + 552 (5 +nn) (Bmm2) . B>,
f(Bi) = %,@2, , , Bi = 0,
(5 +nda) (8- 3mr) + 882 (3 +nh) (R382) . A<
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In order to get B& we will discuss in two cases.

Case 1: If &8i-nh o 0, then AEZ' —nAy > 0. It follows that EZ > 0 and further more

_ A+2no
ABi+niy
Atonn, > 0

Therefore, when 3; > 0, the minimum point of f(5;) is ABi—mAy

Atana,» and the objective

-~ ~ 2
function value is %ﬂf — (% + n/\g) <%> . While when g; < 0, the minimum point of

f(B:) is 0, and the objective function value is %Agf. Considering

- 2
A~ A, A AB; — n\i
551 > 551 - <2 + n)\2> (A o > ; (4.5)

hence the global optimal solution of (4.4) is Bl = %. We can see BZ and Ez have the
same sign.

Case 2: If &8i-nh < 0, the sign of ABitnd oant he determined, we neen to consider

A% . At2n;
ABitnA ABi+n
two cases Fi70 < 0 and F55 > 0.

First, when 3; > 0, the minimum poin’E of f(B;) is 0, the objective function value is %Bf
ABi+nA
A—&-QTM; <0

point of f(8;) is AAB_S:):\;, the objective function value is %EE - (% + 1) (AAB_S:;; )2. If
we assuime % > 0, the minimum point of (4.4) is BZ = 0. Therefore the global optimal

solution of (4.4) is ,@ _ ABitn) < 0, which has the same sign as B;

Second, when §; < 0, if we assume (which implies Ez- < 0 ), the minimum

A+2n)\
Combining the above discugsion7 we can obtain the optimal solution of (4.4)
- ~ AlB;| — nA
Ls+¢€ . > > nA
=053 S i) il — 00
L§+£+2n)\251gn(ﬁ) max{m Tt € }
Thus,
5 Ls+¢ . ~ nAy
- ) TS5 g - 0p.
B (B omax {31 - 2.0}
R O
We have calculated the form of 3, so we can update 8" as
Ls+¢& .~k ~k n
k+1 s 1
=— - 0 4.6
B = e sign(B) omax {3 - 20} (1.6

where 8 = B — VS, (8%,8)/(Ls +£).

In order to solve model (2.3), we are going to present the iterative scheme called SQEN-
MM in the following Table 1.

Based on Theorem 4.1, the following theorem establishes the relationship of optimal
solutions between (2.3) and the problem

argmin {Mng(g,[a,a) a8 + n)\2||ﬁ||§} . (4.7)
BeRP
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Table 1: Tterative scheme of SQEN-MM for SQEN.

SQEN-MM Algorithm
Initialize: X,y,tol,A\1 > 0,2 > 0,6 > 0,& > 0, maxiter, Ls = %)\max(XTX) and 3°
for k=0:maxiter

Compute 3" = 85 — VS, (8%,5)/(Ls + &);

Compute gFt! = %sign(ﬁk) o max {|Bk| - LZ)\-!}ﬁ ,O}
if |81 — B¥||2 < tol
break
end
End

Output: gF+1

Theorem 4.2. Let 7 € (0,1),8,£, A1, A2 > 0. If B is a global minimizer of (2.3), then B is
also the global minimizer of (4.7).

Proof. 1f B is a global minimizer of (2.3), since M ¢ (,3,,5’, 9) is the majorized function
of S;:(3,9), so we will have

M, ¢(8,8,6) +nxi Bl +nXa||BI3 > S-(8,6) + ni |81 + nra||BI3

> S,(B,6) +n\i|Bl1 +nra||Bl3
= M, ¢(B,8,0) + nAi||B]l1 + nx2| B3

O
Then we can build the necessary and sufficient conditions for the solution of fixed point
equation to be the optimal solution of (2.3).

Theorem 4.3. Let 7 € (0,1),8,£, A1, > 0,Ls = %)\max(XTX). Then B is a global
minimizer of (2.3) if and only sz‘] satisfies the following fized point equation

~ L(;—f—é' . ~ o - n\i
B (B omax { 3] - 2.0 (4.9

where B = 3 — VS-(8,0)/(Ls +€).

Proof. Necessity: Since B is the global minimizer of (2.3), it is also the global minimizer of
M, ¢(8,8,6)+X]8]l1+A2]|8]|3 from Theorem 4.2. Then by the Theorem 4.1 (with o = 3),

3 satisfies the fixed point equation.
Sufficiency: Due to the convexity of the objective function in (2.3), 8* is the global
minimizer of model (2.3) if and only if 0 € 9(®,(8")). That is to say

0 € A(S7(8,6) + n\ Bl + nr2lB3) |s=p-
= VST(,B*,é) + 2’17)\2,3* + n>\16(||ﬂ*||1)

From the fixed point equation, we have

~ Ls+¢ on(B) o 3 nA1
B (B omax Bl - £ 0
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— argmin {M.¢(8,8,5) + nA1 |81 + n2|8]3}

BeRP

. Ls+
= argmln{ 5 +¢ 2|81 + n)\2||ﬁ||§} . (4.9)

BeRr

Considering the convexity of the objective function in (4.9), we have

L
oea (L2 L 18- Big + unlilh + nallg) |5

= (Ls + &) (B — B) + 20228 + n)0(|8]1)
— VS-(B,6) + 20028 + n) (| B]1),

where the last equality derives from 8 = 8 — VS, (B, 8)/(Ls + €). Hence, B is the global
minimizer of model (2.3). Thus theorem 4.3 holds. O

By means of the above results, we are able to establish the convergence theorem of the
proposed algorithm SQEN-MM.

Theorem 4.4. For a given 7 € (0,1),6,&, A1, A2 > 0, let {,Bk} be the sequence generated by
(4.6) and ®,(8%,8) = S,(B8",5) + n\i[|B" ||l + nA2||B*3, then

(1) ®,(8") is monotonically non-increasing and converges to ®.(8), where B is any ac-
cumulation point of {ﬂk};

(2) {B"} is asymptotically regular, namely, kli_}rg@ |85 — BF ||y =

(3) {B"} converges to the unique global minimizer of problem (2.3)

Proof. (1) From the expression of ®, (8", §), we have

o, (B, 0) = S (B, 8) + nd |81 + nAa | BF T3
(%)
< Moe(B51, BY,6) + nAd B 1 + nol| B3

(id)

M¢(8*,8%,8) + nA |81 + nA2)| B¥(|3
= S-(8",8) + nh1[|B*|1 + nAa | B¥13
= ¢T(ﬂku6)7

where (i) follows from M, ¢(8"™ a,d) is the majorization of S (8! d), and
(74) derives from (4.2). This indicates that {<I> (B8%,8)} is monotonically non-increasing.
As {®@,(8*,6)} is bounded from below, {®,(8*,8)} converges to a constant ®. For any 8 €
{Bl®- (8, 5) <®.(B° ,0)}, we have n)\g||ﬁ||2 < ®.(8,0) < @,(8%6), hence
1813 < n)\2<I> (B°,8), so the set {B|®,(8,6) < ®,(8°0)} is bounded. From (8" ¢
{,6|<I> (B,0) < . (B° ,0)} which is bounded, it ylelds that {B"} is also bounded, and thus
{ﬂ } has at least one accumulation point. Let ﬁ be an accumulation pomt of {,8 }. By the

continuity of ®,(3) and the convergence of {®,(8*,8)}, we get {®,(8%,8)} — d=9, (,6, 0)
as k — oo.
(2) By simple calculation, we have

CI)T(/@]C)(S) - (I)T(ﬁkJrlaé) = S‘r(ﬂkaé) + W\lHﬁkHl + n)‘2|‘ﬂk”g
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— (S2(8*7,0) + nAd 185 [l + A |8 3)

= Me(8". 8", 8) + nAl|B" 11 + na|B*3
= (8810 + nn 1B I+ maallB )
@®
> Meg(851,8%,0) + nAa| B +nrall 853
= (5810 + nnlIB I+ mallB )
= T,E(ﬂk+17/6k76) - ST(lak+176)
(i0)
< 5:(8",0) +(VS-(8*,0), 8" — B%)
L +
S g B - 584 5)

(i47)

< 5.(8".0) + (vS.(8",0), 8 — gty + LTS

18" — B*113
- (&(ﬂ’“, 0) +(VS8,(8",0), 8" — 8%) + 7”6“1 - ﬂkné)
= S8t - B3,

where (i) derives from gF™! = argmin{Mr,g(ﬁ,,@k,é) +nM 181 +n)\2||,6\|§}, (47) holds
BERP

due to S,(8",0) + (VS (8%,8), 88 — g*) + %H,@]Nrl — B*|12 being the majorization of
S-(8,0), and (i) follows from the convexity of S-(3,0). Hence, for a given £ > 0 and any
N > 0, considering ®,(3,6) > 0, we have

N N
S8 - BHE < 23 (0081 — 2.(84)
k=0 k=0
<2 (080 - 2.(8".0))
< %@(ﬁoﬁ) (4.10)

which implies that >~ |85 — B¥||2 < co. Thus lim HﬁkH — Bl =0.

(3) Let {,6 '} be a convergent subsequence of {/6 } and B be its limit point, i.e.,

khm ghi = ﬁ Since S;(8,0) is continuously differentiable, we can derive
— 00

B S.(8%.8) = S.(B,9) -
khﬁlﬁ = Jlim g% - = =B - T =8

Then the convergency of {3} and the asymptoticy of {8*} imply
185 = Bll> < (185" — B [|> +[18% — Bll2 — 0, as k; — 0, (4.11)

ks +1} also converges to 3 So we can obtain that

Ls+&
1 k‘—‘rl_ 1
kj {3320[3 kj—oo Lg + § + 2nAs

which guarantees that {3

81gn(ﬁkj)oma><{|,6 - 0}
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 Li+e - an
L5+€+2M281gn(ﬁ)oma>c{lﬁl Lﬁg,o},

which means 8 = %Sign(ﬁ)omax { 18| — L":jrlg , O} . Finally, 3 is the global minimizer

of (2.3) from Theorem 4.3. Since (2.3) is strongly convex, 3 is unique. Hence, {3*} converges
to the global minimizer (2.3).

Numerical Study

In this section we focus on the numerical studies of our algorithm to show it’s efficiency. We
apply our method to simulation data with six different errors. And we also compare our
method with Lasso and Elastic net.

To assess the performance of the proposed method, we simulate data from the high-
dimensional linear regression model

y=XB"+e, (5.1)

where the data set has n = 100 observations and p = 400 parameters. In our experiments
we chose the first 15 elements nonzero, i.e.,

B*=(3,...,3,0,...,0), (5.2)
——

15 385

and the predictors X are generated as follows:

2 =21 +e%, Zy ~N(0,1), i=1,...,5,

@i = Zo+ €%, Zo~N(0,1), i =6,...,10,

xi=Z3+€%, Z3~N(0,1), i =11,...,15,

z; ~ N(0,1), z;independent identically distributed,i = 16, ..., 400,

where €7 are independent identically distributed. For the distribution of the noise ¢, we
considered the following six scenarios:

(a) normal errors with mean 0 and variance 4 (N(0,22));

(b) two times the t-distribution with degrees of freedom 3(2¢(3));

(c) mixture of normal distributions, MixN, 0.5N(—1,22) + 0.5N (8, 1);

(d) log-normal distribution, LogNormal, ¢ = exp(1t12%) where Z is the standard normal
distribution;

(e) the Cauchy distribution with density location parameter 0, scale parameter 2;

(f) the Laplace distribution with location parameter 0, scale parameter 2.

There are three equally important groups, and within each group there are five members.
There are another 385 pure noise features. An ideal method would select only 15 true features
and set the coefficients of the 385 noise features to 0.

We compared the SQEN method with two other methods in a high dimensional setting:

(a) LASSO, the penalized least squares estimator with /;-penalty as in Tibshirani [17];

(b) Elastic net, the penalized least squares estimator with [i-penalty and ly-penalty
proposed by Zou and Hastie in [19].

Note that, we use the code of these two methods provided by Matlab. And the tuning
parameter grid is used as in our method. All runs are performed on an laptop with Intel
Core(TM)i7-2640M CPU (2.80 GHz) and 8 GB RAM.
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The following five performance measures were calculated:

(i) The mean-squared-errors (MSE), which is MSE := ||,6 B*||3/400;

(ii) The mean-squared-errors on the test data set (Test-MSE), which is MSE := ||ytest —
Xtest,@H%/ntest, where (Yiest, Xtost) are the data from test data set, niest is the number of
observations in test data set;

(iii) the number of false positive results, FP, which is the number of noise covariates
that are selected;

(iv) the number of false negative results, FIN, which is the number of signal covariates
that are not selected;

(v) the elapsed time per run, CPU.

For the SQEN, the tuning parameters A, Ao were chosen optimally on the basis of
an independent validation data set which has one thousand observations. We ran a two-
dimensional grid search to find the best (A1, A2) pair that minimizes mean Test-MSE. Such
an optimal pair was then used in the simulations. A similar method was applied in choosing
the tuning parameters in the LASSO and the Elastic net. Throughout the experiments,
we choose the initial iterate to be the initial point for this method is set to be Y = O,,
tolerance error is tol = 1074, the smoothing parameter § = 2 and the parameter ¢ = 0.1.
For the quantile parameter 7, we choose three values {0.25,0.5,0.75} to demonstrate the
performance of our method. The numerical results are displayed in Tables 2-4.

Table 2: Numerical results for 7 = 0.25 in terms of MSE, Test-MSE, FP, FN and CPU.
All the measurements are the mean of the results after repeated 100 times. The numbers in
parentheses are the corresponding standard errors.

LASSO | 0.5830(7.91e-3) 0.1716(7.79¢-2) __ 18(2.41) 0(0) 121

MixN Elastic net | 0.5832(9.65e-3)  0.2272(9.79¢-2)  43.5(6.36) 0(0) 1.06
SQEN | 0.3010(3.15¢-3)  0.1753(5.73e-2)  17.5(2.12) 0(0) 9.70e-2

LASSO | 0.5968(1.316-3) 0.3525(4.02¢.2)  10.5(2.78) 1(0) 2.19

LogNormal | Elastic net | 0.5954(7.30e-3)  0.4417(1.45e-1)  51.5(5.71)  0.5(0.71) 1.25
SQEN | 0.3052(7.62¢-3)  0.3238(8.81e-2)  7.20(1.21) 0(0)  9.37e2

LASSO | 0.6104(3.030-2) 1.0323(3.33c-1)  18.5(2.36)  3(4.24) _ 3.38

Cauchy | Elastic net | 0.6021(2.29e-2) 1.1240(3.32e-1)  46(4.24) 1(1.41)  1.93
SQEN | 0.6255(6.78¢-4) 1.0751(4.78¢-2)  20(4.38)  3.5(0.71)  1.27e-1

LASSO | 0.5973(3.756-3)  0.3221(1.37e-1)  18.5(7.58) 0(0) 1.28

Laplace Elastic net | 0.5958(5.82e-3)  0.4079(2.65e-2)  48.5(10.02) 0(0) 1.46
SQEN 0.3061(1.79e-3)  0.3499(3.30e-2) 13(2.41) 0(0) 8.81e-2

Tables 2-4 show the simulation results of MSE, Test-MSE, FP and FN for 7 = 0.25,0.5
and 0.75. To be fair, we simulate 100 times for each model. Then we report the mean value
and standard deviation (in parentheses) for all measurements. From these tables, we can
see that the values of FIN are all zeros except when the errors are from Cauchy distribution.
This indicates that all significant variables are selected. In fact, when the data has Cauchy
error, not only SQEN doesn’t perform well, but also Lasso and Elastic net. For MSE and
CPU, Lasso and Elastic net have almost the same performance, however, SQEN is much
better than them.

In our numerical experiments, the first 15 predictors are collinear. We wish they are
all in the model together. In fact, the simulation results show that these 15 predictors are
included in the model together except for Cauchy distribution error. Hence, the SQEN has
the grouping selection ability, and it also can produce a sparse estimator. In addition, our
method works well not only for normal distribution, but also for heavy-tailed distribution.
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Table 3: Numerical results for 7 = 0.5 in terms of MSE, Test-MSE, FP, FN and CPU.
All the measurements are the mean of the results after repeated 100 times. The numbers in
parentheses are the corresponding standard errors.

LASSO | 0.5830(7.91c-3) 0.1716(7.79¢-2)  18(2.41) 0(0) 121

MixN Elastic net | 0.5832(9.65¢-3) 0.2272(9.79¢-2)  43.5(6.36) 0(0) 1.06
SQEN | 0.3010(3.15e-3)  0.1753(5.73e-2)  17.5(2.12) 0(0)  9.70e-2

LASSO | 0.5968(1.31c-3) 0.3525(4.020.2)  10.5(2.78) 1(0) 2.19

LogNormal | Elastic net | 0.5954(7.30e-3) 0.4417(1.45e-1)  51.5(5.71)  0.5(0.71)  1.25
SQEN 0.3052(7.62e-3)  0.3238(8.81e-2) 7.20(1.21) 0(0) 9.37e-2

LASSO 0.6104(3.03e-2)  1.0323(3.33e-1) 18.5(2.36) 3(4.24) 3.38

Cauchy Elastic net | 0.6021(2.29e-2) 1.1240(3.32¢-1) 46(4.24) 1(1.41) 1.93
SQEN | 0.6255(6.78¢-4)  1.0751(4.78¢-2)  20(4.38)  3.5(0.71) 1.27e-1

LASSO | 0.5973(8.75¢-3)  0.3221(1.37e-1) _ 18.5(7.58) 0(0) 1.28

Laplace Elastic net | 0.5958(5.82e-3)  0.4079(2.65e-2)  48.5(10.02) 0(0) 1.46
SQEN | 0.3061(1.79¢-3)  0.3499(3.30e-2)  13(2.41) 0(0)  8.8le2

Table 4: Numerical results for 7 = 0.75 in terms of MSE, Test-MSE, FP, FN and CPU.

All the measurements are the mean of the results after repeated 100 times. The numbers in

parentheses are the corresponding standard errors.

Error Methods MSE Test-MSE FP FN CPU

LASSO | 0.5931(1.19¢-2)  0.2573(1.450-1)  16.5(3.07) 0(0) 1.78

N(0,4) | Elastic net | 0.5879(8.06e-3)  0.2701(1.55¢-1)  20.5(5.07) 0(0) 1.33
SQEN 0.3037(3.05¢-3)  0.2561(7.46e-2)  19(4.89) 0(0) 9.68¢-2

LASSO | 0.5892(6.59¢-3)  0.2076(8.61e-3) __ 10(1.66) 0(0) 1.66

2t(3) Elastic net | 0.5835(2.09e-3)  0.2169(1.09¢-2)  39.5(9.19) 0(0) 1.18
SQEN 0.3068(7.81e-3)  0.3330(2.01e-1)  9.5(1.48) 0(0) 7.230-2

LASSO 0.5811(5.18e-3) 0.1748(1.52¢-2) 21(2.89) 0(0) 1.16

MixN Elastic net 0.5801(4.63e-3) 0.2021(2.24e-2) 49.5(3.54) 0(0) 0.64
SQEN 0.2995(3.79E-3)  0.1458(7.99¢-2)  23.5(1.62) 0(0) 9.23¢-2

LASSO | 05955(1.02¢2)  0.3081(2.55e-1)  13.5(2.85) 0(0) 1.53

LogNormal | Elastic net | 0.5873(1.44e-2) 0.2814(2.12¢-1) 34.5(4.02) 0(0) 1.26
SQEN 0.3012(1.42e-3) 0.2232(9.24e-3) 10.5(2.25) 0(0) 7.57e-2

LASSO | 0.6024(1.11c2)  0.9614(6.78c-1)  20.5(3.54) 0.5(5.07c1)  1.64

Cauchy Elastic net | 0.5974(1.05e-2) 1.0259(6.45e-1) 51.5(7.78)  0.5(7.07e-1) 1.53
SQEN 0.3217(1.86e-2)  1.1587(2.05e-1)  15.85(1.68)  2.5(0.55)  6.08¢-2

As we can see, all the methods seem to choose a bunch of variables. In fact, all the three
methods can select few variables as you want. What we need to do is only increasing the
value of A\;. However, in our method, the criterion we used to select tuning parameters is
the Test-MSE, so in the final model, there are more variables.

In our simulation studies, we choose fixed values for . When it comes to real data, we
need to choose it from some more candidates. From the definition of smoothing quantile
function, as § — oo, it tends to least squares, as 6 — 0, it approximates to quantile. So for a
proper choice, our smoothing quantile regression can show a good behavior. The parameter
¢ in majorized function M, ¢(8, a,d) who must make M, (8, o, d) greater than S-(8,0).
From the convexity of S-(8,9), it seems that if £ is large enough, M, ¢(8, a,d) > S-(83,9)
holds definitely. However, in our algorithm, 1/(Ls + &) is the step size. If it is too small,
the algorithm will consume more CPU. So, £ must be not too large. Above all, this two
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parameters must be chosen carefully.

@ Concluding Remarks

In this paper, we focus on how to analyse the high-dimensional data with the collinearity
and heavy-tailed noise. In order to select significant variables, we introduced the penalized
quantile regression with the elastic-net. In view of the quantile loss function is nonsmooth
and nondifferential, we took advantage of its Huber smooth function. This developed the
smoothing model SQEN. This model can work efficiently on the data with heavy-tailed noise
for its robust loss function. Meanwhile, it can also deal with collinearity for the regularizer
elastic-net term. For this new model, we obtained statistical consistent properties of its
estimator. Further more, we proposed an optimization method using Majorize-Minimize
(MM) technique to solve our SQEN model. Before applying it to solve problems, we prove
the global convergence theoretically. Finally, we conduct some numerical experiments to
show the efficiency of the proposed method. Our model is designed for single response,
i.e., only one character is taken as dependent variable. However, as the development of
the society, there are much more multi-responses data and matrix data. In the future, the
extension of this model for these data sets is worth of study.
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