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regression model, which is the so-called LASSO and is a penalized least squares method
imposed an l1-penalty on the regression coefficients. Owing to the nature of the l1-penalty,
the LASSO does both continuous shrinkage and automatic variables selection simultaneously.
Zou et al [20] proposed a new method for variables selection which penalized least squares
with elastic net penalty. The elastic net has a grouping effect, where strongly correlated
predictors tend to be in or out the model together. The above LASSO type methods have
nice properties under the Gaussian assumption. However, the Gaussian assumption may
not hold in practice, especially in the high-dimensional setting.

Quantile regression introduced by Koenker et al. [10] performs well in the situations where
the noises are heavy-tailed or heterogeneous, which includes the least absolute deviation
(LAD) regression as one special case. Quantile regression has been widely studied in many
different areas such as economics, survival analysis, technology, sociology and biology and so
on, see [7, 11–14] for more details. Recently, regularized quantile regression was studied for
high-dimensional sparse model, see, [1, 2, 4, 8, 9, 18, 21]. For instance, Wang [18] studied the
l1-penalized LAD regression and showed the estimator achieves near oracle risk performance
with a nearly universal penalty parameter. Aravkin et al. [1] considered quantile regression
with l0 and l1 penalties and substituted the quantile loss function with Huber smooth
function. They proposed a generalized orthogonal matching pursuit (OMP) method for
variable selection. Fan et al. [4] constructed a penalized quantile regression with the weighted
l1-penalty (WR-LASSO) and established the oracle properties of the estimator. Mkhadri
et al. [16] discussed a coordinate descent algorithm for computing the penalized smooth
quantile regression (cdaSQR) with convex and nonconvex penalties.

Motivated by the above arguments to handle the high-dimensional sparse model, we
consider quantile regression with elastic net penalty (QEN) to regress the heavy-tailed and
collinear high-dimensional data. Although the quantile loss function is convex, it isn’t
smooth. In order to get an efficient algorithm to solve the optimization problem, we will
take advantages of the Huber smooth function. By replacing the quantile loss function with
the Huber smooth function, we obtain the smoothing quantile regression with elastic net
penalty (SQEN). We show that such model not only can produce a sparse solution, but also
has grouping effect property. Meanwhile, our analysis shows that the SQEN estimator has
statistical consistent properties. In order to get the SQEN estimator, we propose an iterative
method based on the majorize minimize (MM) technique, which is called SQEN-MM. We
then establish its global convergence. Finally, we illustrate the efficiency of the SQEN-MM
algorithm by some numerical experiments.

The remainder of the paper is organized as follows. In section 2, we introduce the elastic-
net penalized smoothing quantile regression model and show its grouping effect property.
Then, we derive the statistical properties of the estimator in Section 3. In Section 4, we
establish the algorithm of the SQEN-MM and show its convergence. In Section 5, numerical
experiments are reported to show the efficiency of the proposed method. Finally, we make
some conclusions in Section 6.

2 Elastic-Net Penalized Smoothing Quantile Regression

In this section, we first introduce the quantile regression with elastic net penalty (QEN).
Then, we construct the smoothing quantile regression with elastic net penalty (SQEN) via
smoothing the general quantile loss function by the Huber smooth function. Finally, we show
that the SQEN model has a grouping effect property which is important to collinearity.
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Consider the high-dimensional linear regression model

y = Xβ + ε, (2.1)

where X = (x1,x2, . . . ,xn)
T = (X1,X2, . . . ,Xp) is a n × p design matrix with p >> n.

Here the elements of xi denote the values of predictors for i-th sample, the elements of
Xj represent the values of j-th predictor for n samples. Throughout the paper, we use
bold letters to represent column vectors. y = (y1, y2, . . . , yn)

T is a n-dimensional re-
sponse vector, β = (β1, β2, . . . , βp)

T is a p-dimensional regression coefficient vector, and
ε = (ε1, ε2, . . . , εn)

T is the n-dimensional measurement error/noise vector with all compo-
nents εi(i = 1, 2, . . . , n) being independently distributed and satisfying Pr(εi ≤ 0) = τ
for some known constant τ ∈ (0, 1). In our model, there is no intercept, so we assume
X = (X1,X2, . . . ,Xp) with each vector Xi being normalized such that ∥Xi∥2 =

√
n for

i = 1, 2, . . . , p. Under this model, for a given xi, x
T
i β is the conditional τth-quantile of yi.

For the high-dimensional linear regression problem, a key assumption is the sparsity of the
true coefficient vector β∗, which means that the proportion of nonzero coefficients is small.
Sparsity guarantees the model identifiability and enhances the model fitting accuracy and
interpretability. Here, we denote the number of nonzero coefficients by s. Without loss of
generality, we assume β∗ = ((β∗

1)
T,0T)T with β∗

1 ∈ Rs,0 ∈ Rp−s, that is, only the first s
entries are nonzero. We rewrite the design matrix X as X = (S,Q) where S = (X1, . . . ,Xs)
the submatrix of X corresponds to the covariates whose coefficient are nonzero. We view
those covariates as signal covariates and the rest as noise covariates. Here, the submatrix
Q = (Xs+1, . . . ,Xn) corresponds to the noise covariates whose coefficients are zero.

In order to estimate sparse regression coefficient vector β∗, we propose the quantile
regression with elastic net penalty (QEN)

min
β∈Rp

{
n∑

i=1

ρτ (yi − xT

i β) + nλ1∥β∥1 + nλ2∥β∥22

}
. (2.2)

The quantile loss function is defined as ρτ (x) = (τ − 1(x ≤ 0))x, τ ∈ (0, 1), with 1(·) being
the indicator function, ∥β∥1 =

∑p
i=1 |βi| is the l1-norm of β, ∥β∥2 =

√∑p
i=1 β

2
i is the

l2-norm of β, and λ1 > 0, λ2 > 0, are the penalized/regularization parameters. We call
nλ1∥β∥1 + nλ2∥β∥22 the elastic net penalty term.

The quantile loss function in model (2.2) is strongly convex but nonsmooth. It is difficult
to calculate the sub-differential of the objective function. One way to study nonsmooth
model is to adopt a smooth loss function to substitute the nonsmooth loss function. In this
paper, we will use the quantile Huber smooth function to take the place of the quantile loss
function.

For any given τ ∈ (0, 1) and δ > 0, the quantile Huber smooth function is defined as

ρτ (θ, δ) =


(τ − 1)θ − δ(1−τ)2

2 , θ ∈ (−∞, (τ − 1)δ),
θ2

2δ , θ ∈ [(τ − 1)δ, τδ],

τθ − δτ2

2 , θ ∈ (τδ,+∞).

It is obvious that this function is convex. By the definition of ρτ (θ, δ), we can obtain the
following differential proposition. The proof of the proposition is simple, which is omitted
for brevity.

Proposition 2.1. For any fixed δ > 0 and τ ∈ (0, 1), the function ρτ (yi − xT
iβ, δ) is

continuously differentiable with respect to β ∈ Rp. Moreover, its first order partial derivative
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with respect to β is

∇βρτ (yi − xT

iβ, δ) = −xiρ
′
τ (yi − xT

iβ, δ) =


−(τ − 1)xi, θi ∈ (−∞, (τ − 1)δ),

− θi
δ xi, θi ∈ [(τ − 1)δ, τδ],

−τxi, θi ∈ (τδ,+∞).

where θi = yi − xT
iβ for all i = 1, 2, . . . , n.

Now the model (2.2) can be smoothed as smoothing quantile regression with elastic net
penalty (SQEN)

min
β∈Rp

Φτ (β, δ) :=
{
Sτ (β, δ) + nλ1∥β∥1 + nλ2∥β∥22

}
, (2.3)

where Sτ (β, δ) =
∑n

i=1 ρτ (yi − xT
i β, δ). Let β̂, β̂

δ
stand for the solution of (2.2), (2.3),

respectively. It is obvious that β̂δ → β̂ when δ → 0. Therefore, in order to obtain the
optimal solution of (2.2), we can take advantage of ρτ (·, δ). So we will mainly discuss
the properties about the problem (2.3). Based on this model, we will propose an effective
method to purse the sparse solution of high-dimensional linear regression in Section 4. In
the following, we will show model (2.3) possesses an important property–grouping effect.
First, let’s consider an extreme situation.

Proposition 2.2. Let β̂ be the minimizer of (2.3). If we assume Xi = Xj , i, j ∈ {1, 2, . . . , p},
then β̂i = β̂j for any λ1, λ2 > 0.

Proof. Assume β̂i ̸= β̂j . We construct β̂
∗
as follows

β̂∗
k =

{
β̂k, if k ̸= i and k ̸= j,
1
2 (β̂i + β̂j), if k = i or k = j.

Since Xi = Xj , it is obvious that Xβ̂
∗
= Xβ̂, which means that xT

i β̂
∗
= xT

i β̂, for i =

1, 2, . . . , n. Thus
∑n

i=1 ρτ (yi − xT
i β̂

∗
, δ) =

∑n
i=1 ρτ (yi − xT

i β̂, δ). Considering two simple

inequalities | 12 (β̂i + β̂j)| ≤ 1
2

(
|β̂i|+ |β̂j |

)
, and

( β̂i+β̂j

2

)2
< 1

2

(
β̂2
i + β̂2

j

)
, we have Φτ (β̂

∗
, δ) <

Φτ (β̂, δ). Therefore, β̂ can’t be the minimizer of model (2.3), which is a contradiction. So

we obtain the desired result β̂i = β̂j .
This proposition exhibits that when two predictors Xi,Xj are equal, then their coeffi-

cients β̂i and β̂j will also be equal. In the next theorem, we will generalize this result and

establish an upper bound for the difference |β̂i− β̂j | by using the sample correlation between
Xi and Xj .

Theorem 2.3. Given data (y, X) and parameters λ1, λ2 ≥ 0, the predictors are standard-

ized, i.e., ||Xi||2 =
√
n, i = 1, 2, . . . , p. Let β̂ be the SQEN estimator. Suppose that β̂iβ̂j > 0.

Then

|β̂i − β̂j | ≤
1

2λ2

√
2(1− ρ), (2.4)

where ρ = 1
nX

T
iXj is the sample correlation.

Proof. If β̂iβ̂j > 0, then we have sign(β̂i) = sign(β̂j). From the first order optimal condition
of the elastic-net penalized smoothing quantile regression problem (2.3), we obtain that

0 ∈ ∂β
(
Sτ (β, δ) + nλ1||β||1 + nλ2||β||22

)
|β=β̂ (2.5)
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Let ρτ = (ρ′τ (y1 − xT
1β, δ), ρ

′
τ (y2 − xT

2β, δ), . . . , ρ
′
τ (yn − xT

nβ, δ))
T
, then we can obtain

∂βSτ (β, δ) = −XTρτ . Therefore, for nonzero β̂i and β̂j , we have

0 = −XT

i ρτ + nλ1sign(β̂i) + 2nλ2β̂i,

0 = −XT

j ρτ + nλ1sign(β̂j) + 2nλ2β̂j .

Note that sign(β̂i) = sign(β̂j), we obtain

0 = −(Xi −Xj)
Tρτ + 2nλ2(β̂i − β̂j).

Then, we have |β̂i − β̂j | = 1
2nλ2

|(Xi −Xj)
Tρτ |. Clearly, ||ρτ ||2 ≤

√
n and hence

|β̂i − β̂j | =
1

2nλ2
|(Xi −Xj)

Tρτ |

≤ 1

2nλ2
||Xi −Xj ||2||ρτ ||2

≤ 1

2
√
nλ2

√
||Xi||22 + ||Xj ||22 − 2XT

i Xj

≤ 1

2λ2

√
2(1− ρ).

Note that, when ρ → 1, β̂i and β̂j tend to be equal which means that strong correlated
predictors tend to have the same coefficients. Thus, in the estimation model, they will be
in or out of the model together. It has been pointed out that LASSO doesn’t possess this
property in [20]. This is why we use elastic net penalty in this paper.

3 Statistical Property

In this section, we will establish statistical consistent properties of SQEN.We start with some
notations. Following the terminology in [3], we define the oracle regularized estimator (ORE)

as β0 = (β0T

1 ,0T)T with β0
1 ∈ Rs and 0 ∈ Rp−s being the vector of all 0, which minimizes

Φτ (β, δ) over the subspace {β = (βT

1 ,β
T

2 )
T ∈ Rp : β2 = 0 ∈ Rp−s} . We claim that the ORE

is consistent with the true coefficient vector. We then show that the SQEN estimator enjoys
the same property as the ORE when some conditions are met. In order to do so, we need
introduce some conditions.

Condition 3.1. If fi(x) and Fi(x) are the density function and distribution function of
the error εi, respectively. Then we assume that there exists universal constants c1 > 0 and
c2 > 0 such that for any x satisfying |x| ≤ c1, fi(x) is uniformly bounded in (0,∞) and

|Fi(x)− Fi(0)− xfi(0)| ≤ c2x
2. (3.1)

Condition 3.1 is commonly used in noise distribution, which says the Lipschitz property
of fi(x) around the origin. For instance, the Laplace distribution and stable distributions
including the normal distribution, Cauchy distribution all satisfy this condition.

Condition 3.2. Let H = diag(f1(0), . . . , fn(0)) ∈ Rn×n be a diagonal matrix. The eigen-
values of 1

nS
THS are sandwiched as

0 < λl ≤ λ

(
1

n
STHS

)
≤ λu ≤ ∞.
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Furthermore,
κn ≡ max

i,j
|xij | = o(

√
ns−1). (3.2)

Condition 3.2 is on the submatrix S and the magnitude of the entries of X. It is worth
to note that the above condition on κn is satisfied with asymptotic probability one when
the design matrix is generated from some distributions. If the entries of X are independent
copies from a subexponential distribution, the bound on κn is satisfied with asymptotic
probability one as long as s = (

√
n/ log p); if the components are generated from sub-

Gaussian distribution, then the condition on κn is satisfied with probability tending to one
when s = o(

√
n/ log p)

Condition 3.3. Let γn = C1(
√
s(log n)/n+

√
sλ1 + 2λ2∥β∗

1∥2) with C1 > 0 a constant. It
holds that ∥∥∥∥ 1nQTHS

∥∥∥∥
2,∞

<
λ1

2γn
,

where ∥A∥2,∞ = sup
x̸=0

∥Ax∥∞/∥x∥2 for a matrix A and a vector x. Furthermore, log(p) =

o(nb) for a constant b ∈ (0, 1).

Condition 3.3 is on the correlation of columns in the design submatrix Q and S of X.
Note that the optimal λ1 should be larger than

√
(log p)/n when the data has heavy-tailed

errors.
The following theorem states that the ORE can estimate the correct sign of the true

coefficient vector with probability tending to one, which tells that how well one can do with
the assistance of the oracle information on the location of signal covariates.

Theorem 3.1. Let γn = C1(2
√
s(log n)/n +

√
sλ1 + 2λ2∥β∗

1∥2) with a constant C1 > 0 .
Assume Conditions 3.1 and 3.2 hold if (

√
sλ1 + 2λ2∥β∗

1∥2)
√
sκn → 0, and δ is sufficiently

small, then there exists some constant c > 0 such that

P (∥β0
1 − β∗

1∥2 ≤ γn) ≥ 1− n−cs. (3.3)

If in addition γ−1
n min

1≤j≤s
|β∗

1j | → ∞, then with probability at least 1− n−cs,

sign(β0
1) = sign(β∗

1), (3.4)

where the above should be understood componentwisely.

Proof. The proof is motivated by Theorem 1 in [4], where they deal with l1-norm penalized
quantile function. Here we consider a different case, elastic-net penalized smoothing quantile
regression model. For a given deterministic M > 0, we define the set

B0(M) = {β ∈ Rp : ∥β − β∗∥2 ≤ M, supp(β) ⊆ supp(β∗)}. (3.5)

Then, define the function

Zn(M) = sup
β∈B0(M)

1

n
|(Sτ (β, δ)− Sτ (β

∗, δ))− E [Sτ (β, δ)− Sτ (β
∗, δ)]| . (3.6)

Observing that β∗ is the minimizer of the function E(Sτ (β, δ)) for any β = (βT

1 , 0
T)T ∈

B0(M) with M = o(κ−1
n s−1/2), we immediately obtain that the first order derivation of

E[Sτ (β, δ) − Sτ (β
∗, δ)] is zero at the point β = β∗. Then, we can control E[Sτ (β, δ) −
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Sτ (β
∗, δ)] in terms of Zn(M). In addition, if we can show that for any β = (βT

1 , 0
T)T ∈

B0(M) with M = o(κ−1
n s−1/2),

E[Sτ (β, δ)− Sτ (β
∗, δ)] ≥ 1

3
λln∥β1 − β∗

1∥22, (3.7)

we will easily establish the convergence in Theorem 3.1.
We start to prove (3.7). Taking ai = |ST

i (β1 − β∗
1)|, we have for any β ∈ B0(M),

ai ≤ ∥Si∥2∥β1 − β∗
1∥2 ≤

√
sκnM → 0. (3.8)

We consider two cases of ai = |ST
i (β1 − β∗

1)|. When ai ≤ δ, we can obtain that

ρτ (εi − ai, δ)− ρτ (εi, δ)

=



(1− τ)ai, εi < (τ − 1)δ,

− 1
2δ (εi − (τ − 1)δ)2 + (1− τ)ai, (τ − 1)δ ≤ εi < (τ − 1)δ + ai,

1
2δ (−2εiai + a2i ), (τ − 1)δ + ai ≤ εi ≤ τδ,
1
2δ (εi − (τδ + ai))

2 − τai, τδ < εi ≤ τδ + ai,

−τai, εi > τδ + ai.

=



(1− τ)ai, εi < (τ − 1)δ,

− 1
2δ (εi − (τ − 1)δ)2 + (1− τ)ai, (τ − 1)δ ≤ εi < (τ − 1)δ + ai,

1
2δ (−2εiai + a2i )− (1− τ)ai + (1− τ)ai, (τ − 1)δ + ai ≤ εi < 0,
1
2δ (−2εiai + a2i ) + τai − τai, 0 ≤ εi ≤ τδ,
1
2δ (εi − (τδ + ai)

2 − τai, τδ < εi ≤ τδ + ai,

−τai, εi > τδ + ai.

Using the indicator function, we have

ρτ (εi − ai, δ)− ρτ (εi, δ) = I1 − I2 + I3 + I4 + I5, (3.9)

where

I1 = (1− τ)ai · 1{εi < 0} − τai · 1{εi ≥ 0},

I2 =
1

2δ
(εi − (τ − 1)δ)2 · 1{(τ − 1)δ ≤ εi < (τ − 1)δ + ai},

I3 =

(
1

2δ
(−2εiai + a2i )− (1− τ)ai

)
· 1{(τ − 1)δ + ai ≤ εi < 0},

I4 =

(
1

2δ
(−2εiai + a2i ) + τai

)
· 1{0 ≤ εi ≤ τδ},

I5 =
1

2δ
(εi − (τδ + ai))

2 · 1{τδ < εi ≤ τδ + ai}.

Hence E [ρτ (εi − ai, δ)− ρτ (εi, δ)] = E[I1] − E[I2] + E[I3] + E[I4] + E[I5]. Because Pr(εi ≤
0) = τ,E [1{εi ≤ 0}] = τ , we can directly calculate

E[I1] = E [(1− τ)ai · 1{εi < 0} − τai · 1{εi ≥ 0}] = 0,

and

E(I2) = E
[
1

2δ
(εi − (τ − 1)δ)2 · 1{(τ − 1)δ ≤ εi < (τ − 1)δ + ai}

]
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= E
[
1

δ

∫ ai

0

s · 1{s+ (τ − 1)δ ≤ εi < (τ − 1)δ + ai}ds
]

=
1

δ

∫ ai

0

s · E [1{s+ (τ − 1)δ ≤ εi < (τ − 1)δ + ai}] ds (by Fubini’s theorem)

=
1

δ

∫ ai

0

s · (Fi((τ − 1)δ + ai)− Fi(s+ (τ − 1)δ))ds

=
1

δ

∫ ai

0

s · (fi(0)(ai − s) + o(1)(ai − s))ds (by Condition (3.1))

=
a3i
6δ

fi(0) +
a3i
6δ

o(1).

Similarly,

E[I3] = (fi(0) + o(1))
−(τ − 1)2δai − a2i (τ − 1)

2
,

E[I4] = (fi(0) + o(1))
τ2aiδ + τa2i

2
,

E[I5] =
a3i
6δ

fi(0) +
a3i
6δ

o(1).

Hence, combining the above analysis on E(Ii), i = 1, . . . , 5, we obtain

E [ρτ (εi − ai, δ)− ρτ (εi, δ)] = E[I1]− E[I2] + E[I3] + E[I4] + E[I5]

= 0−
(
a3i
6δ

fi(0) +
a3i
6δ

o(1)

)
+

−(τ − 1)2δai − a2i (τ − 1)

2
(fi(0) + o(1))

+
τ2aiδ + τa2i

2
(fi(0) + o(1)) +

a3i
6δ

fi(0) +
a3i
6δ

o(1)

=
τ2aiδ + τa2i − (τ − 1)2δai − a2i (τ − 1)

2
(fi(0) + o(1))

=
a2i
2
fi(0) +

(2τ − 1)aiδ

2
fi(0) +

(2τ − 1)aiδ + a2i
2

o(1).

where the o(1) is uniformly over all i = 1, . . . , n. When ai ≥ δ, we can obtain the same result.
And when δ is sufficiently small and tends to 0, we easily obtain E [ρτ (εi − ai, δ)− ρτ (εi, δ)] ≥
a2
i

3 fi(0). Furthermore, by Condition 3.2,

E [Sτ (β, δ)− Sτ (β
∗, δ)] =

n∑
i=1

E [ρτ (εi − ai, δ)− ρτ (εi, δ)]

≥ 1

3

n∑
i=1

a2i fi(0)

=
1

3
(β1 − β∗

1)
TSTHS(β1 − β∗

1)

≥ 1

3
λln∥β1 − β∗

1∥22.
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So the inequality (3.7) holds for any β ∈ (βT

1 ,0
T)T ∈ B0(M), but β0 = ((β0

1)
T,0T)T may

not be in the set. Thus, we let β̃ = ((β̃
0

1)
T,0T)T, where

β̃
0

1 = uβ0
1 + (1− u)β∗

1, with u = M/(M + ∥β0
1 − β∗

1∥2), (3.10)

which falls in the set B0(M). Then, by the convexity and the definition of β0
1,

Φτ (β̃, δ) ≤ uΦτ (β
0
1, 0) + (1− u)Φτ (β

∗
1, 0) ≤ Φτ (β

∗
1, 0) = Φτ (β

∗, δ). (3.11)

Using this and triangle inequality, we have

E
[
Sτ (β̃, δ)− Sτ (β

∗, δ)
]

= {Sτ (β
∗, δ)− E [Sτ (β

∗, δ)]} −
{
Sτ (β̃, δ)− E

[
Sτ (β̃, δ)

]}
+Φτ (β̃, δ)− Φτ (β

∗, δ) + nλ1∥β∗
1∥1 − nλ1∥β̃1∥1 + nλ2∥β∗

1∥22 − nλ2∥β̃1∥22
≤ nZn(M) + nλ1∥β∗

1 − β̃1∥1 + 2nλ2

⟨
β∗
1,β

∗
1 − β̃1

⟩
− nλ2∥β∗

1 − β̃1∥22

≤ nZn(M) + n
√
sλ1∥β∗

1 − β̃1∥2 + 2nλ2∥β∗
1∥2∥β

∗
1 − β̃1∥2 − nλ2∥β∗

1 − β̃1∥22.

Define the event Γn =
{
Zn(M) ≤ 2Mn−1/2

√
s log n

}
. Then by Lemma 1 in [4], we have

Pr(Γn) ≥ 1− exp(−c0s(log n)/8). (3.12)

On the event Γn, by (3.12), we have

E
[
Sτ (β̃, δ)− Sτ (β

∗, δ)
]
≤ 2M

√
sn(log n)+n(

√
sλ1+2λ2∥β∗

1∥2)M−nλ2∥β∗
1−β̃1∥22. (3.13)

Taking M = 2
√

s/n +
√
sλ1 + 2λ2∥β∗

1∥2, by Condition 3.2 and the assumption (λ1
√
s +

2λ2∥β∗
1∥2)

√
sκn → 0, we can check that M = o(κ−1

n s−1/2). Combining these two results
with (3.7), we obtain that on the event Γn,

1

3
(λl + 3λ2)n∥β̃1 − β∗

1∥22

≤
(
2
√
sn(log n) + n

√
sλ1 + 2nλ2∥β∗

1∥2
)(

2
√

s/n+
√
sλ1 + 2λ2∥β∗

1∥2
)
, (3.14)

hence

∥β̃1−β∗
1∥22 ≤ 3

λl + 3λ2

(
2
√
s(log n)/n+

√
sλ1 + 2λ2∥β∗

1∥2
)(

2
√

s/n+
√
sλ1 + 2λ2∥β∗

1∥2
)
,

(3.15)
which entails that

∥β∗
1 − β̃1∥2 ≤ O

(√
sλ1 + 2λ2∥β∗

1∥2 + 2
√
s(log n)/n

)
. (3.16)

Note that ∥β∗
1 − β̃1∥2 ≤ M implies ∥β0

1 − β∗
1∥2 ≤ 2M . Thus, on the event Γn, we have

∥β0
1 − β∗

1∥2 ≤ O
(√

sλ1 + 2λ2∥β∗
1∥2 + 2

√
s(log n)/n

)
. (3.17)

Thus Pr(∥β0
1 −β∗

1∥2 ≤ γn) ≥ 1− n−cs holds. From above analysis the second result follows
immediately.
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As shown in Theorem 3.1, the consistency rate of β0
1 in terms of the l2-norm is given by

γn. The first component of γn, C1

√
s(log n)/n, is the oracle rate within a factor of log n,

and the second component C1(
√
sλ1 + 2λ2∥β∗

1∥2) reflects the bias due to penalization.
Though the ORE has the consistent property which helps us to understand the utility

of the oracle information on finding the locations of signal covariates. However locations of
signals are unknown. An important question is that whether the SQEN estimator performs
well when there is no oracle information. The following theorem will give an answer, which
shows that the SQEN estimator enjoys the same property as ORE with probability tending
to one when λ1 and λ2 are appropriately chosen.

Theorem 3.2. Let γn = C1(2
√
s(log n)/n+

√
sλ1+2λ2∥β∗

1∥2) with C1 > 0 a constant. Sup-
pose Conditions 3.1-3.3 hold. In addition, assume that γns

3/2κ2
n(log2 n)

2 = o(nλ2
1), λ1sκn →

0, (
√
sλ1 + 2λ2∥β∗

1∥2)
√
sκn → 0 and λ1 > 2

√
(1 + c)(log p)/n where c is some positive con-

stant. Then, there exists a global minimizer β̂ = (β0T

1 , β̂
T

2)
T of Φτ (β, δ) which satisfies

(1) β̂2 = 0,

(2) ∥β0
1 − β∗

1∥2 ≤ γn,

with probability at least 1−O(n−cs).

In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.3. Consider a ball in Rs around β∗, N = {β = (βT

1,β
T

2)
T ∈ Rp : β2 =

0, ∥β1 − β∗
1∥2 ≤ γn} with some sequence γn → 0. Assume that

√
1 + γns3/2κ2

n log2 n =
o(
√
nλ1),

√
nλ1(log p)

−1/2 → ∞, and κ2
nγn = o(λ1). Then under Conditions 3.1-3.3, there

exists a constant c > 0 such that

Pr

(
sup

β∈B0(M)

∥QTρ′τ (y − Sβ1, δ)∥∞ ≥ nλ1

)
≤ O(p−c), (3.18)

where

ρ′τ (u, δ) =

 τ − 1, u ∈ (−∞, (τ − 1)δ),
u
δ , u ∈ [(τ − 1)δ, τδ],
τ, u ∈ (τδ,+∞).

(3.19)

Proof of Lemma 3.3. For a fixed j ∈ {s+ 1, . . . , p} and β = (βT

1 ,β
T

2 )
T ∈ N , define

γβ,j(xi, yi) = xij [ρ
′
τ (yi − xT

i β, δ)− ρ′τ (εi, δ)− E [ρ′τ (yi − xT

i β, δ)− ρ′τ (εi, δ)]] , (3.20)

where xT
i = (xi1, . . . , xip) is the i-th row of the design matrix X. In order to prove this

lemma we will do the following decomposition:

sup
β∈N

∥∥∥∥ 1nQTρ′τ (y − Sβ1)

∥∥∥∥
∞

≤ sup
β∈N

∥∥∥∥ 1nQTE[ρ′τ (y − Sβ1)− ρ′τ (εi, δ)]

∥∥∥∥
∞

+

∥∥∥∥ 1nQTρ′τ (εi, δ)

∥∥∥∥
∞

+max
j>s

sup
β∈N

1

n

n∑
i=1

|γβ,j(xi, yi)|

= I1 + I2 + I3,

where

I1 ≡ sup
β∈N

∥∥∥∥ 1nQTE[ρ′τ (y − Sβ1)− ρ′τ (εi, δ)]

∥∥∥∥
∞

, (3.21)
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I2 ≡
∥∥∥∥ 1nQTρ′τ (εi, δ)

∥∥∥∥
∞

, (3.22)

I3 ≡ max
j>s

sup
β∈N

1

n

n∑
i=1

|γβ,j(xi, yi)|. (3.23)

If we can prove that I1 < λ1/2 + o(λ1), I2 = o(λ1), I3 = op(λ1) with probability at least
1−O(p−c), then the lemma will be proved. Now we proceed to prove (3.21). Note that I1
can be rewritten as

I1 = max
j>s

sup
β∈N

∣∣∣∣∣ 1n
n∑

i=1

xijE [ρ′τ (εi, δ)− ρ′τ (yi − xT

i β)]

∣∣∣∣∣ . (3.24)

Note that

ρ′τ (εi, δ) = τ · 1{εi > τδ}+ (τ − 1) · 1{εi < (τ − 1)δ}+ εi
δ
· 1{(τ − 1)δ ≤ εi ≤ τδ}

= τ · 1{εi > τδ}+ (τ − 1) · 1{εi < (τ − 1)δ}

+

∫ τ

τ−1

1{sδ ≤ εi ≤ τδ}ds+ (τ − 1) · 1{(τ − 1)δ ≤ εi ≤ τδ},

and

ρ′τ (yi − xT

i β) = τ · 1{yi − xT

i β > τδ}+ (τ − 1) · 1{yi − xT

i β < (τ − 1)δ}

+
yi − xT

i β

δ
· 1{(τ − 1)δ ≤ yi − xT

i β ≤ τδ}

= τ · 1{εi > τδ + ST

i (β1 − β∗
1)}+ (τ − 1) · 1{εi < (τ − 1)δ + ST

i (β1 − β∗
1)}

+
εi − ST

i (β1 − β∗
1)

δ
· 1{(τ − 1)δ ≤ εi − ST

i (β1 − β∗
1) ≤ τδ}

= τ · 1{εi > τδ + ST

i (β1 − β∗
1)}+ (τ − 1) · 1{εi < (τ − 1)δ + ST

i (β1 − β∗
1)}

+

∫ τ

τ−1

1{sδ + ST

i (β1 − β∗
1) ≤ εi ≤ τδ + ST

i (β1 − β∗
1)}ds

+ (τ − 1) · 1{(τ − 1)δ + ST

i (β1 − β∗
1) ≤ εi ≤ τδ + ST

i (β1 − β∗
1)}.

Hence we have that

E[ρ′τ (εi, δ)] = τ(1− Fi(τδ)) + (τ − 1)Fi((τ − 1)δ) +

∫ τ

τ−1

[Fi(τδ)− Fi(sδ)] ds

+ (τ − 1)(Fi(τδ)− Fi((τ − 1)δ))

= τ −
∫ τ

τ−1

Fi(sδ)ds.

where Fi(t) is the cumulative distribution function of εi. Moreover,

E[ρ′τ (yi − xT

i β)] = τ(1− Fi(τδ + ST

i (β1 − β∗
1))) + (τ − 1)Fi((τ − 1)δ + ST

i (β1 − β∗
1))

+

∫ τ

τ−1

[Fi(τδ + ST

i (β1 − β∗
1))− Fi(sδ + ST

i (β1 − β∗
1))] ds

+ (τ − 1)(Fi(τδ + ST

i (β1 − β∗
1))− Fi((τ − 1)δ + ST

i (β1 − β∗
1)))
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= τ −
∫ τ

τ−1

Fi(sδ + ST

i (β1 − β∗
1))ds.

Thus

E [ρ′τ (εi, δ)− ρ′τ (yi − xT

i β)] =

(
τ −

∫ τ

τ−1

Fi(sδ)ds

)
−
(
τ −

∫ τ

τ−1

Fi(sδ + ST

i (β1 − β∗
1))ds

)
=

∫ τ

τ−1

Fi(sδ + ST

i (β1 − β∗
1))− Fi(sδ)ds

=

∫ τ

τ−1

[ST

i (β1 − β∗
1)fi(0) + ST

i (β1 − β∗
1)o(1)] ds

= ST

i (β1 − β∗
1)fi(0) + ST

i (β1 − β∗
1)o(1).

Thus for any j > s,

n∑
i=1

xijE [ρ′τ (εi, δ)− ρ′τ (yi − xT

i β)] =

n∑
i=1

xijS
T

i (β1 − β∗
1)fi(0) +

n∑
i=1

xijS
T

i (β1 − β∗
1)o(1).

(3.25)
This together with (3.24) and Cauchy-Schwarz inequality entails that

I1 ≤
∥∥∥∥ 1nQTHS(β1 − β∗

1)

∥∥∥∥
∞

+max
j>s

∣∣∣∣∣
n∑

i=1

xijo(1)S
T

i (β1 − β∗
1)

∣∣∣∣∣ , (3.26)

where H = diag(f1(0), . . . , fn(0)). We consider the two terms on the right-hand side of
(3.26) one by one. By Condition 3.3, the first term can be bounded as∥∥∥∥ 1nQTHS(β1 − β∗

1)

∥∥∥∥
∞

≤
∥∥∥∥ 1nQTHS

∥∥∥∥
2,∞

∥β1 − β∗
1∥2 < λ1/2. (3.27)

By Condition 3.2 the second term of (3.26) can be bounded as

max
j>s

∣∣∣∣∣
n∑

i=1

xijS
T

i (β1 − β∗
1)o(1)

∣∣∣∣∣ ≤ κn

n∑
i=1

|ST

i (β1 − β∗
1)o(1)| ≤ n

√
p− sκ2

n∥β1 − β∗
1∥2o(1).

Since β ∈ N , it follows from the assumption κ2
nγn = o(λ1) that

max
j>s

∣∣∣∣∣
n∑

i=1

xijS
T

i (β1 − β∗
1)o(1)

∣∣∣∣∣ ≤ Cκnγ
2
no(1) = o(λ1). (3.28)

Plugging the above inequality and (3.27) into (3.26) completes the proof of (3.21).
By Hoeffiding’s inequality, if λ1 > 2

√
(1 + c)(log p)/n with c is some positive constant,

then

Pr (∥QTρ′τ (εi, δ)∥∞ ≥ nλ1) ≤
p∑

j=s+1

2 exp

(
− n2λ2

1

4
∑n

i=1 x
2
ij

)
= 2 exp

(
log p− s− nλ2

1/4
)

= O(p−c).
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Thus, (3.22) holds with probability at least 1−O(p−c).
We now apply Corollary 14.4 in [3] to prove (3.23). To the end, we need to check three

conditions of this corollary. For each fixed j, define the function space Γj = {γβ,j : β ∈ N}.
From the expression of γβ,j , E[γβ,j(xi, yi)] = 0 for any γβ,j ∈ Γj . Since ρ′τ (·, δ) is bounded,
we have

1

n

n∑
i=1

γ2
β,j(xi, yi) =

1

n

n∑
i=1

x2
ij (ρ

′
τ (yi − xT

i β, δ)− ρ′τ (εi, δ)− E [ρ′τ (yi − xT

i β, δ)− ρ′τ (εi, δ)])
2

≤ 4.

Thus ∥γβ,j∥n :=
(

1
n

∑n
i=1 γ

2
β,j(xi, yi)

)1/2
≤ 2.

We will calculate the covering number of the functional space Γj , i.e., N(·,Γj , ∥ · ∥2).
For any β = (βT

1 ,β
T

2 )
T ∈ N and β̃ = (β̃

T

1 , β̃
T

2 )
T ∈ N , by Condition 3.1 and the mean value

theorem,

E[ρ′τ (yi − xT

i β, δ)− ρ′τ (εi, δ)]− E[ρ′τ (yi − xT

i β̃, δ)− ρ′τ (εi, δ)]

=

∫ τ

τ−1

[Fi(sδ)− Fi(sδ + ST

i (β1 − β∗
1))] ds

−
∫ τ

τ−1

[
Fi(sδ)− Fi(sδ + ST

i (β̃1 − β∗
1))
]
ds

=

∫ τ

τ−1

[
Fi(sδ + ST

i (β̃1 − β∗
1))− Fi(sδ + ST

i (β1 − β∗
1))
]
ds

=

∫ τ

τ−1

fi(a1i)S
T

i (β̃1 − β1)ds

= fi(a1i)S
T

i (β̃1 − β1), (3.29)

where a1i lies on the segment connecting ST
i (β̃1 − β∗

1) and ST
i (β1 − β∗

1). Since fi(u)s are
uniformly bounded and κn = maxij |xij |, we have∣∣∣xijE [ρ′τ (yi − xT

i β, δ)− ρ′τ (εi, δ)]− xijE
[
ρ′τ (yi − xT

i β̃, δ)− ρ′τ (εi, δ)
]∣∣∣

≤ C
∣∣∣xijS

T

i (β1 − β̃1)
∣∣∣ ≤ C∥xijSi∥2∥β1 − β̃1∥2

≤ C
√
sκ2

n∥β1 − β̃1∥2 (3.30)

where C is a positive constant. Considering the definition of N , it is easy to know that
for any β = (βT

1 ,β
T

2 )
T ∈ N , we have ∥β∥2 ≤ 2γn. Then from Lemma 14.27 in [3], N in

Rs can be covered by (1 + 4γn/δ)
s balls with radius 0 < δ ≤ 2γn. It follows from (3.30)

that the 21−k-covering number of Γj is N
(
22−k,Γj , ∥ · ∥2

)
≤ 7

(
1 + C−12kγnκ

2
n

√
s
)s
, where

0 ≤ k ≤ log2 n
2 . Thus, after some simple calculations, we obtain

log
(
1 +N

(
22−k,Γj , ∥ · ∥2

))
≤ log 14 + s log

(
1 + C−12kγnκ

2
n

√
s
)

≤ log 14 + C−12kγns
3/2κ2

n

≤ 4
(
1 + C−1γns

3/2κ2
n

)
22k.
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Hence, conditions of Corollary 14.4 in [3] are checked and we obtain that for any t > 0,

Pr

(
sup
β∈N

∣∣∣∣∣ 1n
n∑

i=1

γβ,j(xi, yi)

∣∣∣∣∣ ≥ 8√
n

(
6
√

1 + C−1γns3/2κ2
n log2 n+ 4 + 4t

))

≤ 4 exp

(
−nt2

8

)
.

Taking t =
√

C(log p)/n with C > 0 large enough constant, we can get that

Pr

(
max
j>s

sup
β∈N

∣∣∣∣∣ 1n
n∑

i=1

γβ,j(xi, yi)

∣∣∣∣∣ ≥ 48√
n

√
1 + C−1γns3/2κ2

n log2 n

)

≤ 4(p− s) exp

(
−C log p

8

)
→ 0.

Hence, if
√
1 + γns3/2κ2

n log2 n = o(
√
nλ1), then (3.23) holds with probability at least 1 −

o(p−c). Now, the proof of this lemma is completed.
Based on the above lemma, we can complete the proof of Theorem 3.2.
Proof of Theorem 3.2. Since β̂ = (β0

1

T

,0T)T ∈ Rp satisfies the KKT condition, then

β̂ is a minimizer of Φτ (β, δ). To prove Theorem 3.2, we only need to verify the following
condition ∥∥QTρ′τ (y − Sβ0

1, δ)
∥∥
∞ < nλ1, (3.31)

where ρ′τ (u, δ) = (ρ′τ (u1, δ), . . . , ρ
′
τ (un, δ))

T for any vector u = (u1, . . . , un)
T ∈ Rn with

ρ′τ (ui, δ) defined as before. The KKT condition and the strong convexity of Φτ (β, δ) ensure

that β̂ is a global minimizer of Φτ (β, δ). Define events

A1 =
{
∥β0

1 − β∗
1∥2 ≤ γn

}
, A2 =

{
sup
β∈N

∥QTρ′τ (y − Sβ0
1, δ)∥∞ < nλ1

}
, (3.32)

where γn is defined in Theorem 3.1 and

N = {β = (βT

1 ,β
T

2 )
T ∈ Rp : β2 = 0, ∥β1 − β∗

1∥2 ≤ γn} . (3.33)

Then by Theorem 3.1 and Lemma 3.3, Pr(A1 ∩ A2) ≥ 1 − O(n−cs). Since β̂ ∈ N on the
event A1, the inequality (3.31) holds on the event A1 ∩ A2. Now the proof of Theorem 3.2
is completed.

Until now, we have established model selection consistent property of the SQEN estima-
tor. It ensures a good statistical behavior. In the next section we will consider how to solve
the optimization problem (2.3) which is another crucial issue.

4 Optimization Algorithm

In this section, we will construct an efficient algorithm based on the Majorize-Minimize
(MM) technique. Moreover, we will prove the convergence of this algorithm. Finally, we
will show that the solution sequence generated by this algorithm converges to the optimal
minimizer of (2.3).
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In order to obtain the optimal solution of the model(2.3), we will take advantage of
majorized function of Sτ (β, δ), which is defined as

Mτ,ξ(β,α, δ) = Sτ (α, δ) + ⟨∇βSτ (α, δ),β −α⟩+ Lδ + ξ

2
∥β −α∥22,

where ξ > 0 is sufficiently small, ∇βSτ (α, δ) =
∑n

i=1 −xiρ
′
τ (yi − xT

i α, δ) (if it is not am-
biguous, we shortly write∇Sτ (α, δ) = ∇βSτ (α, δ)), α ∈ Rp and Lδ = 1

δλmax(X
TX). Thus,

for any β ̸= α ∈ Rp, we have

Mτ,ξ(β,α, δ) > Sτ (β, δ) and Mτ,ξ(β,β, δ) = Sτ (β, δ). (4.1)

By virtue of Mτ,ξ(β,α, δ), we consider the following optimization problem

βk+1 = argmin
β∈Rp

{
Mτ,ξ(β,β

k, δ) + nλ1∥β∥1 + nλ2∥β∥22
}
, (4.2)

where β0 is a given initial point. The following, we will show that we can solve this opti-
mization problem in stead of (2.3). Namely, we need to demonstrate βk+1 → β̂ and β̂ is the
optimal minimizer of (2.3). Now, let’s show this step by step. First lets give the analytic
expression of βk+1. The following theorem will show this result.

Theorem 4.1. If β̂ is a global minimizer of Mτ,ξ(β,α, δ) + nλ1∥β∥1 + nλ2∥β∥22 for any

fixed τ ∈ (0, 1), δ, ξ, λ1, λ2 > 0,α ∈ Rp and Lδ = 1
δλmax(X

TX), then β̂ can be analytically
expressed by

β̂ =
Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃) ◦max

{
|β̃| − nλ1

Lδ + ξ
, 0

}
, (4.3)

where β̃ = α − ∇Sτ (α, δ)/(Lδ + ξ), “◦” is the Harmard product of two vectors, and |β̃|
represents the vector as the same dimension of β̃ and its components are the absolute value
of corresponding one of β̃.

Proof. For the definition of β̂, we have

β̂ = argmin
β∈Rp

{
Mτ,ξ(β,α, δ) + nλ1∥β∥1 + nλ2∥β∥22

}
= argmin

β∈Rp

{
Sτ (α, δ) + ⟨∇βSτ (α, δ),β −α⟩+ Lδ + ξ

2
∥β −α∥22 + nλ1∥β∥1 + nλ2∥β∥22

}
= argmin

β∈Rp

{
⟨∇βSτ (α, δ),β −α⟩+ Lδ + ξ

2
∥β −α∥22 + nλ1∥β∥1 + nλ2∥β∥22

}
= argmin

β∈Rp

{
Lδ + ξ

2
∥β − β̃∥22 + nλ1∥β∥1 + nλ2∥β∥22

}
,

here β̃ = α−∇Sτ (α, δ)/(Lδ + ξ). Hence, for any i ∈ {1, 2, . . . , p},

β̂i = argmin
βi∈R

{
Lδ + ξ

2
(βi − β̃i)

2 + nλ1|βi|+ nλ2β
2
i

}
:= f(βi). (4.4)

Denoting ∆ := Lδ + ξ, then f(βi) will be

f(βi) =


(
∆
2 + nλ2

) (
βi − ∆β̃i−nλ1

∆+2nλ2

)2
+ ∆

2 β̃
2
i −

(
∆
2 + nλ2

) (
∆β̃i−nλ1

∆+2nλ2

)2
, βi > 0,

∆
2 β̃

2
i , βi = 0,(

∆
2 + nλ2

) (
βi − ∆β̃i+nλ1

∆+2nλ2

)2
+ ∆

2 β̃
2
i −

(
∆
2 + nλ2

) (
∆β̃i+nλ1

∆+2nλ2

)2
, βi < 0.
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In order to get β̂i, we will discuss in two cases.

Case 1: If ∆β̃i−nλ1

∆+2nλ2
> 0, then ∆β̃i − nλ1 ≥ 0. It follows that β̃i ≥ 0 and further more

∆β̃i+nλ1

∆+2nλ2
> 0.

Therefore, when βi > 0, the minimum point of f(βi) is ∆β̃i−nλ1

∆+2nλ2
, and the objective

function value is ∆
2 β̃

2
i −

(
∆
2 + nλ2

) (
∆β̃i−nλ1

∆+2nλ2

)2
. While when βi ≤ 0, the minimum point of

f(βi) is 0, and the objective function value is ∆
2 ∆β̃2

i . Considering

∆

2
β̃2
i >

∆

2
β̃2
i −

(
∆

2
+ nλ2

)(
∆β̃i − nλ1

∆+ 2nλ2

)2

, (4.5)

hence the global optimal solution of (4.4) is β̂i =
∆β̃i−nλ1

∆+2nλ2
. We can see β̂i and β̃i have the

same sign.

Case 2: If ∆β̃i−nλ1

∆+2nλ2
≤ 0, the sign of ∆β̃i+nλ1

∆+2nλ2
can’t be determined, we neen to consider

two cases ∆β̃i+nλ1

∆+2nλ2
< 0 and ∆β̃i+nλ1

∆+2nλ2
≥ 0.

First, when βi ≥ 0, the minimum point of f(βi) is 0, the objective function value is ∆
2 β̃

2
i .

Second, when βi < 0, if we assume ∆β̃i+nλ1

∆+2nλ2
< 0 (which implies β̃i ≤ 0 ), the minimum

point of f(βi) is
∆β̃i+nλ1

∆+2nλ2
, the objective function value is ∆

2 β̃
2
i −

(
∆
2 + nλ2

) (
∆β̃i+nλ1

∆+2nλ2

)2
. If

we assume ∆β̃i+nλ1

∆+2nλ2
≥ 0, the minimum point of (4.4) is β̂i = 0. Therefore the global optimal

solution of (4.4) is β̂i =
∆β̃i+nλ1

∆+2nλ2
≤ 0, which has the same sign as β̃i.

Combining the above discussion, we can obtain the optimal solution of (4.4)

β̂i = sign(β̃i) ·max

{
∆|β̃i| − nλ1

∆+ 2nλ2
, 0

}

=
Lδ + ε

Lδ + ξ + 2nλ2
sign(β̃i) ·max

{
|β̃i| −

nλ1

Lδ + ξ
, 0

}
.

Thus,

β̂ =
Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃) ◦max

{
|β̃| − nλ1

Lδ + ξ
, 0

}
.

We have calculated the form of β̂, so we can update βk+1 as

βk+1 =
Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃

k
) ◦max

{
|β̃

k
| − nλ1

Lδ + ξ
, 0

}
, (4.6)

where β̃
k
= βk −∇Sτ (β

k, δ)/(Lδ + ξ).
In order to solve model (2.3), we are going to present the iterative scheme called SQEN-

MM in the following Table 1.
Based on Theorem 4.1, the following theorem establishes the relationship of optimal

solutions between (2.3) and the problem

argmin
β∈Rp

{
Mτ,ξ(β, β̂, δ) + nλ1∥β∥1 + nλ2∥β∥22

}
. (4.7)
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Table 1: Iterative scheme of SQEN-MM for SQEN.

SQEN-MM Algorithm

Initialize: X, y, tol, λ1 > 0, λ2 > 0, δ > 0, ξ > 0,maxiter, Lδ = 1
δ
λmax(XTX) and β0

for k=0:maxiter

Compute β̃
k
= βk −∇Sτ (β

k, δ)/(Lδ + ξ);

Compute βk+1 = Lδ+ξ
Lδ+ξ+2nλ2

sign(β̃
k
) ◦max

{
|β̃k| − nλ1

Lδ+ξ
, 0

}
if ∥βk+1 − βk∥2 < tol

break

end

End

Output: βk+1

Theorem 4.2. Let τ ∈ (0, 1), δ, ξ, λ1, λ2 > 0. If β̂ is a global minimizer of (2.3), then β̂ is
also the global minimizer of (4.7).

Proof. If β̂ is a global minimizer of (2.3), since Mτ,ξ(β, β̂, δ) is the majorized function
of Sτ (β, δ), so we will have

Mτ,ξ(β, β̂, δ) + nλ1∥β∥1 + nλ2∥β∥22 ≥ Sτ (β, δ) + nλ1∥β∥1 + nλ2∥β∥22
≥ Sτ (β̂, δ) + nλ1∥β̂∥1 + nλ2∥β̂∥22
= Mτ,ξ(β̂, β̂, δ) + nλ1∥β̂∥1 + nλ2∥β̂∥22.

Then we can build the necessary and sufficient conditions for the solution of fixed point
equation to be the optimal solution of (2.3).

Theorem 4.3. Let τ ∈ (0, 1), δ, ξ, λ1, λ2 > 0, Lδ = 1
δλmax(X

TX). Then β̂ is a global

minimizer of (2.3) if and only if β̂ satisfies the following fixed point equation

β̂ =
Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃) ◦max

{
|β̃| − nλ1

Lδ + ξ
, 0

}
, (4.8)

where β̃ = β̂ −∇Sτ (β̂, δ)/(Lδ + ξ).

Proof. Necessity: Since β̂ is the global minimizer of (2.3), it is also the global minimizer of

Mτ,ξ(β, β̂, δ)+λ1∥β∥1+λ2∥β∥22 from Theorem 4.2. Then by the Theorem 4.1 (with α = β̂),

β̂ satisfies the fixed point equation.
Sufficiency: Due to the convexity of the objective function in (2.3), β∗ is the global

minimizer of model (2.3) if and only if 0 ∈ ∂(Φτ (β
∗)). That is to say

0 ∈ ∂(Sτ (β, δ) + nλ1∥β∥1 + nλ2∥β∥22) |β=β∗

= ∇Sτ (β
∗, δ) + 2nλ2β

∗ + nλ1∂(∥β∗∥1).

From the fixed point equation, we have

β̂ =
Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃) ◦max

{
|β̃| − nλ1

Lδ + ξ
, 0

}
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= argmin
β∈Rp

{
Mτ,ξ(β, β̂, δ) + nλ1∥β∥1 + nλ2∥β∥22

}
= argmin

β∈Rp

{
Lδ + ξ

2
∥β − β̃∥22 + nλ1∥β∥1 + nλ2∥β∥22

}
. (4.9)

Considering the convexity of the objective function in (4.9), we have

0 ∈ ∂

(
Lδ + ξ

2
∥β − β̃∥22 + nλ1∥β∥1 + nλ2∥β∥22

) ∣∣∣β=β̂

= (Lδ + ξ)(β̂ − β̃) + 2nλ2β̂ + nλ1∂(∥β̂∥1)

= ∇Sτ (β̂, δ) + 2nλ2β̂ + nλ1∂(∥β̂∥1),

where the last equality derives from β̃ = β̂ − ∇Sτ (β̂, δ)/(Lδ + ε). Hence, β̂ is the global
minimizer of model (2.3). Thus theorem 4.3 holds.

By means of the above results, we are able to establish the convergence theorem of the
proposed algorithm SQEN-MM.

Theorem 4.4. For a given τ ∈ (0, 1), δ, ξ, λ1, λ2 > 0, let {βk} be the sequence generated by
(4.6) and Φτ (β

k, δ) = Sτ (β
k, δ) + nλ1∥βk∥1 + nλ2∥βk∥22, then

(1) Φτ (β
k) is monotonically non-increasing and converges to Φτ (β̂), where β̂ is any ac-

cumulation point of {βk};

(2) {βk} is asymptotically regular, namely, lim
k→∞

∥βk+1 − βk∥2 = 0;

(3) {βk} converges to the unique global minimizer of problem (2.3)

Proof. (1) From the expression of Φτ (β
k+1, δ), we have

Φτ (β
k+1, δ) = Sτ (β

k+1, δ) + nλ1∥βk+1∥1 + nλ2∥βk+1∥22
(i)

≤ Mτ,ξ(β
k+1,βk, δ) + nλ1∥βk+1∥1 + nλ2∥βk+1∥22

(ii)

≤ Mτ,ξ(β
k,βk, δ) + nλ1∥βk∥1 + nλ2∥βk∥22

= Sτ (β
k, δ) + nλ1∥βk∥1 + nλ2∥βk∥22

= Φτ (β
k, δ),

where (i) follows from Mτ,ξ(β
k+1,α, δ) is the majorization of Sτ (β

k+1, δ), and

(ii) derives from (4.2). This indicates that {Φτ (β
k, δ)} is monotonically non-increasing.

As {Φτ (β
k, δ)} is bounded from below, {Φτ (β

k, δ)} converges to a constant Φ̂. For any β ∈{
β|Φτ (β, δ) ≤ Φτ (β

0, δ)
}
, we have nλ2∥β∥22 ≤ Φτ (β, δ) ≤ Φτ (β

0, δ), hence

∥β∥22 ≤ 1
nλ2

Φτ (β
0, δ), so the set

{
β|Φτ (β, δ) ≤ Φτ (β

0, δ)
}

is bounded. From {βk} ⊂{
β|Φτ (β, δ) ≤ Φτ (β

0, δ)
}
which is bounded, it yields that {βk} is also bounded, and thus

{βk} has at least one accumulation point. Let β̂ be an accumulation point of {βk}. By the

continuity of Φτ (β) and the convergence of {Φτ (β
k, δ)}, we get {Φτ (β

k, δ)} → Φ̂ = Φτ (β̂, δ)
as k → ∞.

(2) By simple calculation, we have

Φτ (β
k, δ)− Φτ (β

k+1, δ) = Sτ (β
k, δ) + nλ1∥βk∥1 + nλ2∥βk∥22
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−
(
Sτ (β

k+1, δ) + nλ1∥βk+1∥1 + nλ2∥βk+1∥22
)

= Mτ,ξ(β
k,βk, δ) + nλ1∥βk∥1 + nλ2∥βk∥22

−
(
Sτ (β

k+1, δ) + nλ1∥βk+1∥1 + nλ2∥βk+1∥22
)

(i)

≥ Mτ,ξ(β
k+1,βk, δ) + nλ1∥βk+1∥1 + nλ2∥βk+1∥22

−
(
Sτ (β

k+1, δ) + nλ1∥βk+1∥1 + nλ2∥βk+1∥22
)

= Mτ,ξ(β
k+1,βk, δ)− Sτ (β

k+1, δ)

(ii)

≤ Sτ (β
k, δ) + ⟨∇Sτ (β

k, δ),βk+1 − βk⟩

+
Lδ + ξ

2
∥βk+1 − βk∥22 − Sτ (β

k+1, δ)

(iii)

≤ Sτ (β
k, δ) + ⟨∇Sτ (β

k, δ),βk+1 − βk⟩+ Lδ + ξ

2
∥βk+1 − βk∥22

−
(
Sτ (β

k, δ) + ⟨∇Sτ (β
k, δ),βk+1 − βk⟩+ Lδ

2
∥βk+1 − βk∥22

)
=

ξ

2
∥βk+1 − βk∥22,

where (i) derives from βk+1 = argmin
β∈Rp

{
Mτ,ξ(β,β

k, δ) + nλ1∥β∥1 + nλ2∥β∥22
}
, (ii) holds

due to Sτ (β
k, δ) + ⟨∇Sτ (β

k, δ),βk+1 − βk⟩+ Lδ+ξ
2 ∥βk+1 − βk∥22 being the majorization of

Sτ (β, δ), and (iii) follows from the convexity of Sτ (β, δ). Hence, for a given ξ > 0 and any
N > 0, considering Φτ (β, δ) ≥ 0, we have

N∑
k=0

∥βk+1 − βk∥22 ≤ 2

ξ

N∑
k=0

(
Φτ (β

k)− Φτ (β
k+1)

)
≤ 2

ξ

(
Φτ (β

0, δ)− Φτ (β
N , δ)

)
≤ 2

ξ
Φτ (β

0, δ), (4.10)

which implies that
∑∞

k=0 ∥β
k+1 − βk∥22 < ∞. Thus lim

k→∞
∥βk+1 − βk∥2 = 0.

(3) Let {βkj} be a convergent subsequence of {βk} and β̂ be its limit point, i.e.,

lim
kj→∞

βkj = β̂. Since Sτ (β, δ) is continuously differentiable, we can derive

lim
kj→∞

β̃
kj

= lim
kj→∞

βkj − Sτ (β
kj , δ)

Lδ + ξ
= β̂ − Sτ (β̂, δ)

Lδ + ξ
= β̃.

Then the convergency of {βkj} and the asymptoticy of {βk} imply

∥βkj+1 − β̂∥2 ≤ ∥βkj+1 − βkj∥2 + ∥βkj − β̂∥2 → 0, as kj → 0, (4.11)

which guarantees that {βkj+1} also converges to β̂. So we can obtain that

lim
kj→∞

βkj+1 = lim
kj→∞

Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃

kj

) ◦max

{
|β̃

kj | − nλ1

Lδ + ξ
, 0

}
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=
Lδ + ξ

Lδ + ξ + 2nλ2
sign(β̃) ◦max

{
|β̃| − nλ1

Lδ + ξ
, 0

}
,

which means β̂ = Lδ+ξ
Lδ+ξ+2nλ2

sign(β̃)◦max
{
|β̃| − nλ1

Lδ+ξ , 0
}
. Finally, β̂ is the global minimizer

of (2.3) from Theorem 4.3. Since (2.3) is strongly convex, β̂ is unique. Hence, {βk} converges
to the global minimizer (2.3).

5 Numerical Study

In this section we focus on the numerical studies of our algorithm to show it’s efficiency. We
apply our method to simulation data with six different errors. And we also compare our
method with Lasso and Elastic net.

To assess the performance of the proposed method, we simulate data from the high-
dimensional linear regression model

y = Xβ∗ + ε, (5.1)

where the data set has n = 100 observations and p = 400 parameters. In our experiments
we chose the first 15 elements nonzero, i.e.,

β∗ = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
385

), (5.2)

and the predictors X are generated as follows:

xi = Z1 + εxi , Z1 ∼ N(0, 1), i = 1, . . . , 5,

xi = Z2 + εxi , Z2 ∼ N(0, 1), i = 6, . . . , 10,

xi = Z3 + εxi , Z3 ∼ N(0, 1), i = 11, . . . , 15,

xi ∼ N(0, 1), xiindependent identically distributed, i = 16, . . . , 400,

where εxi are independent identically distributed. For the distribution of the noise ε, we
considered the following six scenarios:

(a) normal errors with mean 0 and variance 4 (N(0, 22));
(b) two times the t-distribution with degrees of freedom 3(2t(3));
(c) mixture of normal distributions, MixN, 0.5N(−1, 22) + 0.5N(8, 1);
(d) log-normal distribution, LogNormal, ε = exp(1+1.2Z), where Z is the standard normal

distribution;
(e) the Cauchy distribution with density location parameter 0, scale parameter 2;
(f) the Laplace distribution with location parameter 0, scale parameter 2.
There are three equally important groups, and within each group there are five members.

There are another 385 pure noise features. An ideal method would select only 15 true features
and set the coefficients of the 385 noise features to 0.

We compared the SQEN method with two other methods in a high dimensional setting:
(a) LASSO, the penalized least squares estimator with l1-penalty as in Tibshirani [17];
(b) Elastic net, the penalized least squares estimator with l1-penalty and l2-penalty

proposed by Zou and Hastie in [19].
Note that, we use the code of these two methods provided by Matlab. And the tuning

parameter grid is used as in our method. All runs are performed on an laptop with Intel
Core(TM)i7-2640M CPU (2.80 GHz) and 8 GB RAM.
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The following five performance measures were calculated:
(i) The mean-squared-errors (MSE), which is MSE := ∥β̂ − β∗∥22/400;
(ii) The mean-squared-errors on the test data set (Test-MSE), which isMSE := ∥ytest−

Xtestβ̂∥22/ntest, where (ytest, Xtest) are the data from test data set, ntest is the number of
observations in test data set;

(iii) the number of false positive results, FP, which is the number of noise covariates
that are selected;

(iv) the number of false negative results, FN, which is the number of signal covariates
that are not selected;

(v) the elapsed time per run, CPU.
For the SQEN, the tuning parameters λ1, λ2 were chosen optimally on the basis of

an independent validation data set which has one thousand observations. We ran a two-
dimensional grid search to find the best (λ1, λ2) pair that minimizes mean Test-MSE. Such
an optimal pair was then used in the simulations. A similar method was applied in choosing
the tuning parameters in the LASSO and the Elastic net. Throughout the experiments,
we choose the initial iterate to be the initial point for this method is set to be β0 = Op,
tolerance error is tol = 10−4, the smoothing parameter δ = 2 and the parameter ξ = 0.1.
For the quantile parameter τ , we choose three values {0.25, 0.5, 0.75} to demonstrate the
performance of our method. The numerical results are displayed in Tables 2-4.

Table 2: Numerical results for τ = 0.25 in terms of MSE, Test-MSE, FP, FN and CPU.
All the measurements are the mean of the results after repeated 100 times. The numbers in
parentheses are the corresponding standard errors.

Tables 2-4 show the simulation results ofMSE,Test-MSE, FP and FN for τ = 0.25, 0.5
and 0.75. To be fair, we simulate 100 times for each model. Then we report the mean value
and standard deviation (in parentheses) for all measurements. From these tables, we can
see that the values of FN are all zeros except when the errors are from Cauchy distribution.
This indicates that all significant variables are selected. In fact, when the data has Cauchy
error, not only SQEN doesn’t perform well, but also Lasso and Elastic net. For MSE and
CPU, Lasso and Elastic net have almost the same performance, however, SQEN is much
better than them.

In our numerical experiments, the first 15 predictors are collinear. We wish they are
all in the model together. In fact, the simulation results show that these 15 predictors are
included in the model together except for Cauchy distribution error. Hence, the SQEN has
the grouping selection ability, and it also can produce a sparse estimator. In addition, our
method works well not only for normal distribution, but also for heavy-tailed distribution.



390 B. CHEN, L. KONG AND N. XU

Table 3: Numerical results for τ = 0.5 in terms of MSE, Test-MSE, FP, FN and CPU.
All the measurements are the mean of the results after repeated 100 times. The numbers in
parentheses are the corresponding standard errors.

Table 4: Numerical results for τ = 0.75 in terms of MSE, Test-MSE, FP, FN and CPU.
All the measurements are the mean of the results after repeated 100 times. The numbers in
parentheses are the corresponding standard errors.

As we can see, all the methods seem to choose a bunch of variables. In fact, all the three
methods can select few variables as you want. What we need to do is only increasing the
value of λ1. However, in our method, the criterion we used to select tuning parameters is
the Test-MSE, so in the final model, there are more variables.

In our simulation studies, we choose fixed values for δ. When it comes to real data, we
need to choose it from some more candidates. From the definition of smoothing quantile
function, as δ → ∞, it tends to least squares, as δ → 0, it approximates to quantile. So for a
proper choice, our smoothing quantile regression can show a good behavior. The parameter
ξ in majorized function Mτ,ξ(β,α, δ) who must make Mτ,ξ(β,α, δ) greater than Sτ (β, δ).
From the convexity of Sτ (β, δ), it seems that if ξ is large enough, Mτ,ξ(β,α, δ) ≥ Sτ (β, δ)
holds definitely. However, in our algorithm, 1/(Lδ + ξ) is the step size. If it is too small,
the algorithm will consume more CPU. So, ξ must be not too large. Above all, this two
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parameters must be chosen carefully.

6 Concluding Remarks

In this paper, we focus on how to analyse the high-dimensional data with the collinearity
and heavy-tailed noise. In order to select significant variables, we introduced the penalized
quantile regression with the elastic-net. In view of the quantile loss function is nonsmooth
and nondifferential, we took advantage of its Huber smooth function. This developed the
smoothing model SQEN. This model can work efficiently on the data with heavy-tailed noise
for its robust loss function. Meanwhile, it can also deal with collinearity for the regularizer
elastic-net term. For this new model, we obtained statistical consistent properties of its
estimator. Further more, we proposed an optimization method using Majorize-Minimize
(MM) technique to solve our SQEN model. Before applying it to solve problems, we prove
the global convergence theoretically. Finally, we conduct some numerical experiments to
show the efficiency of the proposed method. Our model is designed for single response,
i.e., only one character is taken as dependent variable. However, as the development of
the society, there are much more multi-responses data and matrix data. In the future, the
extension of this model for these data sets is worth of study.
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[3] P. Bühlmann and D. Van, Statistics for high-demensional data: Methods, Theorey and
Applications, Springer, Berlin Heidelberg, 2011.

[4] J. Fan, Y. Fan and E. Barut, Adaptive rubust variable selection, Ann. Statist. 42 (2014)
324–351.

[5] J. Fan and R. Li, Sure independence screening for ultrahigh dimensional feature space,
J. R. Stat. Soc. Ser. B Stat. Methodol. 70 (2008) 849–911.

[6] J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle
properties, J. Amer. Statist. Assoc. 96 (2001) 1348–1360.

[7] A. Galvao and K. Kato, Smoothed quantile regression for panel data, J. Econometrics
193 (2016) 92–112.



392 B. CHEN, L. KONG AND N. XU

[8] A. Giloni, J. Simonoff and B. Sengupta, Robust weighted LAD regression, Comput.
Statist. Data Anal. 50 (2005) 3124–3140.

[9] R. Koenker, Quantile regression for longitudinal data, J. Multivariate Anal. 91 (2004)
74–89.

[10] R. Koenker and G. Bassett, Regression quantiles, Econometrica 46 (1978) 33–50.

[11] R. Koenker and K. Hallock, Quantile regression, J. Econ. Perspect. 101 (2001) 143–156.

[12] R. Koenker and R. Geling, Reappraising medfly longevity: a quantile regression survival
analysis, J. Amer. Statist. Assoc. 96 (2001) 458-468.

[13] R. Li and L. Peng, Quantile regression adjusting for dependent censoring from semi-
competing risks, J. R. Stat. Soc. Ser. B Stat. Methodol. 77 (2015) 107–130.

[14] S. Magzamen, M. Amato, P. Imm, J. Havlena and M. Coons, Quantile regression in
environmental health: Early life lead exposure and end-of-grade exams, Environ. Res.
137 (2015) 108–119.

[15] M. Meinshausen and P. Buhlmann, Stability selection, J. R. Stat. Soc. Ser. B Stat.
Methodol. 72 (2010) 417–473.

[16] A. Mkhadri, M. Ouhourane and K. Oualkacha, A coordinate descent algorithm for
computing penalized smooth quantile regression, Stat. Comput. 27 (2017) 1–19.

[17] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B
Stat. Methodol. 58 (1996) 267–288.

[18] L. Wang, The l1 penalized LAD estimator for high dimensional linear regression, J.
Multivariate Anal. 120 (2013) 135–151.

[19] H. Zou, The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc. 101 (2006)
1418–1429.

[20] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc. Ser. B Stat. Methodol. 67 (2005) 301–320.

[21] H. Zou and M. Yuan, Regularized simultaneous model selection in multiple quantiles
regression, Comput. Statist. Data Anal. 52 (2008) 5296–5304.

Manuscript received 7 January 2018
revised 13 September 2018

accepted for publication 6 December 2018



SMOOTHING QUANTILE REGRESSION WITH ELASTIC NET PENALTY 393

Bingzhen Chen
Institute of Statistics and Big Data
Renmin University of China
Beijing 100872, China
E-mail address: chenbingzhen6026@163.com

Lingchen Kong
School of Science, Beijing Jiaotong University
Beijing 100044, P. R. China
E-mail address: lchkong@bjtu.edu.cn

Nana Xu
Zhidu Technology Ltd co., Beijing 100031, P. R. China
E-mail address: nanaxujiayou@163.com


