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problem (see Example 3.20). As is well known, the polynomial optimization problem is NP-
hard even when n > 1, f(Y ) is a nonconvex quadratic polynomial and gj(Y )’s are linear [36].
Hence, a general LSIPP problem cannot be expected to be solved in polynomial time unless
P=NP.

LSIPP can be seen as a special branch of linear semi-infinite programming (LSIP), or
more general, of semi-infinite programming (SIP), in which the involved functions are not
necessarily polynomials. Numerically, SIP problems can be solved by different approaches
including, for instance, discretization methods, local reduction methods, exchange methods,
simplex-like methods and so on. See the surveys [10, 11, 28] and the references therein for
details. One of main difficulties in numerical treatment of general SIP problems is that the
feasibility test of a point ū ∈ Rm is equivalent to globally solving the problem of minimizing
the constraint function with fixed ū over the index set, which is called the lower level sub-
problem. Typically, when solving SIP problems by existing methods in the literature, the
main difficulty lies in solving the nonlinear lower level subproblems at each iteration.

LSIPP, as a special subclass of SIP, has many applications like minimax problems, func-
tional approximation problems. However, to the best of our knowledge, few of the numerical
methods mentioned above are specially designed by exploiting features of polynomial opti-
mization problems. Parpas and Rustem [37] proposed a discretization-like method to solve
minimax polynomial optimization problems, which can be reformulated as semi-infinite poly-
nomial programming (SIPP) problems. Using polynomial approximation and an appropriate
hierarchy of semidefinite programming (SDP) relaxations, Lasserre presented an algorithm
to solve the generalized SIPP problems in [24]. Based on an exchange scheme, an SDP re-
laxation method for solving SIPP problems was proposed in [44]. By using representations
of nonnegative polynomials in the univariate case, an SDP method was given in [46] for
LSIPP problems (1.1) with S being closed intervals.

In this paper, we propose a hierarchy of SDP relaxations for LSIPP (1.1). The dual
problem of LSIPP is a special case of the generalized moment problems (Section 2.2), which
has been well investigated, see [2–4, 19, 20, 23, 34] and the references therein. Lasserre [23]
proposed an SDP relaxation method for generalized moment problems based on Putinar’s
Positivstellensatz [39]. Although the SDP relaxations presented in this paper can be seen as
the dual of Lasserre’s relaxations for GPM, they are of their independent interest because
of the following desirable features they enjoy. First, some (approximate) minimizers of (1.1)
can be extracted by these SDP relaxations, which is very useful in some applications, like
functional approximation problems (Example 3.8); Second, convergence rate of these SDP
relaxations can be estimated (Section 3.2) by using the complexity analysis of Putinar’s Pos-
itivstellensatz in [35]; Third, these SDP relaxations can be easily extended to more general
semi-infinite programming problems (Section 4), like problems of the form (1.1) with semi-
algebraic functions, or with s.o.s-convex objectives. As the feasible set of (1.1) is assumed to
be compact in the convergence rate estimation, we also show that the compactness can be
verified by computing a positive lower bound of the infima of several LSIPP problems. It can
be done by the proposed SDP relaxations if the finite convergence happens (in particular,
if S is a closed and bounded interval (Section 3.3)).

This paper is organized as follows. We introduce some notation and preliminaries in
Section 2. SDP relaxations of LSIPP problems and the convergence rate analysis is given
in Section 3, where we also discuss how to verify the compactness of feasible sets of LSIPP
problems. In Section 4, we extend the SDP relaxation method to more general semi-infinite
programming problems. Some conclusions are made in Section 5.
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2 Notation and Preliminaries

Here is some notation used in this paper. The symbol N (resp., R) denotes the set of
nonnegative integers (resp., real numbers). For any t ∈ R, ⌈t⌉ denotes the smallest integer
that is not smaller than t. For y = (y1, . . . , yn) ∈ Rn, ∥y∥2 denotes the standard Euclidean
norm of y. For α = (α1, . . . , αn) ∈ Nn, ∥α∥1 := α1 + · · · + αn. For k ∈ N, denote Nn

k =
{α ∈ Nn | ∥α∥1 ≤ k}. For y ∈ Rn and α ∈ Nn, yα denotes yα1

1 · · · yαn
n . R[Y ] = R[Y1, · · · , Yn]

denotes the ring of polynomials in (Y1, · · · , Yn) with real coefficients. For k ∈ N, denote by
R[Y ]k the set of polynomials in R[Y ] of total degree up to k. For a symmetric matrix Z,
Z ⪰ 0(≻ 0) means that Z is positive semidefinite (definite). For m ∈ N, Rm×m denotes
the set of m ×m real matrices and Sm+ ⊂ Rm×m denotes its subset of positive semidefinite
matrices. For two symmetric matrices A,B of the same size, ⟨A,B⟩ denotes the inner
product of A and B.

2.1 Sums of squares and moments

We recall some background about sums of squares (s.o.s) of polynomials and the dual the-
ory of moment matrices. For any f(Y ) ∈ R[Y ]k, let f denote its column vector of coef-
ficients in the canonical monomial basis of R[Y ]k. A polynomial f(Y ) ∈ R[Y ] is said to
be a sum of squares of polynomials if it can be written as f(Y ) =

∑t
i=1 fi(Y )2 for some

f1(Y ), . . . , ft(Y ) ∈ R[Y ]. The symbol Σ2[Y ] denotes the set of polynomials that are s.o.s.
Let G := {g1, . . . , gs} be the set of polynomials that define the semialgebraic set S (1.2).

We denote by

Q(G) :=


s∑

j=0

σjgj

∣∣∣ g0 = 1, σj ∈ Σ2[Y ], j = 0, 1, . . . , s

 (2.1)

the quadratic module generated by G and denote by

Qk(G) :=


s∑

j=0

σjgj

∣∣∣ g0 = 1, σj ∈ Σ2[Y ], deg(σjgj) ≤ 2k, j = 0, 1, . . . , s

 (2.2)

its k-th quadratic module. It is clear that if f ∈ Q(G), then f(y) ≥ 0 for any y ∈ S.
However, the converse is not necessarily true, see Example 3.18. Note that checking whether
f ∈ Qk(G) for a fixed k ∈ N is an SDP feasibility problem [21].

For k ∈ N, denote s(k) :=
(
n+k
n

)
. Consider a finite sequence of real numbers z :=

(zα)α∈Nn
2k

∈ Rs(2k) whose elements are indexed by n-tuples α ∈ Nn
2k. z is called a truncated

moment sequence up to order 2k if there exists a Borel measure µ on Rn such that

zα =

∫
Y αdµ(y), ∀α ∈ Nn

2k. (2.3)

In this case, we say that z has a representing measure µ. The associated k-th moment
matrix is the matrixMk(z) indexed by Nn

k , with (α, β)-th entry zα+β for α, β ∈ Nn
k . Given a

polynomial f(Y ) =
∑

α fαY
α, for k ≥ df := ⌈deg(f)/2⌉, the (k − df )-th localizing moment

matrix Mk−df
(fz) is defined as the moment matrix of the shifted vector ((fz)α)α∈Nn

2(k−df )

with (fz)α =
∑

β fβzα+β . M2k denotes the space of all sequences z = (zα)α∈Nn
2k

∈ Rs(2k)

with order at most 2k. For any z ∈ M2k, the corresponding Riesz functional Lz on R[Y ]2k



398 F. GUO AND X. SUN

is defined by

Lz

(∑
α

qαY
α1
1 · · ·Y αn

n

)
:=
∑
α

qαzα, ∀q(Y ) ∈ R[Y ]2k. (2.4)

From the definition of the localizing moment matrix Mk−df
(fz), it is easy to check that

qTMk−df
(fz)q = Lz(f(Y )q(Y )2), ∀q(Y ) ∈ R[Y ]k−df

. (2.5)

Let dj := ⌈deg(gj)/2⌉ for each j = 1, . . . , s. For any v ∈ S, let ζ2k,v := [vα]α∈Nn
2k

be the
Zeta vector of v up to degree 2k, i.e.,

ζ2k,v = [1 v1 · · · vn v21 v1v2 · · · v2kn ]. (2.6)

Then, Mk(ζ2k,v) ⪰ 0 and Mk−dj
(gjζ2k,v) ⪰ 0 for j = 1, . . . , s. In fact, let g0 = 1, then for

each j = 0, 1, . . . , s,

qTMk−dj
(gjζ2k,v)q = Lζ2k,v

(gj(Y )q(Y )2) = gj(v)q(v)
2 ≥ 0, ∀q(Y ) ∈ R[Y ]k−dj

. (2.7)

Definition 2.1. We say that Q(G) is Archimedean if there exists ψ ∈ Q(G) such that the
inequality ψ(y) ≥ 0 defines a compact set in Rn.

Note that the Archimedean property implies that S is compact but the converse is
not necessarily true. However, for any compact set S we can always force the associated
quadratic module to be Archimedean by adding a redundant constraint M − ∥y∥22 ≥ 0 in
the description of S for sufficiently large M .

Theorem 2.2 ([39, Putinar’s Positivstellensatz]). Suppose that Q(G) is Archimedean.

(i) If a polynomial f ∈ R[Y ] is positive on S, then f ∈ Qk(G) for some k ∈ N;

(ii) If Mk(z) ⪰ 0 and Mk(gjz) ⪰ 0 for all j = 1, . . . , s, and all k = 0, 1, . . ., then z =
(zα)α∈Nn ∈ RNn

has a representing measure µ supported by S.

2.2 Dual problems and GPM

The Lagrangian dual problem [17,28,41] of (1.1) is
d∗ := sup

µ∈M+(S)

−
∫
S

b(y)dµ(y)

s.t.

∫
S

ai(y)dµ(y) = ci, i = 1, . . . ,m,

(2.8)

where M+(S) is the space of all nonnegative bounded regular Borel measure supported by
S. The dual problem (2.8) is in fact a special case of the so-called generalized problems
of moments (GPM), which is to maximize a linear function over a linear section of the
moment cone. We refer the interested readers to [2, 3, 20] and the references therein for
various methodologies and applications of GPM problems. For numerical treatment of GPM
problems, see [4,19] for some geometric approaches and [23,34] for SDP relaxation methods
for GPM problems with polynomial data.

Now we introduce the main idea of the SDP relaxation method for (2.8) proposed by
Lasserre in [23]. Assume that S is compact, by Putinar’s Positivstellensatz (part (ii) of
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Theorem 2.2), a sequence z = (zα)α∈Nn ∈ RNn

has a representing measure µ supported by
S if

Mk(z) ⪰ 0, Mk(gjz) ⪰ 0, j = 1, . . . , s, k = 0, 1, . . . . (2.9)

Define
dj := ⌈deg(gj)/2⌉, dS := max{1, d1, . . . , ds},
dP := max{dS , ⌈deg(a1)/2⌉, · · · , ⌈deg(am)/2⌉, ⌈deg(b)/2⌉}.

(2.10)

Let k ≥ dP and z = (zα)α∈Nn
2k

∈ Rs(2k), the k-th semidefinite relaxation of (2.8) is

pmom

k := sup
z∈Rs(2k)

−
∑

α∈Nn
2k

bαzα

s.t.
∑

α∈Nn
2k

ai,αzα = ci, i = 1, . . . ,m,

Mk(z) ⪰ 0, Mk−dj
(gjz) ⪰ 0, j = 1, . . . , s.

(2.11)

Under certain assumptions, Lasserre proved [23] that pmom

k decreasingly converges to p∗. The
SDP relaxations (2.11) can be easily implemented and solved by the software GloptiPoly [16]
developed by Henrion, Lasserre and Löfberg.

Condition 2.1. An optimizer z∗ of the k-th SDP relaxation (2.11) satisfies the flat extension
condition when

rankMk−dS
(z∗) = rankMk(z

∗). (2.12)

Based on [7, Theorem 1.1], Lasserre [23, Theorem 2] showed that the finite convergence
of (2.11) happens at order k if the flat extension condition holds.

3 SDP Relaxations of LSIPP

In this section, we present a hierarchy of SDP relaxations for LSIPP problems. These SDP
relaxations can be seen as the dual of Lasserre’s relaxations for GPM and enjoy several desir-
able features. For example, (approximate) mininizers can be extracted and the convergence
rate can be estimated by using some existing results. We shall also see in Section 4 that
these SDP relaxations can be easily extended to more general semi-infinite programming
problems.

3.1 SDP relaxations of LSIPP problems

We assume that S in (1.1) is compact. For a given feasible point x ∈ Rm of the LSIPP
problem (1.1), the constraint requires that the polynomial a(Y )Tx + b(Y ) ∈ R[Y ] is non-
negative on S. Since every polynomial in the quadratic module Q(G) of S generated by G
is nonnegative on S, we can relax the problem (1.1) as follows

psos := inf
x∈Rm

cTx s.t. a(Y )Tx+ b(Y ) ∈ Q(G). (3.1)

Clearly, any feasible point of (3.1) is also feasible for (1.1). Hence, we have psos ≥ p∗.

Definition 3.1. We say that the Slater condition holds for the problem (1.1) if there exists
x̄ ∈ Rm such that a(y)T x̄+ b(y) > 0 for all y ∈ S.

Theorem 3.2. If Q(G) is Archimedean and the Slater condition holds for the LSIPP prob-
lem (1.1), then psos = p∗.
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Proof. Fix an ε > 0 and a feasible x̄ ∈ Rm of (1.1) such that a(y)T x̄+ b(y) > 0 for all y ∈ S.
We next show that psos − p∗ < ε. By Putinar’s Positivstellensatz, x̄ is a feasible point of
(3.1) and thus we can assume that c ̸= 0 without loss of generality. If cT x̄ − p∗ < ε, then
psos − p∗ ≤ cT x̄ − p∗ < ε and we are done. Hence, we assume that cT x̄ − p∗ ≥ ε in the
following. Then we can fix another feasible point x′ ∈ Rm of (1.1) such that cT x̄ > cTx′

and cTx′ − p∗ < ε/2. Let

δ :=
ε

2cT (x̄− x′)
> 0 and x̂ := (1− δ)x′ + δx̄. (3.2)

Then we have 0 < δ < 1 and hence

a(y)T x̂+ b(y) = (1− δ)[a(y)Tx′ + b(y)] + δ[a(y)T x̄+ b(y)] > 0, ∀y ∈ S. (3.3)

Since Q(G) is Archimedean, a(Y )T x̂ + b(Y ) ∈ Q(G) by Putinar’s Positivstellensatz. That
is, x̂ is feasible for both (1.1) and (3.1). We have

psos − p∗ ≤ cT x̂− p∗

= (1− δ)cTx′ + δcT x̄− p∗

= (cTx′ − p∗) + δcT (x̄− x′)

<
ε

2
+
ε

2
= ε,

(3.4)

which means that psos ≤ p∗ since ε > 0 is arbitrary. As psos ≥ p∗, we can conclude that
psos = p∗.

Note that we do not require that p∗ is attainable in the above proof. For k ≥ dP ,
replacing Q(G) in (3.1) by its k-th truncation Qk(G), we obtain

psos

k := inf
x∈Rm

cTx

s.t. a(Y )Tx+ b(Y ) =

s∑
j=0

σj(Y )gj(Y ),

g0 = 1, σj ∈ Σ2[Y ],deg(σjgj) ≤ 2k, j = 0, . . . , s.

(3.5)

Now we reformulate (3.5) as an SDP problem. For any t ∈ N, let mt(Y ) be the column
vector consisting of all the monomials in Y of degree up to t. Recall that s(t) =

(
n+t
n

)
which

is the dimension of mt(Y ). For each j = 0, 1, . . . , s, there exists a positive semidefinite
matrix Zj ∈ Rs(k−dj)×s(k−dj) such that

σj(Y ) = mk−dj
(Y )T · Zj ·mk−dj

(Y ). (3.6)

For each α ∈ Nn
2k, we can find a symmetric matrix Cj,α ∈ Rs(k−dj)×s(k−dj) such that the

coefficient of σjgj equals ⟨Zj , Cj,α⟩ for each j = 0, 1, . . . , s. Let

b(Y ) =
∑

α∈Nn
2k

bαY
α and ai(Y ) =

∑
α∈Nn

2k

ai,αY
α, i = 1, . . . ,m. (3.7)

Then (3.5) can be written as the following SDP problem
psos

k = inf
Zj⪰0,x∈Rm

cTx

s.t.

m∑
i=1

xiai,α + bα =

s∑
j=0

⟨Zj , Cj,α⟩, ∀α ∈ Nn
2k.

(3.8)
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It follows that

Theorem 3.3. If Q(G) is Archimedean and the Slater condition holds for the LSIPP prob-
lem (1.1), then psos

k decreasingly converges to p∗ as k → ∞.

Proof. For any ε > 0, let x̂ be defined as in the proof of Theorem 3.2. We have a(Y )T x̂ +
b(Y ) ∈ Qk(G) for some k ∈ N and then psos

k − p∗ ≤ cT x̂ − p∗ < ε. Since ε is arbitrary, psos

k

decreasingly converges to p∗ as k → ∞.

The Lagrangian dual problem of (3.5) is eactly the SDP relaxation (2.11) derived by
Lasserre in [23]. By the ‘weak duality’, we have pmom

k ≤ psos

k . Consequently, we can reprove
the convergence of (2.11).

Theorem 3.4. If Q(G) is Archimedean and the Slater condition holds for the LSIPP prob-
lem (1.1), then pmom

k decreasingly converges to p∗ as k → ∞.

Proof. Since S is compact and the Slater condition holds for (1.1), p∗ = d∗ and d∗ is
attainable (c.f. [5]). It is clear that pmom

k ≥ d∗ = p∗ for each k ≥ dP . Then the conclusion
follows from Theorem 3.3 and the ‘weak duality’.

For any feasible point x ∈ Rm of (1.1), the active index set of x is

{y ∈ S | a(y)Tx+ b(y) = 0}. (3.9)

Consider the flat extension condition (Condition 2.1). If it happens, then pmom

k = p∗ and
by [7, Theorem 1.1], z∗ has a unique r-atomic measure supported by S, i.e., there exist r
positive real numbers λ1, . . . , λr and r distinct points v1, . . . , vr ∈ S such that

z∗ = λ1ζ2k,v1
+ · · ·+ λrζ2k,vr

, (3.10)

where ζ2k,vi is the Zeta vector of vi up to degree 2k.

Proposition 3.5. Suppose that Q(G) is Archimedean and the Slater condition holds for
the LSIPP problem (1.1). Then, v1, . . . , vr in (3.10) belong to the active index set of each
minimizer x∗ of (1.1).

Proof. As

p∗ = cTx∗ =

r∑
i=1

λia(vi)
Tx∗ ≥ −

r∑
i=1

λib(vi) = pmom

k = p∗ (3.11)

for any minimizer x∗ of (1.1), the conclusion follows.

The extraction procedure of the points vi’s can be found in [15] and has been implemented
in GloptiPoly.

Remark 3.6. Note that the flat extension condition is only a sufficient condition which
means that it might not hold when the finite convergence of (2.11) happens. A weaker
stopping criterion called flat truncation condition was proposed by Nie in [32] for SDP
relaxations of polynomial optimziaiton problems. It can also be used as a sufficient condition
to certify the finite convergence of (2.11). Precisely, if an optimizer z∗ of the k-th SDP
relaxation (2.11) satisfies

rankMt−dS
(z∗) = rankMt(z

∗) (3.12)

for some integer t ∈ [dP , k], then p
mom

k = p∗ and the points v1, . . . , vr can also be extracted.
See [32] for details.
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Figure 1: The semialgebraic set S (gray) in Example 3.7 and the line x∗1y1 + x∗2 − y2 = 0
(red).

Compared with existing numerical approaches for LSIP problems, the SDP relaxations
(3.5) and (2.11) are applicable for LSIPP problems with index sets being arbitrary basic
semialgebraic sets, not necessarily box-shaped.

Example 3.7. Consider the following problem{
inf
x∈R2

x2

s.t. x1y1 + x2 − y2 ≥ 0, ∀y ∈ S,
(3.13)

where
S := {y ∈ R2 | (y1 + 5y2)y

2
1 − (y21 + y22)

2 ≥ 0} (3.14)

which is the gray region in Figure 1. Clearly, it is equivalent to the bilevel problem

min
x1∈R

max
y∈S

y2 − x1y1. (3.15)

By replacing the lower level maximality condition by the KKT condition, it is easy to check
that the minimizer is x∗ = ( 15 ,

125
104 ) and its active index set consists of(

625

2704
+

1875

2704

√
3,

3375

2704
+

375

2704

√
3

)
≈ (1.4322, 1.4884),(

625

2704
− 1875

2704

√
3,

3375

2704
− 375

2704

√
3

)
≈ (−0.9699, 1.0079).

Thus, the optimum is 125
104 ≈ 1.2019. Using GloptiPoly, we get pmom

2 = 1.2982 and pmom
3 =

1.2019. The flat extension condition holds at the order k = 3. We can extract the active
index set {(1.4321, 1.4883), (−0.9699, 1.0079)}.

Although the optimal value p∗ of (1.1) can be approximated by solving the dual problem
(2.8) with the SDP relaxations (2.11) given in [23], the hierarchy of SDP relaxations (3.5)
of (1.1) itself is of independent interest. For example, we can solve the relaxation (3.5) and

extract the optimal solution (x(k), Z
(k)
0 , . . . , Z

(k)
s ) (if it exists) by the software YALMIP [27].

As psos

k may not be attainable, let (x̃(k), Z̃
(k)
0 , . . . , Z̃

(k)
s ) be an ε

2 -optimal solution of (3.5).

Since x̃(k) is feasible for (1.1) and psos

k − p∗ < ε
2 for some k ∈ N, a subsequence of {x̃(k)}k∈N

converges to an ε-optimal solution of (1.1) if the feasible set of (1.1) is bounded.
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Example 3.8. Consider the following problem
min

x0,xi1,i2
∈R

x0

s.t.

∣∣∣∣∣
t∑

i1=0

t∑
i2=0

xi1,i2y
i1
1 y

i2
2 − b(y)

∣∣∣∣∣ ≤ x0, ∀y ∈ [−1, 1]2,
(3.16)

which is to approximate the function b(Y ) from the spans of Y i1
1 Y i2

2 in some sense. Hence,
it is more useful to give the minimizers x∗ which are the corresponding optimal coefficients
for the basis functions Y i1

1 Y i2
2 in the approximations. Here, we consider two cases [45]:

(i): t = 2, b(Y ) =
1

Y1 + 2Y2 + 4
; and (ii): t = 2, b(Y ) =

√
Y1 + 2Y2 + 4. (3.17)

While b(Y ) in (ii) is a semialgebraic function, (3.5) still works by adding some lifted variables,
see Section 4.1. Solving (3.5) with YALMIP, the obtained coefficients are listed below

(i) : (0.2341,−0.0468,−0.1507, 0.1203,−0.0706,−0.1292, 0.0837, 0.0136, 0.0927),

(ii) : (2.0043, 0.2494, 0.5125,−0.0747, 0.0194, 0.0350,−0.0133,−0.0178,−0.0708),
(3.18)

in the order (x∗0,0, x
∗
1,0, x

∗
0,1, x

∗
1,1, x

∗
2,1, x

∗
1,2, x

∗
2,2, x

∗
2,0, x

∗
0,2).

At the end of this part, let us briefly introduce the SDP relaxation method for general
SIPP problems given in [44] which can also be used to solve (1.1). The approach in [44] is
based on the following exchange scheme. At its k-th iteration, we solve the linear program-
ming problem

min
x∈Rm

cTx s.t. a(y)Tx+ b(y) ≥ 0, y ∈ Yk, (3.19)

where Yk ⊂ S is a finite set and generated at the last iteration. Next, choose a minimizer
x(k) of (3.19) and globally solve the polynomial optimizaion problem

min
y∈S

a(y)Tx(k) + b(y) (3.20)

by Lasserre’s SDP relaxation method [21]. Extract the set Sk of global minimizers of (3.20)
and let Yk+1 = Yk∪Sk, then go to next iteration. To guarantee the convergence, the feasible
set of (1.1) need to be compact and Sk ̸= ∅ for each k. However, if the flat extension condition
or flat trucation condition is not satisfied when solving (3.20) by Lasserre’s relaxation (when
Sk is infinite, for example), it is hard to obtain the set Sk without which the iteration goes
into dead loop.

3.2 Convergence rate analysis

Denote by F and Fk the feasible sets of (1.1) and (3.5), respectively. In this subsection, we
assume that F and S are compact. For the simplicity in the convergence rate analysis of
the SDP relaxations (3.5), we consider the following assumption which holds possibly after
some rescaling.

Assumption 3.1. It holds that F ⊆ (−1, 1)m and S ⊆ (−1, 1)n for (1.1).

Let
ω := max{deg(a1), . . . , deg(am),deg(b)}. (3.21)
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For a polynomial h(Y ) =
∑

α hαY
α ∈ R[Y ], define the norm

∥h∥ := max
α

|hα|(∥α∥1

α

) .
Recalling the proof of Theorem 3.2, we have

Theorem 3.9. Suppose that Assumption 3.1 holds, Q(G) is Archimedean and x̄ is a Slater
point of (1.1). Let r∗x̄ := miny∈S a(y)

T x̄ + b(y) > 0, then there exists γ > 0 depending on
gi’s in (1.2) such that for any ε > 0, it holds that 0 ≤ psos

k − p∗ ≤ ε whenever

k ≥ γ exp

[(
ω2nω

∑m
i=1 ∥ai∥+ ∥b∥
κ(ε)rx̄∗

)γ]
, (3.22)

where κ(ε) := min{1, ε
4
√
m∥c∥2

}.

Proof. If cT x̄ − p∗ ≤ ε, let x(ε) = x̄; otherwise, let x(ε) = x̂ as defined in (3.2). As
F ⊆ (−1, 1)m, we have δ ≥ ε

4
√
m∥c∥2

in (3.2). In either case, it holds from (3.3) that

a(y)Tx(ε) + b(y) ≥ κ(ε)rx̄∗ > 0 for any y ∈ S. By [35, Theorem 6], there exists γ > 0
depending on gi’s such that a(Y )Tx(ε) + b(Y ) ∈ Qk̄(G) where

k̄ := γ exp

[(
ω2nω

∥a(Y )Tx(ε) + b(Y )∥
miny∈S a(y)Tx(ε) + b(y)

)γ
]
. (3.23)

Clearly,

k̄ ≤ γ exp

[(
ω2nω

∑m
i=1 ∥ai∥+ ∥b∥
κ(ε)rx̄∗

)γ]
≤ k. (3.24)

Hence, a(Y )Tx(ε) + b(Y ) ∈ Qk(G) and p
sos

k − p∗ ≤ cTx(ε) − p∗ ≤ ε by (3.4).

For any ε > 0, compared with (1.1), consider the problem

(Pε)

 p∗ε := inf
x∈Rm

cTx

s.t. a(y)Tx+ b(y) ≥ ε, ∀y ∈ S.
(3.25)

Obviously, p∗ ≤ p∗ε for any ε > 0. Moreover, by the stability of optimal values of linear
semi-infinite programming problems (c.f. [12, Theorem 5.1.5]), it follows that

Lemma 3.10. If Assumption 3.1 and the Slater condition hold for (1.1), then there exist
scalars ε̄ > 0 and L > 0 such that p∗ε − p∗ ≤ Lε for any ε ≤ ε̄.

Proof. Since F is compact, the optimal solution set of (1.1) is non-empty and compact. As
S is compact, a Slater point of (1.1) is also a strong Slater point. Then, the conclusion
follows by the Lipschitz continuity of the optimal value function of (1.1) (see, [12, Theorem
5.1.5]).

For any ε > 0, denote the feasible set of (3.25) by

Fε := {x ∈ Rm | a(y)Tx+ b(y) ≥ ε, ∀ y ∈ S}. (3.26)
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Lemma 3.11. Suppose that Assumption 3.1 holds and Q(G) is Archimedean. Then, there
exists some γ > 0 depending on gi’s in (1.2) such that for all integers k > γ exp((2ω2nω)γ),
we have Fε ⊆ Fk whenever

ε ≥ εk :=
6ω3n2ω(

∑m
i=1 ∥ai∥+ ∥b∥)

γ

√
log k

γ

. (3.27)

Proof. Fix a point u ∈ Fε. Let r
∗
u := miny∈S a(y)

Tu+b(y). Then, by [35, Theorem 8], there
exists some γ > 0 depending on gi’s such that for all k > γ exp((2ω2nω)γ), it holds that

a(Y )Tu+ b(Y )− r∗u +
6ω3n2ω∥a(Y )Tu+ b(Y )∥

γ

√
log k

γ

∈ Qk(G). (3.28)

As u ∈ Fε, we have r∗u ≥ ε. Since Fε ⊆ F , the assumption F ⊆ (−1, 1)m implies that
∥a(Y )Tu+ b(Y )∥ ≤

∑m
i=1 ∥ai(Y )∥+ ∥b(Y )∥. Consequently,

r∗u − 6ω3n2ω∥a(Y )Tu+ b(Y )∥
γ

√
log k

γ

≥ ε− εk ≥ 0. (3.29)

Hence, we have a(Y )Tu+ b(Y ) ∈ Qk(G) and u ∈ Fk.

Theorem 3.12. Suppose that Assumption 3.1, the Slater condition hold for (1.1) and Q(G)
is Archimedean. Then, there exist some γ > 0 depending on gi’s in (1.2) and scalars ε̄ > 0,
L > 0 such that for all integers

k > max

{
γ exp((2ω2nω)γ), γ exp

[
6ω3n2ω(

∑m
i=1 ∥ai∥+ ∥b∥)
ε̄

]γ}
, (3.30)

it holds that

0 ≤ psos

k − p∗ ≤ L
6ω3n2ω(

∑m
i=1 ∥ai∥+ ∥b∥)

γ

√
log k

γ

. (3.31)

Proof. Note that all assumptions in Lemma 3.10 and 3.11 hold. Then, there exist γ > 0
depending on gi’s, ε̄ > 0 and L > 0 as described in the conclusions of Lemma 3.10 and
3.11. Recall εk defined in (3.27). By Lemma 3.11, it holds that Fεk ⊆ Fk which implies
p∗εk ≥ psos

k . Moreover, it is easy to check that εk ≤ ε̄ and hence p∗εk−p
∗ ≤ Lεk by Lemma 3.10.

Consequently, psos

k − p∗ ≤ Lεk.

3.3 On compactness of F

In the last subsection, we assume that the feasible set F of (1.1) is compact in order to
estimate the convergence rate of the SDP relaxations (3.5). In the following, we show that
the compactness of F can be determined by solving some LSIPP problems, which can be
done by the SDP relaxations (3.5) in some cases. Denote by 0 the vector of all zeros in Rn.
In this subsection, without loss of generality,we assume that

Assumption 3.2. 0 ∈ F , or equivalently, b(y) ≥ 0 for all y ∈ S.
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Denote by 0+F ⊂ Rm the recession cone of F , i.e., u ∈ 0+F if and only if x + tu ∈ F
for all x ∈ F and t ≥ 0. As F is closed and convex, F is compact if and only if 0+F = {0}
by [40, Theorem 8.4].

Consider the minimax problem

r∗a := max
∥u∥2=1

min
y∈S

a(y)Tu (3.32)

Proposition 3.13. Suppose that Assumption 3.2 holds for (1.1). Then, its feasible set F
is compact if and only if r∗a < 0.

Proof. As 0 ∈ F , by [40, Theorem 8.3], a vector u ∈ 0+F if and only if tu ∈ F for all
t ≥ 0. That is, (a(y)Tu) · t + b(y) ≥ 0 for all y ∈ S and t ≥ 0, which is true if and only if
a(y)Tu ≥ 0 for all y ∈ S since b(y) ≥ 0 on S. Note that since S is compact, miny∈S a(y)Tu
is continuous in u and then r∗a is attainable. Therefore, if F is compact, then u ̸∈ 0+F for
any nonzero u ∈ Rn and hence r∗a < 0. Conversely, assume that r∗a < 0. If u ∈ 0+F for
some nonzero u ∈ Rn, then we have r∗a ≥ 0, a contradiction. Then, 0+F = {0} and hence
F is compact.

It is clear that the minimax problem (3.32) is equivalent to the following problem
r∗a = sup

∥u∥2=1,λ∈R
λ

s.t. a(y)Tu− λ ≥ 0, ∀ y ∈ S.
(3.33)

By some rescalings, we can reformulate the problem (3.33) as the following LSIPP problems
of the form (1.1):

(P+
i )

 r+a,i := inf
ui=1,λ∈R

− λ

s.t. a(y)Tu− λ ≥ 0, ∀y ∈ S,
(3.34)

and

(P−
i )

 r−a,i := inf
ui=−1,λ∈R

− λ

s.t. a(y)Tu− λ ≥ 0, ∀y ∈ S,
(3.35)

for i = 1, . . . ,m. Then,

Corollary 3.14. Suppose that Assumption 3.2 holds for (1.1). Then, its feasible set F is
compact if and only if min{r+a,i, r

−
a,i, i = 1, . . . ,m} > 0.

Consequently, the compactness of F can be verified by a positive lower bound of
min{r+a,i, r

−
a,i, i = 1, . . . ,m} which can be obtained by solving (P+

i )’s and (P−
i )’s using, for

instance, discretization methods.
Note that the SDP relaxations (3.5) and (2.11) produce upper bounds of p∗ of (1.1).

The compactness of F can also be verified by these SDP relaxations of (P+
i )’s and (P−

i )’s
if finite convergence happens for each problem, which can be detected by the flat extension
condition (or the weaker flat truncation condition in Remark 3.6). In particular, when S is
a closed and bounded interval, the SDP relaxations (3.5) and (2.11) of the smallest order
are exact for (1.1) by the representation result of nonnegative polynomials in the univariate
case. This result has been investigated in [46]. Precisely, without loss of generality, we can
assume that S = [−1, 1]. Let

[−1, 1] = {y1 ∈ R | g1(y1) ≥ 0}, where g1(Y1) = 1− Y 2
1 .

Recall the well-known result
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Theorem 3.15 (c.f. [26,38]). Let h ∈ R[Y1] and h ≥ 0 on [−1, 1], then h = σ + σ1(1− Y 2
1 )

where σ, σ1 ∈ Σ2[Y1] and deg(σ), deg(σ1(1− Y 2
1 )) ≤ 2⌈deg(h)/2⌉.

It follows that psos

kP
= pmom

kP
= p∗ holds for (3.5) and (2.11) in this case [46]. Therefore,

the compactness of F can always be verified by SDP relaxations (3.5) and (2.11) of (P+
i )’s

and (P−
i )’s when S is a closed and bounded interval.

Example 3.7 revisited. Consider the feasible set F of (3.13) in Example 3.7, which is
clearly noncompact. Note that 0 ̸∈ F and we have proved that the minimizer is ( 15 ,

125
104 ).

Let w1 = x1 − 1
5 , w2 = x2 − 125

104 and move the set F to{
w ∈ R2 |

(
w1 +

1

5

)
y1 +

(
w2 +

125

104

)
− y2 ≥ 0, ∀ y ∈ S

}
, (3.36)

which contains 0. Consider the LSIPP problem

(P+
1 )

 r+a,1 := inf
u2,λ∈R

− λ

s.t. y1 + u2 − λ ≥ 0, ∀y ∈ S.
(3.37)

It is easy to check that y1 ≥ −2 for all y ∈ S. Then, (u2 = N+2, λ = N) is feasible for (P+
1 )

for all N ∈ N. Hence, we have r+a,1 = −∞ and therefore F is noncompact by Corollary 3.14.

Example 3.17. Consider the ellipse

F := {(x1, x2) ∈ R2 | 2x21 + x22 + 2x1x2 + 2x1 ≤ 0} (3.38)

which can be represented by

{(x1, x2) ∈ R2 | a(y1)Tx+ b(y1) ≥ 0, ∀y1 ∈ S} (3.39)

where

a(Y1) = (−Y 4
1 − 2Y 3

1 + 3Y 2
1 + 2Y1 − 1,−2Y1(Y

2
1 − 1))T , b(Y1) = 2Y 2

1 , (3.40)

and S = [−1, 1] (see [11]). Clearly, F is compact and 0 ∈ F . As S = [−1, 1], all problems
(P+

i )’s and (P−
i )’s can be solved by the SDP relaxations (3.5) and (2.11) of order dP = 2.

Using GloptiPoly, we first solve the SDP relaxation (2.11) of

(P+
1 )


r+a,1 := inf

u2,λ∈R
− λ

s.t. − y41 − 2y31 + 3y21 + 2y1 − 1− 2y1(y
2
1 − 1)u2 − λ ≥ 0,

∀y1 ∈ S.

(3.41)

As the infeasibility of the SDP problem is detected by the SDP solver SeDuMi [42] called
by GloptiPoly, we have r+a,1 = +∞. We continue to solve (P−

1 ), (P+
2 ) and (P−

2 ). The

results solved by GloptiPoly are r−a,1 = 1, r+a,2 = 0.5491 and r−a,2 = 0.7698, which imply the
compactness of F by Corollary 3.14.

Note that the index set S is required to be compact to guarantee the convergence of the
SDP relaxations (3.5) and (2.11). To end this section, we consider two examples to illustrate
how to deal with the case when S is noncompact by the homogenization technique and its
applications in polynomial optimzation problems.
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Example 3.18. Consider the LSIPP problem

p∗ := inf
x∈R

−x
2

s.t. (1− 3y2)x+ 3y1 ≥ 0, ∀y ∈ S, (3.42)

where
S := {y ∈ R2 | y1 ≥ 0, y21 − y32 ≥ 0}. (3.43)

Since (0, 0) ∈ S, a feasible x must be nonnegative. Clearly, x = 0 is a feasible point. x > 0
is feasible if and only if

0 ≥ max
y∈S

{
y2 −

1

3
− y1

x

}
= max

y∈S

{
y

2
3
1 − 1

3
− y1

x

}
. (3.44)

The latter maximum is attained at 8x3

27 with optimal value 4x2

27 − 1
3 . Thus, the feasible set

of (3.42) is [0, 32 ] and the minimizer is x∗ = 3
2 .

Obviously, Q(G) is not Archimedean. For any k ∈ N, we know from [13, Example 2.10]
that (1− 3Y2)x+ 3Y1 ∈ Qk(G) if and only if x = 0, i.e., psos

k = 0 for each k ≥ dP . Now we
show that pmom

k = psos

k for each k ≥ dP . In fact, for the SDP relaxation (2.11) of the problem
(3.42), let µ be a probability measure with uniform distribution in the following subset of
S:

S1 := {(y1, y2) ∈ R2 | 1 ≤ y1 ≤ 2, 0 ≤ y2 ≤ 1} (3.45)

and z(µ) be the truncated moment sequence with representing measure µ up to order 2k. It
can be verified that z(µ) is a feasible point of (2.11) and its corresponding truncated moment
matrix and localizing moment matrices are positive definite since S1 has nonempty interior.
Then pmom

k = psos

k follows by the conic duality theorem. Hence, both SDP relaxations (3.5)
and (2.11) do not converge to the optimum.

Now let us see how to solve this issue by homogenization. We first homogenize the
defining polynomials of S by new variable y0 and define the following bounded set

S̃> := {ỹ = (y0, y1, y2) ∈ R3 | y1 ≥ 0, y0y
2
1 − y32 ≥ 0, y0 > 0, ∥ỹ∥22 = 1}. (3.46)

Then, we homogenize the constraint polynomial of (3.42) with respect to Y and consider
the problem

inf
x∈R

−x
2

s.t. (y0 − 3y2)x+ 3y1 ≥ 0, ∀ỹ = (y0, y1, y2) ∈ closure(S̃>), (3.47)

which is equivalent to (3.42) by [44, Proposition 4.2]. However, the set closure(S̃>) is not in
the form of basic semialgebraic sets. Hence, we define the following compact set

S̃ := {(y0, y1, y2) ∈ R3 | y1 ≥ 0, y0y
2
1 − y32 ≥ 0, y0 ≥ 0, ∥ỹ∥22 = 1}. (3.48)

We say S is closed at ∞ [33] if S̃ = closure(S̃>), in which case (3.42) is equivalent to

inf
x∈R

−x
2

s.t. (y0 − 3y2)x+ 3y1 ≥ 0, ∀ỹ = (y0, y1, y2) ∈ S̃. (3.49)

Note that S is indeed closed at ∞. In fact, for every (0, v1, v2) ∈ S̃\S̃>, let

v(ε) :=

(
ε, v1,

3

√
εv21 + v32

)
. (3.50)
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Then {v(ε)/∥v(ε)∥2}ε>0 ⊆ S̃> and limε→0 v
(ε)/∥v(ε)∥2 = (0, v1, v2). Hence, we have S̃\S̃> ⊆

closure(S̃>) and so S is closed at ∞. Clearly, the quadratic module associated with S̃ is
Archimedean and x̄ = 1 is a Slater point of (3.49). With GloptiPoly, we solve the SDP
relaxations (2.11) of (3.49) and get the following numerical results: pmom

2 = −1.2124× 10−8

and pmom
3 = −0.7500. The flat extension condition is satisfied for k = 3 and we obtain the

certified optimum −0.7500. By Proposition 3.5, the extracted numerical active index set of
the minimizer x∗ = 3/2 is (0.5773, 0.5774, 0.5774) which corresponds to (1, 1) ∈ S.

Remark 3.19. Note that not every set S of the form (1.2) is closed at ∞ even when it is
compact [31, Example 5.2]. However, it is shown in [44, Theorem 4.10] that the closedness
at ∞ is a generic property.

Example 3.20. Consider the following polynomial optimization problem inf
y∈R2

f(y) := y21 + y22

s.t. y ∈ S := {y ∈ R2 | g1(y) ≥ 0, g2(y) ≥ 0, g3(y) ≥ 0},
(3.51)

where
g1(Y ) = Y 2

2 − 1, g2(Y ) = Y 2
1 − Y1Y2 − 1, g3(Y ) = Y 2

1 + Y1Y2 − 1. (3.52)

It was shown in [8, 29,33] that the global minimizers and global minimum are(
±1 +

√
5

2
,±1

)
≈ (±1.618,±1) and 2 +

(1 +
√
5)

2
≈ 3.618. (3.53)

Because S is noncompact, the classic Lasserre’s SDP relaxations [21] of (3.51) can only
provide lower bounds 2 no matter how large the order is (c.f. [8]).

Clearly, any polynomial optimization problem of the form (3.51) can be equivalently
reformulated to the following LSIPP problem

f∗ = sup
x∈R

x s.t. f(y)− x ≥ 0, ∀y ∈ S. (3.54)

As S is noncompact, we use the homogenization technique in Example 3.18 to convert this
LSIPP problem to

f̃∗ := sup
x∈R

x s.t. fh(ỹ)− xy
deg(f)
0 ≥ 0, ∀ỹ ∈ S̃, (3.55)

where fh is the homogenization of f and S̃ is defined as in Example 3.18. Suppose that
f∗ > −∞, then the Slater condition holds for (3.55) if and only if

f̂(y) > 0, ∀ y ∈ Ŝ := {y ∈ Rn | ĝ1(y) ≥ 0, . . . , ĝs(y) ≥ 0, ∥y∥22 = 1}, (3.56)

where f̂ and ĝi’s are the homogeneous parts of f and gi’s of the highest degree. Moreover,
if the condition (3.56) holds for (3.55), it is easy to see that any feasible point of (3.54) is
also feasible for (3.55). Thus, f̃∗ = f∗ and we can compute them by the SDP relaxations
(3.5) and (2.11).

Obviously, the condition (3.56) holds for (3.51). We compute the relaxations (2.11)
of (3.55) with GloptiPoly. For k = 3, the flat extension condition is satisfied and we
get the numerically certified optimum fmom

3 = 3.6180. The extracted active index set is
{(0.4653,±0.7529,±0.4653)} which corresponds to the set of global minimizers (±1.6181,±1).
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Remark 3.21. (i) By [30, Theorem 5.1 and 5.3], the condition (3.56) holds if and only if f is
stably bounded from below on S, i.e., f remains bounded from below on S for all sufficiently
small perturbations of the coefficients of f, g1, . . . , gs. Therefore, we give an SDP relaxation
method in Example 3.20 for solving the class of polynomial optimization problems whose
objective polynomials are stably bounded from below on noncompact feasible sets; (ii) Note
that the stably boundedness from below of f on S is irrelevant to the closedness at ∞ of S.
For example, the set {y ∈ R2 | y2 ≥ y21} is not closed at ∞ but Y 2

2 is stably bounded from
below on it; the set S in Example 3.18 is closed at ∞ but Y1 is not stably bounded from
below on it.

4 Some Extensions

In this section, we discuss some extensions of the SDP relaxations (3.5) for (1.1) in Section 3
to more general semi-infinite programming problems.

4.1 LSIP with semi-algebraic functions

Inspired by Lasserre and Putinar’s work [25], we would like to point out that the SDP re-
laxation method proposed in this paper is applicable to a more general subclass of LSIP
problems. Denote by X ⊆ Rm a convex polyhedron defined by finitely many linear inequali-
ties in the variables X. Denote by A the algebra consisting of functions generated by finitely
many of the dyadic operations {+,−, /,∨,∧} and monadic operations {| · |, (·)1/p, p ∈ N} on
polynomials in R[Y ], where f ∨ g := max[f, g] and f ∧ g := min[f, g] for f, g ∈ R[Y ]. For
example, √

|f(Y )|+ g(Y )2 ∧
(

1

g(Y )
∨ f(Y )

)
∈ A. (4.1)

Note that every function in A has a lifted basic semi-algebraic representation [25, Definition
1]. Then, the SDP relaxations (3.5) and (2.11) can be extended for more general LSIP
problems of the form p∗ := inf

x∈X
cTx

s.t. al(y)Tx+ bl(y) ≥ 0, ∀y ∈ S and l = 1, . . . , t,
(4.2)

where c ∈ Rm, al(Y ) ∈ Am, bl(Y ) ∈ A, l = 1, . . . , t and

S := {y ∈ Rn | g1(y) ≥ 0, . . . , gs(y) ≥ 0}, (4.3)

where gj(Y ) ∈ A, j = 1, . . . , s. In fact, as shown in [25], the nonnegativity test of semi-
algebraic functions inA on the set (4.3) can be reduced to an equivalent polynomial funcation
case in a lifted space by adding some new variables. For instance, with f, h, g1, g2 ∈ R[Y1],√

f(y1)− 1/h(y1) ≥ 0 on {y1 ∈ R | |g1(y1)|g2(y1) ≥ 1} (4.4)

can be written as y2 − y3 ≥ 0 on

{y ∈ R4 | f(y1) = y22 , y2 ≥ 0, h(y1)y3 = 1, y4g2(y1) ≥ 1, g1(y1)
2 = y24 , y4 ≥ 0}. (4.5)

Consequently, the extension to A of Putinar’s Positivstellensatz ( [25, Theorem 2]) provides
us representations of each nonnegativity constraint in (4.3) via s.o.s and the dual theory of
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moments. Notice that the constraint x ∈ X is linear in X. Hence, SDP relaxations as (3.5)
and its dual (2.11) can be similarly derived for (4.2) by lifting the parameter space. Moreover,
the convergence results and stopping criterion, as Theorem 3.3, 3.4 and Proposition 3.5, can
also be analogously established. As might be expected, additional parameters in the lifted
space can cause more computational burden in resulting SDP problems. However, as pointed
out in [25], the running intersection property holds true for these lifted parameters. Hence,
like for polynomial optimization problems [22,43], some sparse SDP relaxations for (4.2) can
be explored to reduce the computational cost.

Example 4.1. Consider the one-sided L1 approximation problem
min
x∈Rn

n∑
i=1

xi
i

s.t.

n∑
i=1

yi−1xi − b(y) ≥ 0, ∀y ∈ [0, 1].

(4.6)

Here, we approximate two (semi-algebraic) functions [9] on [0, 1]:

(i): b(y) =
1

2− y
, n = 8; and (ii): b(y) = − 1

1 + y2
, n = 10. (4.7)

Clearly, in order to convert this problem into LSIPP, we can add lifted variable z such that
(2−y)z = 1 for case (i) and (1+y2)z = −1 for case (ii). Then, we solve the SDP relaxations
(3.5) with order k = 4 for (i) and k = 5 for (ii) by YALMIP. The obtained coefficients xi’s
are listed below

(i): (0.5000, 0.2501, 0.1227, 0.0787,−0.0258, 0.1226,−0.0967, 0.0484),

(ii): (−1.0000,−0.0000, 1.0016,−0.0202,−0.8566,−0.6123, 2.6222,−2.6059,

1.1881,−0.2168)

(4.8)

We show the accuracy of the computed optimal approximations (denoted by f) of b(Y ) in
Figure 2.

Example 4.2. In (x1, x2)-plane, consider the intersection area F of x2 ≥ 0, 1−x21−x22 ≥ 0
and x1 + 1 − x22 ≥ 0. Then, F can also be seen as the interstion of x2 ≥ 0, the half planes
defined by the lines tangent to 1− x21 − x22 = 0 in the first quadrant and to x1 + 1− x22 = 0
in the second quadrant, as shown in Figure 3. Therefore, it is easy to check that

F = {(x1, x2) ∈ R2 | a(y1)Tx+ b(y1) ≥ 0, ∀ y1 ∈ [−1, 1]} ∩ X , (4.9)

where X = {(x1, x2) ∈ R2 | x2 ≥ 0},

a1(y1) = −min[y1, 0]−max[y1, 0]y1,

a2(y1) = 2min[y1, 0]
√
y1 + 1−max[y1, 0]

√
1− y21 ,

b(y1) = −min[y1, 0](2 + y1) + max[y1, 0].

(4.10)

Here, the equations a(y1)
TX + b(y1) = 0 for y1 ∈ [−1, 1], in fact, represent the tangent lines

mentioned above. Consider the LSIP problem p∗ := min
x∈X

cTx

s.t. a(y1)
Tx+ b(y1) ≥ 0, ∀y ∈ [−1, 1],

(4.11)
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Figure 2: Pictures for the univariate approximation problems in Example 4.1.

in two cases: (i) c = (1,−1); (ii) c = (−1,−1). We can verify that the minima and minimizers

are: (i) p∗ = − 5
4 , x

∗ = (− 3
4 ,

1
2 ); (ii) p

∗ = −
√
2, x∗ = (

√
2
2 ,

√
2
2 ). Now, we first convert this

LSIP problem into LSIPP by the lifting method and then solve it by the SDP relaxations
(3.5). As 2 ·min[y1, 0] = y1 − |y1| and 2 ·max[y1, 0] = y1 + |y1|, we can write

F = {(x1, x2) ∈ R2 | ã(y)Tx+ b̃(y) ≥ 0, ∀ y ∈ S} ∩ X , (4.12)

where
ã1(y) = −y1 + y2 − y21 − y1y2,

ã2(y) = 2y1y3 − 2y2y3 − y1y4 − y2y4,

b̃(y) = −(2 + y1)(y1 − y2) + y1 + y2,

(4.13)

and

S = {y ∈ R4 | −1 ≤ y1 ≤ 1, y22 = y21 , y2 ≥ 0, 1+y1 = y23 , y3 ≥ 0, 1−y21 = y24 , y4 ≥ 0}. (4.14)

Now we can use the SDP relaxations (3.5) to solve the obtained LSIPP problems. The
approximate minima and minimizers are: (i) psos

5 = −1.2496, x̃(5) = (−0.7575, 0.4921); (ii)
psos
5 = −1.3936, x̃(5) = (0.6544, 0.7392).

4.2 S.O.S-convex objectives

Next, by the exact SDP relaxations for classes of nonlinear SDP problems proposed in [18],
we extend the SDP relaxation method in Section 3 to the following semi-infinite program-
ming problem {

h∗ := inf
x∈Rm

h(x)

s.t. a(y)Tx+ b(y) ≥ 0, ∀y ∈ S,
(4.15)

where a(Y ), b(Y ), S are defined as in (1.1) and h(X) ∈ R[X] is s.o.s-convex polynomial.
Recall that
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Definition 4.3 ([14]). A polynomial h ∈ R[Y ] is s.o.s-convex if its Hessian ∇2h is a s.o.s,
i.e., there are an integer r and a matrix polynomial H ∈ R[Y ]r×n such that ∇2h(Y ) =
H(Y )TH(Y ).

While checking the convexity of a polynomial is generally NP-hard [1], s.o.s-convexity
can be checked numerically by solving an SDP, see [14].

We first relax (4.15) with arbitrary convex polynomial objective function as

hsos := inf
x∈Rm

h(x) s.t. a(Y )Tx+ b(Y ) ∈ Q(G). (4.16)

Theorem 4.4. If h(X) is convex, Q(G) is Archimedean and the Slater condition holds for
(4.15), then hsos = h∗.

Proof. As h(X) is convex, replacing the function cTX in the proof of Theorem 3.2 by h(X),
all arguments in the proof of Theorem 3.2 are still valid. In particular, (3.4) become

psos − p∗ ≤ h(x̂)− p∗

≤ (1− δ)h(x′) + δh(x̄)− p∗

= (h(x′)− p∗) + δ(h(x̄)− h(x′))

<
ε

2
+
ε

2
= ε,

(4.17)

due to the convexity of h. Then the conclusion follows.

Recall that Fk denotes the feasible set of (3.5). For k ≥ dP , replacing Q(G) in (4.16) by
its k-th truncation Qk(G), we get

hsos

k := inf h(x) s.t. x ∈ Fk. (4.18)

Consequently, it follows from the proof of Theorem 3.3 that
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Theorem 4.5. If h(X) is convex, Q(G) is Archimedean and the Slater condition holds for
(4.15), then hsos

k decreasingly converges to h∗ as k → ∞.

Moreover, if h(X) is s.o.s-convex, we point out that for each k ≥ dP , (4.18) is equivalent
to a single SDP problem under certain conditions as shown in [18]. In fact, it is easy to see
that there exist some integers l, t and real t × t symmetric matrices {Ai}mi=0 and {Bj}lj=1

such that Fk is identical withx ∈ Rm
∣∣∣ ∃w ∈ Rl, s.t. A0 +

m∑
i=1

Aixi +

l∑
j=1

Bjwj ⪰ 0

 , (4.19)

where wj ’s correspond to the entries of Zj ’s in (3.8). Thus, (4.18) becomes
hsos

k = inf
x∈Rm,w∈Rl

h(x)

s.t. A0 +

m∑
i=1

Aixi +

l∑
j=1

Bjwj ⪰ 0.
(4.20)

Let d ∈ N is the smallest even number such that d ≥ deg h. Denote the variables W =
(W1, . . . ,Wl) and let Σ2

d[X,W ] be the set of sums of squares of polynomials in R[X,W ] of
degree up to d. Consider the dual problem of (4.20)

λk := sup
λ∈R,V ∈Sm+

λ

s.t. h(X)−
m∑
i=1

⟨Ai, V ⟩ ·Xi −
l∑

j=1

⟨Bj , V ⟩ ·Wj − ⟨A0, V ⟩ − λ

∈ Σ2
d[X,W ],

(4.21)

which can be reduced to an SDP problem as shown in Section 3. Clearly, hsos

k ≥ λk. We have
hsos

k = λk under certain conditions (c.f. [18, Theorem 3.1]). Therefore, an SDP relaxation
method is drived for (4.15) with s.o.s-convex objectives.

Example 4.6. [6] Consider the followin SIP problem
h∗ = inf

x∈R3
x21 + x22 + x23

s.t. − (y1 + y22 + 1)x1 − (y1y2 − y22)x2 − (y1y2 + y22 + y2)x3 − 1 ≥ 0,

∀y ∈ [0, 1]2.

(4.22)

The exact minimum and minimizer are h∗ = 1 and x∗ = (−1, 0, 0) [6]. Clearly, the objective
function is s.o.s-convex. Solving the SDP problem (4.21), we obtain λ1 = 1.0000 with
approximate minimizer (−1.0000, 2.3149× 10−6,−1.0410× 10−5).

Example 4.7. Consider the following SIP problemh∗ = inf
x∈R2

h(x) =
5

8
x21 − 4x1 +

3

4
x1x2 − 4x2 +

5

8
x22 + 8

s.t. 1− y1x1 − y2x2 ≥ 0, ∀y ∈ {y ∈ R2 | y21 + y22 = 1}.
(4.23)

Clearly, h(X) is s.o.s-convex. It is easy to see that the feasible set is the closed unit disk

around the origin. If we let f(X) = (X1 − 2)2 + (X2−2)2

4 , then h(X) = f( (X1−2)+(X2−2)√
2

+
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2, −(X1−2)+(X2−2)√
2

+ 2). Geometrically, for any r > 0, the curve h(X) = r can be obtained

by rotating the ellipse f(X) = r around (2, 2) by 45◦ counterclockwise. Therefore, the

minimizer is x∗ = (
√
2
2 ,

√
2
2 ) with the minimum h∗ = 9 − 4

√
2 ≈ 3.3431. Solving the SDP

problem (4.21), we obtain λ1 = 3.3432 with approximate minimizer (0.7071, 0.7071).

5 Conclusion

In this paper, a hierarchy of SDP relaxations for LSIPP problems is presented. It can be
seen as the dual of Lasserre’s relaxations for GPM problems and enjoys several desirable
features. Some (approximate) minimizers of LSIPP problems can be extracted using these
SDP relaxations, which is useful in some applications. Convergence rate of these SDP
relaxations is estimated using some existing results. We also extend this SDP relaxation
method to more general semi-infinite programming problems.
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