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symmetric tensors is denoted by ST (m,n). In the case A ∈ ST (m,n), it holds that
∇(Axm) = mAxm−1. Consequently, the tensor equation (1.1) is just the first order neces-
sary condition of the optimization problem

min f(x) =
1

m
Axm − bTx. (1.4)

Tensor equation is a special system of nonlinear equations. It may be solved by existing
numerical methods such as Newton and quasi-Newton methods for solving nonlinear equa-
tions. However, in some cases, Newton’s method may fail or be only linearly convergent if
the Jacobian matrix of F is singular.

Example 1.1. Consider the quadratic polynomial equation

F (x) =

 x2
1 − 1

x2
1 + x2

2 − 1
−x2

1 + x2
2 + x2

3 + 1

 = 0. (1.5)

It corresponds to the tensor equation (1.1) with b = (1, 1,−1)T and A = (aijk) whose
elements are

a111 = a222 = a333 = 1, a211 = a322 = 1, a311 = −1. (1.6)

and all other elements are zeros. The equation have two solutions x∗ = (1, 0, 0)T and
x̃∗ = (−1, 0, 0)T .

The Jacobian of F in (1.5) at x is

F ′(x) = 2

 x1 0 0

x1 x2 0

−x1 x2 x3

 = 2

 1 0 0

1 1 0

−1 1 1


 x1

x2

x3

 . (1.7)

It is singular if x1 = 0, x2 = 0 or x3 = 0. In particular, F ′(x∗) and F ′(x̃∗) are singular.
Let x be the current iterate that has no zero elements. The next iterate generated by

Newton’s method x+ is determined by

x+ = x− (F ′(x))−1F (x)

= x− 1

2

 x−1
1

x−1
2

x−1
3


 1 0 0

−1 1 0

2 −1 1



 1 0 0

1 1 0

−1 1 1


 x2

1

x2
2

x2
3

−

 1
1
−1




=
1

2

 x1

x2

x3

+
1

2

 x−1
1

0
0

 .

It implies

x+ − x∗ =
1

2

 (x1 − x∗
1) + (x−1

1 − (x∗
1)

−1)
x2 − x∗

2

x3 − x∗
3

 , (1.8)

which shows the linear convergence of {xk}.
On the other hand the tensor equation (1.5) can be written as

A

 x2
1

x2
2

x2
3

 = b, with A =

 1 0 0

1 1 0

−1 1 1

 , b =

 1
1
−1

 . (1.9)



FINDING A NONNEGATIVE SOLUTION TO AN M-TENSOR EQUATION 421

It can be solved easily by solving the system of linear equation Ay = b first and then get
the solution of the tensor equation by letting x = ±y1/2.

Example 1.2 Let us consider a more general equation:

F (x) =
1

m− 1
Mx[m−1] − b = 0, (1.10)

where M ∈ Rn×n is nonsingular, b ∈ Rn and x[m−1] = (xm−1
1 , . . . , xm−1

n )T . It is a tensor
equation in the form (1.1) where the elements of A are

aij...j = mij , i, j = 1, 2, . . . , n (1.11)

and all other elements of A are zeros. It is easy to see that the Jacobian of F at x is

F ′(x) = M diag(xm−2
1 , xm−2

2 , . . . xm−2
n ). (1.12)

It is singular even if M is nonsingular, if there exists an xi = 0. As a result, Newton’s
method may fail to work if some iterate xk has zero elements.

On the other hand, if M is nonsingular, the equation can be solved easily by solving the
system 1

m−1My = b first and then letting x = y[1/(m−1)].
The last two examples indicate that it is important to develop special iterative methods

for solving the tensor equation (1.1) using the special structure of the tensor A. It is the
major purpose of the paper.

In this paper, we will pay particular attention to tensor equations (1.1) where the coef-
ficient tensor A is an M-tensor. Tensor A = (ai1i2...im) ∈ T (m,n) is called a Z-tensor if it
can be written as

M = sI − B, (1.13)

where s > 0, I is the identity tensor whose diagonals are all ones and all off diagonal
elements are zeros, and B ≥ 0 is a nonnegative tensor in the sense that all its elements are
nonnegative. Tensor A is called M-tensor if it can be written as (1.13) and satisfies s ≥ ρ(B),
where ρ(B) is the spectral radius of tensor B, that is

ρ(B) = max {|λ| : λ is an eigenvalue of B} . (1.14)

If s > ρ(B), then A is called a strong or nonsingular M-tensor [5]. In the case A is an
M-tensor, we call the equation (1.1) M-tensor equation and abbreviate it as M-TEQ. An
interesting property of the M-TEQ is that if A is a strong M-tensor, then for every positive
vector b the tensor equation (1.1) has a unique positive solution, namely, all entries of the
solution are positive [6].

The study in the numerical methods for solving tensor equation has begun only a few
years ago. Most of them focus on solving the M-TEQ. Ding and Wei [6] extended the clas-
sical iterative methods for solving system of linear equations including the Jacobi method,
the Gauss-Seidel method, and successive overrelaxation method to solve the M-TEQ. The
methods are linearly convergent to a nonnegative solution of the equation. Han [10] pro-
posed a homotopy method for finding the unique positive solution of the M-TEQ with strong
M-tensor and a positive right side vector b. Liu, Li and Vong [17] proposed a tensor splitting
method for solving the M-TEQ. An advantage of the method is that at each iteration, only
a system of linear equation needs to be solved. The coefficient matrix of the linear system
does not depend on the iteration. The sequence of iterates {xk} generated by the method
converges to a nonnegative solution of the equation monotonically if the initial point x0 is



422 D.-H. LI, H.-B. GUAN AND X.-Z. WANG

restricted to the set {x ∈ Rn | 0 < Axm−1 ≤ b}. Quite recently, He, Ling, Qi and Zhou [11]
proposed a Newton-type method to solve the M-TEQ and established its quadratic conver-
gence. Li, Xie and Xu [13] also extended the classic splitting methods for solving system of
linear equations to solving symmetric tensor equations. The methods in [13] can solve those
equations (1.1) where A are not necessary M-tensors. Li, Dai and Gao [16] developed an
alternating projection method for a class of tensor equations and established its global con-
vergence and linear convergence. Wang, Che and Wei [22] proposed continuous time neural
network and modified continuous time neural networks for solving M-TEQ. Related works
can also be found in [3,15,19,23,24,26]. Just when this article is about to be completed, we
knew the new report by Bai, He, Ling and Zhou [2] where the authors proposed an iterative
method for finding a nonnegative solution to M-tensor equations.

The existing methods for solving M-TEQ focus on finding a positive solution of the
equation under the restriction b > 0. In this paper, we further study numerical methods
for solving M-TEQ (1.1). Our purpose is to find the largest nonnegative solution of the
equation without the requirement of b > 0. We first give a necessary and sufficient condition
for the existence of the nonnegative solution of the M-TEQ. The result reveals an interesting
property that if an M-TEQ has a nonnegative solution, then it has a largest nonnegative
solution.

We then propose an iterative method to solve the M-TEQ with strong M-tensor. We
first split the coefficient M-tensor into two parts. Based on the splitting form, we develop
an approximation Newton method. At each iteration, we solve a system of linear equations.
The coefficient matrix of linear system is independent of the iteration. We show that if the
initial point is appropriately chosen, then the generated sequence of iterates converges to a
nonnegative solution of the equation without the restriction that b is positive. We also do
numerical experiments to test the proposed method. The results show that the methods are
very efficient.

The rest of this paper is organized as follows. In Section 2, we derive a necessary and
sufficient condition for an M-tensor equation to have a nonnegative solution. It particularly
shows an interesting result that if an M-tensor equation has more than one nonnegative
solutions, then it has a largest nonnegative solution. In Section 3, we propose a monotone
iterative method for solving the M-TEQ with strong M-tensor and establish its monotone
convergence. In Section 4, we make an improvement to the method proposed in Section 3
and establish its monotone convergence. At last, we do some numerical experiments to test
the proposed method in Section 5. We conclude the paper by giving some final remarks.

2 The Existence of Nonnegative Solutions to the M-Tensor Equa-
tion

Consider the tensor equation

F (x) = Mxm−1 − b = 0, (2.1)

whereM = (mi1i2...im) ∈ T (m,n) and b ∈ Rn. We are interested in the nonnegative solution
of an M-tensor equation. It was proved by Ding and Wei [6] that if M is a strong M-tensor
and b is positive, then the equation has a unique positive solution. Liu, Li and Vong [17]
also obtained some existence and uniqueness of the positive/nonnegative solutions for the
M-TEQ via tensor splitting technique.

Similar to Theorem 5.4 in [9], we now derive a sufficient condition for the existence
and uniqueness of the nonnegative solutions to an M-TEQ. We first introduce the concept
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of the so called majorization matrix of a tensor M ∈ T (m,n) [14, 17, 20]. It is a matrix
M = (mij) ∈ Rn×n whose elements are

mij = mij...j , i, j = 1, 2, . . . , n. (2.2)

The theorem about the existence and uniqueness of the nonnegative solution of an M-
TEQ is stated and proved below.

Theorem 2.1. Suppose M = (mi1...im) ∈ T (m,n) is a strong M-tensor such that for each
index i,

mii2...im = 0, whenever ij ̸= ik for some j ̸= k. (2.3)

Then, the M-TEQ has a unique nonnegative solution if and only if the unique solution of
the M-LEQ

My = b (2.4)

is nonnegative, where matrix M = (mij) ∈ Rn×n is the majorization matrix of M.

Proof. It is not difficult to see that the M-TEQ can be written as the following equation

Mx[m−1] − b = 0. (2.5)

Since M is a strong M-tensor, its majorization matrix M is a strong M-matrix [17]. It is
nonsingular and satisfies M−1 ≥ 0. The results of the theorem become obvious.

In many cases where b is not positive, the M-tensor equation may have no nonnegative
solutions or multiple nonnegative solutions. For example, if m = 2 and b < 0, then for any
strong M-matrix M , the unique solution of the equation (2.1) is negative. Consequently, it
has no nonnegative solution. The following example suggested by Prof. C. Ling via private
communication shows that an M-TEQ with a strong M-tensor M may have more than one
nonnegative solutions.

Example 2.1 Given tensor M ∈ T (4, 2) in the form M = 3I − B, where I is the identity
tensor and B is a nonnegative tensor with elements

b1111 = b2222 = 0, b1122 =
3

2
, b1222 =

1

2
(2.6)

and all other elements of B are zeros. It is easy to see that the unique eigenvalue of B
is zero. Consequently, M is an M-tensor. Let b = (−7, 24)T . Then the tensor equation
Mxm−1 − b = 0 is written as {

3x3
1 − 3

2x1x
2
2 − 1

2x
3
2 = −7,

3x3
2 = 24.

(2.7)

Clearly, the solutions of the following system are all the solutions of the M-TEQ:{
x3
1 − 2x1 + 1 = 0,

x2 = 2.
(2.8)

The last system has two nonnegative solutions

x(1) = (1, 2)T and x(2) = (

√
5− 1

2
, 2)T . (2.9)
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The following example shows that an M-tensor equation with an odd order strong M-
tensor may also have multiple nonnegative solutions.

Example 2.2 Given tensor M ∈ T (3, 2) in the form M = I − B, where I is the identity
tensor and B is a nonnegative tensor with elements

b111 = b222 = 0, b112 =
3

2
, b122 = 1 (2.10)

and all other elements of B are zeros. It is easy to see that the unique eigenvalue of B is
zero. Consequently, M is a strong M-tensor. Let b = (−6, 4)T . Then the tensor equation
Mxm−1 − b = 0 is written as {

x2
1 − 3

2x1x2 − x2
2 = −6,

x2
2 = 4.

(2.11)

The last system has two nonnegative solutions

x(1) = (1, 2)T and x(2) = (2, 2)T . (2.12)

Recently, Xu, Gu and Huang [25] investigated some interesting properties of the tensor
equations. In this section, we investigate the existence of the nonnegative solutions and the
largest nonnegative solution of the M-tensor equation.

To this end, we first introduce the concept of the so-called join semi-sublattice. A set
S ⊆ Rn is called a join semi-sublattice if x, y ∈ S, then there join, i.e., max{x, y}, is also in
S. Here the vector operation max{x, y} is defined by elements.

The following theorem can be regarded as a dual theorem of Theorem 3.11.5 in [4]. The
proof is similar to that of Theorem 3.11.5 in [4].

Theorem 2.2. If S is a nonempty and bounded closed join semi-sublattice, then it has a
largest element.

Proof. Given an arbitrary positive vector c and any x̄ ∈ S. Consider the following program
problem: {

max ϕ(x) = cTx
s.t. x ∈ S, cTx ≥ cT x̄.

(2.13)

Clearly, the feasible set of the problem is closed and bounded from above. Hence, the
problem has a solution x̃. For any x ∈ S, we have z = max{x, x̃} ∈ S. So, we have

cT (x̃− z) ≥ 0. (2.14)

Since x̃ ≤ z and c is positive, the last inequality implies x̃ = z. By the arbitrariness of x,
we claim that x̃ is the largest element of S.

In the proof of the last theorem, we used the vector inequality x ≤ y with x, y ∈ Rn. It
is defined by elements. The vector inequality x ≥ y can be defined similarly. In particular,
the inequality x ≥ 0 means that x is nonnegative.

Define the set

S = {x ∈ Rn
+ | Mxm−1 ≤ b} = {x ∈ Rn

+ | F (x) ≤ 0}, (2.15)

where Rn
+ = {x ∈ Rn | x ≥ 0} and F (x) = Mxm−1 − b. The set S looks very similar to the

feasible set
S̃ = {x ∈ Rn

+ | Mxm−1 ≥ b} = {x ∈ Rn
+ | F (x) ≥ 0} (2.16)
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of the tensor complementarity problem

x ≥ 0 F (x) ≥ 0, xTF (x) = 0. (2.17)

It was proved by Luo, Qi and Xiu [18] that if M is a Z-tensor, then the feasible set S̃ has a
least element. Moreover, the least element of S̃ is a solution of the tensor complementarity
problem. In what follows, we will establish a similar result to the M-TEQ. Specifically, we
will show that if M is a strong M-tensor, then S has a largest element as long as it is not
empty. Moreover, the largest element of the set is the largest nonnegative solution to the
M-TEQ.

Denote for x ∈ Rn and real number p

x[p] = (xp
1, x

p
2, . . . , x

p
n)

T . (2.18)

The lemma bellow shows that S has a largest element.

Lemma 2.3. If M is a strongly M-tensor, and the set S defined by (2.15) is not empty,
then S is a bounded join semi-sublattice. As a result, S has a largest element.

Proof. We first show that S is a join semi-sublattice.
For x = (x1, . . . , xn)

T , y = (y1, . . . , yn)
T ∈ S, we let z = max{x, y}. We have for each

i = 1, 2, . . . , n, if zi = xi,

(Mzm−1)i =
∑

i2,...,im

mii2...imzi2 · · · zim

= mii...ix
m−1
i +

∑
(i2,...,im )̸=(i,...,i)

mii2...imzi2 · · · zim

≤ mii...ix
m−1
i +

∑
(i2,...,im )̸=(i,...,i)

mii2...imxi2 · · ·xim

= (Mxm−1)i ≤ bi,

where the first inequality follows from the fact mii2...im ≤ 0, ∀(i, i2, . . . , im) ̸= (i, i, . . . , i).
Similarly, we can show that (Mzm−1)i ≤ bi for zi = yi. Consequently, S is a join semi-
sublattice.

Next, we show that S is bounded. Suppose on the contrary that there is an unbounded
sequence {xk} ⊂ S. That is, ∥xk∥∞ → ∞ as k → ∞ and

xk ≥ 0, Mxm−1
k − b ≤ 0. (2.19)

Denote uk = xk/∥xk∥∞. Then {uk} is bounded and hence has a limit point. Without loss
of generality, we let {uk} → u. It is easy to get

u ≥ 0, Mum−1 ≤ 0. (2.20)

We write M = sI − B with s > ρ(B). It follows from the last inequality that

sum−1
i ≤

(
Bum−1

)
i
, ∀i = 1, 2, . . . , n, (2.21)

which implies

s ≤ min
ui ̸=0

(
Bum−1

)
i

um−1
i

≤ ρ(B), (2.22)
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where the last inequality follows from [21, Theorem 3.25]. The last inequality yields a
contradiction. Consequently, S is bounded.

At last, by Theorem 2.2, S has a largest element. The proof is complete.

Based on the last lemma and Theorem 2.2, we can derive a condition for the existence
of nonnegative solution of the M-TEQ.

Theorem 2.4. Let M be a strong M-tensor. Then the following statements are true.

(i) The M-tensor equation (2.1) has a nonnegative solution if and only if the set S defined
by (2.15) is not empty. In the case S ̸= ∅, its largest element is the largest nonnegative
solution of the equation. In particular, if M−1b ≥ 0, then (2.1) has a nonnegative
solution.

(ii) The equation (2.1) has a positive solution if and only if the set S contains a positive
element. In particular, if M−1b > 0, then (2.1) has a positive solution.

Proof. Conclusion (ii) follows from conclusion (i) directly. We only need to verify (i).
Since the solution set of (2.1) is a subset of S defined by (2.15), ‘only if’ part is obvious.

We turn to the ‘if’ part.
Suppose S ̸= ∅. Theorem 2.2 and Lemma 2.3 ensure that S has a largest element x̄, i.e.,

x ≤ x̄ ∀x ∈ S. (2.23)

It suffices to show that x̄ is a solution of (2.1).
Suppose on the contrary that x̄ is not a solution of (2.1). There must be an index i such

that

Fi(x̄) = (Mx̄m−1 − b)i < 0. (2.24)

Let D be the diagonal part subtensor of M and B = M−D. By the definition of M-tensor,
we have B ≤ 0. Let D be a diagonal matrix whose diagonals are diagonals of M or D, i.e.,

D = diag(m1...1, . . . ,mn...n). (2.25)

Define x̃ with elements

x̃j =
(
x̄m−1
j − 1

2
(D−1F (x̄))j

)1/(m−1)

, j = 1, 2, . . . , n. (2.26)

It implies

Dx̃[m−1] = Dx̄[m−1] − 1

2
F (x̄). (2.27)

It is easy to see that 0 ≤ x̄ ≤ x̃ and

F (x̃) = Dx̃m−1 + Bx̃m−1 − b

≤ Dx̃m−1 + Bx̄m−1 − b

= Dx̃[m−1] + Bx̄m−1 − b

= Dx̄[m−1] − 1

2
F (x̄) + Bx̄m−1 − b

=
1

2
F (x̄) ≤ 0.
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Consequently, x̃ ∈ S. However, by the definition of x̃, we obviously have x̃ ≥ x̄. Moreover,
there are at least one indices i such that x̃i > x̄i, which contracts the fact that x̄ is the
largest element of S. The contradiction shows that x̄ must be a solution of (2.1).

Since the solution set of (2.1) is a subset of S, the largest element of S is the largest
solution of (2.1). The proof is complete.

3 A Monotone Iterative Method

In this section, we develop an iterative method for solving the M-tensor equation. Our
purpose is to find a nonnegative solution of the equation. So we assume throughout this
section that tensor M in (2.1) is a strong M-tensor and that the set S defined by (2.15) is
not empty.

The method can be regarded as an approximation to Newton’s method. Notice that for
each i = 1, 2, . . . , n, function (Mxm−1)i is a homogeneous polynomial. It can be written as
Mix

m−1 with symmetric tensor Mi ∈ ST (m− 1, n).
Let us consider the Newton iteration:

(m− 1)Mxm−2
k (xk+1 − xk) + F (xk) = 0, k = 0, 1, 2, . . . . (3.1)

An attractive property of Newton’s method is its quadratic convergence if the Jacobian at
the solution x∗, F ′(x∗) = (m − 1)M(x∗)m−2 is nonsingular. However, the method may be
failure if Mxm−2

k is singular.
We are going to develop an approximation Newton method. To this end, we split the

tensor M as

M = M̃+M, (3.2)

where M̃ is the sub-tensor ofM whose possibly nonzero elements aremij...j , i, j = 1, 2, . . . , n

while other elements are zeros, M = M − M̃. The sub-tensor M̃ contains all diagonal
elements of M. So, M is a non-positive tensor, i.e., M ≤ 0.

Let M = (mij) be majorization matrix defined by (2.2). It is an (a strong) M-matrix if
M is an (a strong) M-tensor [17].

Using the above splitting form to M, we write the Newton iteration as

0 = Mxm−2
k xk+1 −Mxm−1

k +
1

m− 1
F (xk)

= Mx
[m−1]
k+1 −Mx

[m−1]
k +

1

m− 1
F (xk) + [Mxm−2

k xk+1 −Mx
[m−1]
k+1 −Mxm−1

k ]

= Mx
[m−1]
k+1 −Mx

[m−1]
k +

1

m− 1
F (xk) + M̃(xm−2

k − xm−2
k+1 )xk+1 +Mxm−2

k (xk+1 − xk)

= Mx
[m−1]
k+1 −Mx

[m−1]
k +

1

m− 1
F (xk) +O(∥xk+1 − xk∥), k = 0, 1, 2, . . . .

By neglecting the term O(∥xk+1−xk∥), we get an approximate Newton iterative scheme

x
[m−1]
k+1 = x

[m−1]
k − 1

m− 1
M−1F (xk), k = 0, 1, 2, . . . . (3.3)

More generally, we give the following iterative scheme:

x
[m−1]
k+1 = x

[m−1]
k − αkM

−1F (xk), k = 0, 1, 2, . . . , (3.4)
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or

x
[m−1]
k+1 = x

[m−1]
k + αkdk, Mdk + F (xk) = 0, (3.5)

where αk ∈ (0, 1]. We call the above iterative scheme sequential M-matrix linear equation
method (S-MEQM) because the subproblem (3.5) is a system of linear equation in dk with
an M-matrix as the coefficient matrix. Since M is independent of the iteration k, we can
solve the system by LU decomposition at the beginning of the method. So, at each iteration,
the computation cost for solving the system of linear equations (3.5) is O(n2) except for the
initial step.

Recently Liu, Li and Vong [17] proposed a so-called tensor splitting (TS) method for
solving the M-tensor equation. The TS method corresponds to αk ≡ 1. It is monotonically
and linearly convergent if the initial point x0 is chosen in the set

S1 = {x ∈ Rn
+ | 0 < Mxm−1 ≤ b}. (3.6)

Specifically, they proved the following theorem [17].

Theorem 3.1. Let M be a strong M-tensor and b be positive. Then the sequence {xk}
generated by the TS method with x0 ∈ S1 converges to the unique positive solution of (2.1)
monotonically in the sense

xk+1 ≥ xk ≥ 0. (3.7)

Moreover, the convergence rate of {xk} is linear.

The condition x0 ∈ S1 in the above convergence theorem is restrictive. It makes the
method suitable for those problems with b > 0 only. The theorem below shows that the
S-MEQM will retain monotone convergence if the initial point is in S.

Theorem 3.2. Starting from any x0 ∈ S, the sequence {xk} generated by the S-MEQM
(3.5) is contained in S and satisfies

xk+1 ≥ xk ≥ 0, k = 0, 1, 2, . . . . (3.8)

Moreover, {xk} converges to a nonnegative solution of the equation (2.1).

Proof. We first prove {xk} ⊂ S and (3.8) by induction.
For k = 0, we have F (x0) ≤ 0 and

Mx
[m−1]
1 = Mx

[m−1]
0 − α0F (x0) ≥ Mx

[m−1]
0 . (3.9)

Since M is an M-matrix, the last inequality yields (3.8) with k = 0. Moreover, we have

F (x1) = Mxm−1
1 − b = Mx

[m−1]
1 +Mxm−1

1 − b

= Mx
[m−1]
0 − α0F (x0) +Mxm−1

1 − b

= (1− α0)F (x0) +M(xm−1
1 − xm−1

0 )

≤ (1− α0)F (x0) ≤ 0,

where the inequality holds because x1 ≥ x0 and M ≤ 0.
Suppose the inequalities xk ≥ xk−1 ≥ 0 and F (xk) ≤ 0 hold for some k ≥ 1. It follows

from (3.5) that

x
[m−1]
k+1 = x

[m−1]
k − αkM

−1F (xk) ≥ x
[m−1]
k . (3.10)
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Moreover, we can get

F (xk+1) = Mx
[m−1]
k+1 +Mxm−1

k+1 − b ≤ (1− αk)F (xk) ≤ 0. (3.11)

By the principle of induction, we claim that the inequalities in (3.8) hold and F (xk) ≤ 0 for
all k ≥ 0.

Since {xk} is bounded from above, then {xk} converges. Taking limits in both sizes of
(3.5), it is easy to see that the limit of {xk} is a nonnegative solution of the tensor equation
(2.1). The proof is complete.

We turn to the convergence rate of the method. Suppose {xk} → x̄. Clearly, we have
xk ≤ xk+1 ≤ x̄. If for some i, x̄i = 0, then (xk)i = 0 for all k ≥ 0. So, without loss of
generality, we assume x̄ > 0.

Define

ϕ(x) =
(
x[m−1] − αM−1F (x)

)1/(m−1)

. (3.12)

The iterative scheme can be written as

xk+1 = ϕ(xk) (3.13)

and the limit point x̄ satisfies

x̄ = ϕ(x̄). (3.14)

It follows from (3.12) that

Mϕ(x)[m−1] = Mx[m−1] − αF (x). (3.15)

Without loss of generality, we suppose that M is symmetric. Taking derivative in both sizes
of the equality, we obtain

M diag(ϕ(x)[m−2])ϕ′(x) = M diag(x[m−2])− 1

m− 1
αF ′(x)

= M diag(x[m−2])− αMxm−2.

At the limit x̄, the last equality yields

M diag(x̄[m−2])ϕ′(x̄) = M diag(x̄[m−2])− αMx̄m−2. (3.16)

It implies

ϕ′(x̄) = I − α diag(x̄[−(m−2)])M−1Mx̄m−2

= (1− α)I − α diag(x̄[−(m−2)])M−1Mx̄m−2 ≥ 0.

If M−1b > 0, then it follows from the last equality that

ϕ′(x̄)x̄ = x̄− α diag(x̄[−(m−2)])M−1Mx̄m−1 = x̄− α diag(x̄[−(m−2)])M−1b < x̄. (3.17)

Since ϕ′(x̄) is nonnegative, we claim that the spectral radius of ϕ′(x̄) satisfies ρ(ϕ′(x̄)) < 1.
As a result, the convergence of the sequence {xk} is linear. Theorem 4.5 in [17] shows that
the condition M−1b > 0 implies that the the M-TEQ has a unique positive solution.

The above arguments have shown the following theorem.
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Theorem 3.3. Suppose that M is a strong M-tensor and M is its majorization matrix. If
M−1b > 0, then the convergence rate of {xk} generated by the S-MEQM (3.5) converges to
the unique positive solution of the M-tensor equation (2.1) linearly.

Let D, −L and −U be the diagonal part, strict lower triangular part and strict upper
triangle part of the matrix M , i.e.,

M = D − L− U. (3.18)

Similar to the splitting methods for solving system of linear equations, on the basis of (3.5),
we can develop splitting type methods.

The Jacobi iteration:

x
[m−1]
k+1 = x

[m−1]
k − αkD

−1F (xk), k = 0, 1, 2, . . . . (3.19)

This iterative scheme is the same as the Jacobi method by Ding and Wei [6].

The Gauss-Seidel iteration:

x
[m−1]
k+1 = x

[m−1]
k − αk(D − L)−1F (xk), k = 0, 1, 2, . . . . (3.20)

Successive over-relaxation (SOR) iteration:

x
[m−1]
k+1 = x

[m−1]
k − αkω(D − ωL)−1F (xk), k = 0, 1, 2, . . . . (3.21)

Similar to Theorem 3.2, it is not difficult to establish the monotone convergence of the
above iterative methods. As an example, we derive the convergence of the Gauss-Seidel
method below.

Theorem 3.4. Let the sequence {xk} be generated by the Gauss-Seidel method (3.20) with
initial point x0 ∈ S. Then {xk} ⊂ S and converges to a nonnegative solution of (2.1)
monotonically.

Proof. For k = 0, we have F (x0) ≤ 0 and

x
[m−1]
1 = x

[m−1]
0 − α0(D − L)−1F (x0) ≥ x

[m−1]
0 . (3.22)

It implies

F (x1) = Mxm−1
1 − b = Mx

[m−1]
1 +Mxm−1

1 − b

= (D − L− U)x
[m−1]
1 +Mxm−1

1 − b

= (D − L)x
[m−1]
1 − Uxm−1

1 +Mxm−1
1 − b

= (D − L)x
[m−1]
0 − α0F (x0)− Uxm−1

1 +Mxm−1
1 − b

= (1− α0)F (x0)− U(x
[m−1]
1 − x

[m−1]
0 ) +M(xm−1

1 − xm−1
0 )

≤ 0,

Suppose the inequalities xk ≥ xk−1 ≥ 0 and F (xk) ≤ 0 hold for some k ≥ 1. We can get
for all αk ∈ (0, 1],
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x
[m−1]
k+1 = x

[m−1]
k − αk(D − L)−1F (xk) ≥ x

[m−1]
k (3.23)

and

F (xk+1) = Mx
[m−1]
k+1 +Mxm−1

k+1 − b

= (D − L)x
[m−1]
k+1 − Ux

[m−1]
k+1 +Mxm−1

k+1 − b

= (D − L)x
[m−1]
k − αkF (xk)− Ux

[m−1]
k+1 +Mxm−1

k+1 − b

= Mx
[m−1]
k − αkF (xk)− U(x

[m−1]
k+1 − x

[m−1]
k ) +Mxm−1

k+1 − b

= (1− αk)F (xk)− U(x
[m−1]
k+1 − x

[m−1]
k ) +M(xm−1

k+1 − xm−1
k ) ≤ 0.

By induction, it is not difficult to show that if x0 ≥ 0 and F (x0) ≤ 0, then the following
inequalities hold for all k ≥ 0:

x
[m−1]
k+1 ≥ x

[m−1]
k ≥ 0, F (xk) ≤ 0. (3.24)

Since {xk} is bounded from above, we claim that {xk} converges and hence {F (xk)} con-
verges to 0. The proof is complete.

4 An Improvement

In this section, we make some improvement to the monotone method proposed in the last
section. We rewrite the Newton method as

0 = Mxm−2
k (xk+1 − xk) +

1

m− 1
F (xk) = Mx

[m−1]
k+1 −Mx

[m−1]
k +

1

m− 1
F (xk) + rk, (4.1)

where
rk = Mxm−2

k (xk+1 − xk)− (Mx
[m−1]
k+1 −Mx

[m−1]
k ). (4.2)

The S-MEQ method (3.5) developed in Section 3 neglected the term rk. Since rk =
O(∥xk+1−xk∥), it might be important for Newton’s method to be quadratically convergent.
As a result, the method (3.5) may not be a good approximation to Newton’s method. In
this section, we consider to improve the S-MEQ method by using more information of rk.

Without loss of generality, we suppose that M is semi-symmetric. So we have

(Mxm−1)′ = (m− 1)Mxm−2. (4.3)

Denote

r(x) =
1

m− 1
(Mxm−1 − (m− 1)Mx[m−1]). (4.4)

We have
r′(x) = Mxm−2 − (m− 1)Mdiag(x[m−2]) (4.5)

and

rk = Mxm−2
k (xk+1 − xk)−M(x

[m−1]
k+1 − x

[m−1]
k )

= Mxm−2
k (xk+1 − xk)− (m− 1)Mdiag(x

[m−2]
k )(xk+1 − xk) + o(∥xk+1 − xk∥)

= r′(xk)(xk+1 − xk) + o(∥xk+1 − xk∥)
= r(xk+1)− r(xk) + o(∥xk+1 − xk∥)
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=
1

m− 1
(F (xk+1)− F (xk))−M(x

[m−1]
k+1 − x

[m−1]
k ) + o(∥xk+1 − xk∥)

△
=

1

m− 1
yk −Msk + o(∥xk+1 − xk∥),

where
yk = F (xk+1)− F (xk), sk = x

[m−1]
k+1 − x

[m−1]
k . (4.6)

Consequently, it follows from Newton’s method that

0 =
1

m− 1
F (xk) +Mxm−2

k (xk+1 − xk)

=
1

m− 1
F (xk) + (Mx

[m−1]
k+1 −Mx

[m−1]
k ) + (Mxm−2

k (xk+1 − xk)−M(x
[m−1]
k+1 − x

[m−1]
k ))

=
1

m− 1
F (xk) + (Mx

[m−1]
k+1 −Mx

[m−1]
k ) + r′(xk)(xk+1 − xk) + o(∥xk+1 − xk∥)

=
1

m− 1
F (xk) + (Mx

[m−1]
k+1 −Mx

[m−1]
k ) + r(xk+1)− r(xk) + o(∥xk+1 − xk∥),

k = 0, 1, 2, . . . .

A reasonable approximation to Newton’s method is to let xk+1 satisfy

1

m− 1
F (xk) + (Mx

[m−1]
k+1 −Mx

[m−1]
k ) + r(xk+1)− r(xk) = 0. (4.7)

However, the point xk+1 is not known in advance. So, we consider to use ϵk
△
= r(xk) −

r(xk−1) instead of the term r(xk+1)−r(xk) in the last equation. This results in the following
iteration:

Mx
[m−1]
k+1 −Mx

[m−1]
k + δk = 0, k = 0, 1, 2, . . . , (4.8)

where

δk =
1

m− 1
F (xk) + ϵk. (4.9)

More generally, we propose the following iterative scheme:

Mx
[m−1]
k+1 −Mx

[m−1]
k + αkF (xk) + ϵk = 0, k = 0, 1, 2, . . . , (4.10)

where αk ∈ (0, 1] and ϵk is chosen in the way that ϵ0 = 0 and for k ≥ 1, ϵk = r(xk)−r(xk−1)
. However, such a simple choice rule for ϵk could not guarantee the generated sequence {xk}
contained in S. As a result, the convergence of the related method is doubtful. In what
follows, we give some other reasonable choice for ϵk to ensure the monotone convergence of
{xk} to a nonnegative solution of (2.1).

In order for the method to be monotonically convergent, we need the requirement
αkF (xk) + ϵk ≤ 0, for all k ≥ 0 to ensure the monotone property of {xk}. It is satis-
fied if we let ϵk satisfy

ϵk ≤ −αkF (xk)
△
= ϵ+k . (4.11)

On the other hand, we also need the condition F (xk) ≤ 0, for all k ≥ 0 to ensure {xk} ⊂ S.
This motives us to determine ϵk in the following way. At iteration k, we first let ϵk =
min{ϵ+k , r(xk) − r(xk−1)} and then solve the system of linear equations (4.10) to get an
x̄k+1. If F (x̄k+1) ≤ 0, then we let xk+1 = x̄k+1. Otherwise, we let ϵk = 0 and solve (4.10)
to get xk+1. Here the vector operation min{x, y} is also defined by elements.

Based on the above arguments, we propose an approximate Newton method for solving
the M-tensor equation (2.1) as follows.
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Algorithm 4.1. (Approximate Newton Method)

Initial. Given positive sequence {αk} ⊂ (0, 1]. Given constant η > 0 and initial point
x0 ∈ S. Let ϵ0 = 0 and k = 0.

Step 1. Stop if ∥F (xk)∥ ≤ η.

Step 2. Solve the system of linear equation (4.10) to get x̄k+1.

Step 3. If F (x̄k+1) ≤ 0, then go to Step 4. Otherwise, let ϵk = 0. Go to Step 2.

Step 4. Let xk+1 = x̄k+1 and ϵk+1 = min{ϵ+k+1, r(xk+1)− r(xk)}. Let k = k+1. Go
to Step 1.

Remark 1. Notice that if ϵk = 0, then the method reduces to the S-MEQM. Consequently,
if for some k, F (x̄k+1) > 0, then the iterate xk+1 is generated by the S-MEQM, which
guarantees F (xk+1) ≤ 0. In other words, at each iteration, the circle between Steps 2 and
3 is no more than once.
Remark 2. To implement the algorithm, the initial point must be chosen in the set S. In
general, finding a point in S is not an easy task. In the special case b ≥ 0 or the system of
linear equation Mx−b = 0 (M is the majorization matrix of M) has a nonnegative solution,
we can simply let x0 be the solution to the system of linear equations Mx− b = 0.

It is easy to show by induction that the sequence {xk} generated by Algorithm 4.1
satisfies xk+1 ≥ xk and F (xk) ≤ 0, for all k. Similar to the proof of Theorem 3.2, we have
the following result.

Theorem 4.2. Suppose that M is a strong M-tensor. Then the sequence {xk} be generated
by Algorithm 4.1 satisfies {xk} ⊂ S and

xk+1 ≥ xk, ∀k ≥ 0. (4.12)

Moreover, it converges to a nonnegative solution to the tensor equation (2.1).

5 Numerical Results

In this section, we do numerical experiments to test the effectiveness of the proposed meth-
ods. We implemented our methods in Matlab R2015b and ran the codes on a computer with
3.60 GHz CPU and 20.0 GB RAM. We used a tensor toolbox [1] to proceed some tensor
computation.

While do numerical experiments, similar to [10,11], we solved the tensor equation

F̂ (x) = M̂xm−1 − b̂ = 0 (5.1)

instead of the tensor equation (2.1), where M̂ := M/ω and b̂ := b/ω with ω is the largest
value among the absolute values of components of M and b. The stopping criterion is set
to

∥F̂ (xk)∥ ≤ 10−8. (5.2)

or the number of iteration reaches to 2000. The latter case means that the method is failure
for the problem. In all cases, we take the parameter αk = α to be independent of k.

The test problems are from [6,13,24].
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Problem 1. We solve tensor equation (2.1) where M is a symmetric strong M-tensor of
order m (m = 3, 4, 5) in the form M = sI − B, where tensor B is symmetric whose entries
are uniformly distributed in (0, 1), and

s = (1 + 0.01) · max
i=1,2,...,n

(Bem−1)i, (5.3)

where e = (1, 1, . . . , 1)T .

Problem 2. We solve tensor equation (2.1) where M is a symmetric strong M-tensor of
order m (m = 3, 4, 5) in the form M = sI − B, and tensor B is a nonnegative tensor with

bi1i2...im = |sin(i1 + i2 + . . .+ im)|, (5.4)

and s = nm−1.

Problem 3. We solve tensor equation (2.1) where M is a non-symmetric strong M-tensor
of order m (m = 3, 4, 5) in the form M = sI −B, and tensor B is nonnegative tensor whose
entries are uniformly distributed in (0, 1). The parameter s is set to

s = (1 + 0.01) · max
i=1,2,...,n

(Bem−1)i, (5.5)

where e = (1, 1, . . . , 1)T .
We first tested the performance of the sequential M-matrix linear equation method (3.5)

(abbreviated as S-MEQM) and the approximate Newton method Algorithm 4.1 (abbreviated
as A-Newton) with different values of α on Problem 1 with b uniformly distributed in (0, 1).
We set the start point x0 = b[1/(m−1)].

For each α, we tested the methods on 100 problems with different sizes of tensor. The
results are listed in Tables 1 and 2, where the columns ‘Iter’, ‘Time’ and ’Res’ stand for
the total number of iterations, the computational time (in second) used for the method and

residual ∥Âx
(m−1)
k − b̂∥. The results of the method S-MEQM with α ∈ (0, 0.5) were not

listed in the table because those results are not as good as the method with α ∈ (0.5, 1].
We also tested the S-MEQM with the value α > 1. Although we could not establish the
convergence of the method S-MEQM with α > 1, the numerical results in Table 1 seem to
show that the method still works for all α ∈ (1, 2). The best parameter α for the method
S-MEQM seems close to 1.9 while the best α for the A-Newton seems to 1.

The results in Tables 1 and 2 show that the A-Newton method performed much better
then the method S-MEQM if we choose the parameter α appropriately.

We then test the methods S-MEQM and A-Newton on Problems 1-3 where the constant
term b has negative elements. Notice that for an arbitrary x̄ ∈ Rn whose elements are in
the interval (0, 1), the vector Mx̄(m−1) has negative elements and positive elements in most
cases. As a result, we first choose an x0 whose elements are uniformly distributed in (0, 1).
Let e = Mxm−1

0 and

bi =

{
1.5ei, if ei > 0,
0.5ei, if ei ≤ 0.

(5.6)

It is easy to see that b has negative elements and positive elements. Moreover, x0 is feasible,
i.e., x0 ∈ S = {x ∈ Rn

+ |F (x) ≤ 0}.
Tables 3,4,5 list the performance of the methods S-MEQM and A-Newton with αk ≡ 1

on Problems 1-3 with arbitrary constant term b. They show that in all cases both methods
can find a nonnegative solution to the problem. The method A-Newton performed better
than the method S-MEQM did.
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Table 1: Results for S-MEQM with different αk on Problem 1.

(m,n) (3,10) (3,500) (4,10) (4,150) (5,10)
α Iter Time Iter Time Iter Time Iter Time Iter Time
0.5 464.6 0.0056 1002.5 89.3071 980.0 0.0509 654.0 192.8567 1353.3 0.0513
0.6 372.3 0.0045 836.8 74.7805 818.1 0.0432 542.1 159.5753 1109.3 0.0416
0.7 324.7 0.0039 712.5 63.5823 701.2 0.0376 471.2 139.4450 975.7 0.0359
0.8 291.8 0.0035 626.2 55.9513 602.0 0.0320 408.2 120.7247 821.2 0.0299
0.9 256.7 0.0031 560.5 50.1437 554.5 0.0301 361.3 107.1271 743.6 0.0272
1.0 235.9 0.0028 497.6 44.1223 494.5 0.0261 326.0 97.1213 665.7 0.0245
1.1 199.5 0.0024 451.7 40.3780 457.8 0.0244 298.4 88.9745 607.3 0.0225
1.2 184.4 0.0022 417.7 37.4080 414.9 0.0221 269.6 80.1724 549.1 0.0206
1.3 158.2 0.0019 385.5 34.5943 379.2 0.0202 252.5 74.9961 508.0 0.0190
1.4 159.0 0.0019 351.4 31.3947 338.5 0.0180 232.4 68.9249 475.0 0.0179
1.5 152.1 0.0018 332.5 29.8046 338.6 0.0182 219.0 64.3919 445.6 0.0164
1.6 141.0 0.0017 310.9 27.7868 307.2 0.0167 201.0 59.4630 414.2 0.0149
1.7 132.6 0.0016 293.1 26.2350 289.7 0.0157 187.0 55.4343 379.2 0.0140
1.8 123.5 0.0015 276.8 24.8428 273.8 0.0149 187.0 56.4978 371.4 0.0138
1.9 201.1 0.0024 260.6 23.3867 268.1 0.0145 169.0 50.7594 350.2 0.0130
2.0 - - 272.6 24.4338 - - 162.0 49.1474 - -

Table 2: Results for A-Newton with different αk on Problem 1.

(m,n) (3,10) (3,500) (4,10) (4,150) (5,10)
α Iter Time Iter Time Iter Time Iter Time Iter Time
0.1 81.3 0.0042 77.4 7.2864 102.6 0.0082 49.9 15.3825 104.4 0.0077
0.2 64.9 0.0034 56.9 5.4034 75.8 0.0055 35.0 10.7034 75.2 0.0067
0.3 52.4 0.0028 46.7 4.4692 63.7 0.0047 28.1 8.6363 66.0 0.0060
0.4 47.5 0.0025 41.1 3.9717 57.3 0.0042 24.9 7.6523 56.7 0.0054
0.5 44.3 0.0024 39.4 3.8176 53.6 0.0040 22.0 6.7758 51.5 0.0050
0.6 42.2 0.0023 35.9 3.4991 49.8 0.0037 20.0 6.1671 50.0 0.0050
0.7 40.2 0.0022 31.4 3.0693 46.4 0.0035 21.7 6.8789 46.3 0.0046
0.8 37.8 0.0021 28.3 2.7784 43.6 0.0033 17.0 5.2891 43.0 0.0043
0.9 36.8 0.0021 26.5 2.6148 42.6 0.0033 16.0 4.9991 43.0 0.0043
1 34.7 0.0020 27.8 2.7497 41.9 0.0032 16.6 5.2963 42.2 0.0042

Table 3: Comparison between S-MEQM and A-Newton on Problem 1 with arbitrary b.

S-MEQM A-Newton
(m,n) Iter Time Res Iter Time Res
(3,10) 282.0 0.0109 9.71E-09 46.6 0.0027 6.49E-09
(3,100) 928.6 0.3770 9.91E-09 67.0 0.0321 6.39E-09
(3,200) 1161.0 6.5738 9.93E-09 72.2 0.4421 6.22E-09
(3,300) 1284.2 23.6522 9.93E-09 79.7 1.5731 7.58E-09
(3,400) 1362.3 62.6525 9.94E-09 77.3 3.7846 5.83E-09
(3,500) 1409.0 124.1550 9.94E-09 67.5 6.4069 6.57E-09
(4,10) 738.9 0.0394 9.88E-09 64.9 0.0047 6.63E-09
(4,50) 1440.6 5.6390 9.94E-09 77.9 0.3314 6.43E-09
(4,100) 1584.6 92.3761 9.95E-09 73.3 4.6216 5.00E-09
(4,150) 1632.6 475.5009 9.94E-09 73.5 22.9804 8.01E-09
(5,10) 1241.7 0.0788 9.94E-09 78.7 0.0065 7.35E-09
(5,30) 1608.6 22.3078 9.95E-09 70.4 1.0548 5.27E-09
(5,50) 1661.5 290.7334 9.94E-09 78.1 14.7327 7.40E-09
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Table 4: Comparison between S-MEQM and A-Newton on Problem 2 with arbitrary b.

S-MEQM A-Newton
(m,n) Iter Time Res Iter Time Res
(3,10) 39.2 0.0018 8.11E-09 19.7 0.0017 6.37E-09
(3,100) 42.6 0.0180 8.19E-09 22.0 0.0149 5.78E-09
(3,200) 42.8 0.2380 8.12E-09 22.0 0.1987 5.14E-09
(3,300) 42.9 0.8210 7.85E-09 22.0 0.6444 4.97E-09
(3,400) 42.9 2.0550 7.76E-09 22.0 1.5968 5.12E-09
(3,500) 42.9 3.8912 7.87E-09 22.0 3.0263 5.20E-09
(4,10) 44.7 0.0025 8.34E-09 23.1 0.0023 6.34E-09
(4,50) 46.3 0.1834 8.28E-09 23.8 0.1441 6.43E-09
(4,100) 46.2 2.7358 8.57E-09 23.9 2.1451 5.93E-09
(4,150) 46.2 13.7176 8.46E-09 23.9 10.7461 5.71E-09
(5,10) 48.1 0.0031 8.44E-09 24.6 0.0028 6.79E-09
(5,30) 48.3 0.6749 8.52E-09 23.8 0.4994 7.13E-09
(5,50) 48.4 8.5743 8.34E-09 23.7 6.3121 6.68E-09

Table 5: Comparison between S-MEQM and A-Newton on Problem 3 with arbitrary b.

S-MEQM A-Newton
(m,n) Iter Time Res Iter Time Res
(3,10) 182.6 0.0072 9.57E-09 39.8 0.0024 6.69E-09
(3,100) 702.0 0.2893 9.89E-09 60.5 0.0300 6.55E-09
(3,200) 947.1 5.5298 9.91E-09 70.6 0.4396 6.50E-09
(3,300) 1095.1 20.0662 9.93E-09 73.4 1.4450 7.07E-09
(3,400) 1196.3 55.2341 9.93E-09 71.0 3.5047 5.33E-09
(3,500) 1252.3 107.3120 9.94E-09 72.2 6.7266 7.12E-09
(4,10) 465.9 0.0255 9.80E-09 58.6 0.0043 6.45E-09
(4,50) 1252.8 4.8686 9.93E-09 76.9 0.3261 6.50E-09
(4,100) 1486.4 86.5543 9.95E-09 84.5 5.3253 7.62E-09
(4,150) 1567.3 454.2121 9.94E-09 84.2 26.3310 4.67E-09
(5,10) 932.7 0.0622 9.91E-09 73.5 0.0063 6.84E-09
(5,30) 1502.3 20.6186 9.95E-09 84.0 1.2499 7.42E-09
(5,50) 1607.5 281.4558 9.95E-09 71.1 13.4823 5.43E-09
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Table 6: Comparison on Problem 1.

S-MEQM A-Newton HM QCA NGS CTNN

(m,n) Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

(3,10) 215.7 0.0087 34.1 0.0014 5.0 0.0412 11.7 0.0549 57.9 0.1149 14.7 0.0319
(3,100) 505.4 0.2103 38.1 0.0157 5.0 0.0645 15.9 0.1333 104.6 0.3378 15.3 0.0783
(3,200) 538.9 2.8621 31.6 0.1799 5.1 0.2385 16.8 0.4969 134.0 1.6543 16.3 0.3079
(3,300) 529.9 9.9090 34.8 0.6837 5.0 0.6139 17.1 1.3200 135.5 4.4780 16.6 0.8152
(3,400) 518.2 23.843 30.7 1.5187 5.0 1.3513 17.9 3.1165 142.9 10.892 15.3 1.5976
(3,500) 498.1 43.162 26.7 2.4923 5.0 2.6725 18.4 6.3641 147.7 22.798 16.0 3.1778

(4,10) 504.3 0.0308 39.9 0.0037 5.1 0.0541 12.7 0.0765 620.6 1.8773 405.2 1.0868
(4,50) 569.3 2.3466 32.2 0.1428 5.0 0.1977 14.3 0.3580 - - 712.2 8.4887
(4,100) 430.5 24.854 21.3 1.3252 5.0 3.0205 15.3 5.5518 - - 784.5 143.671
(4,150) 324.3 96.654 16.0 5.0916 5.0 15.338 16.0 29.923 - - 1193.3 1075.93

(5,10) 677.5 0.0426 41.9 0.0035 5.0 0.0508 12.4 0.0759 163.7 0.4234 32.1 0.0905
(5,30) 454.5 6.1231 24.7 0.3580 5.0 0.8796 12.9 1.3142 386.9 20.3873 23.6 1.1602
(5,50) 271.8 46.4756 15.0 2.7196 5.0 10.5094 14.2 16.5825 - - 21.5 12.2233

Table 7: Comparison on Problem 2.

S-MEQM A-Newton HM QCA NGS CTNN

(m,n) Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time

(3,10) 27.0 0.0011 12.0 0.0010 5.0 0.0342 8.2 0.0392 6.6 0.0140 10.7 0.0232
(3,100) 19.0 0.0081 8.3 0.0056 5.0 0.0488 11.5 0.0987 7.7 0.0269 11.8 0.0608
(3,200) 15.9 0.0857 7.9 0.0639 5.0 0.1491 12.2 0.3558 7.8 0.1000 11.4 0.2143
(3,300) 14.0 0.2686 6.0 0.1657 5.0 0.4030 12.4 0.9697 7.6 0.2686 10.9 0.5218
(3,400) 12.7 0.6224 6.0 0.4060 5.0 0.9350 13.1 2.3042 7.9 0.6405 11.2 1.1724
(3,500) 11.7 1.0947 6.0 0.7801 5.0 1.8970 13.4 4.6906 7.9 1.3052 10.8 2.1978

(4,10) 23.3 0.0051 10.2 0.0017 5.0 0.0742 7.7 0.0871 7.1 0.0215 28.1 0.1375
(4,50) 13.1 0.0529 6.0 0.0339 5.0 0.1235 9.4 0.2126 9.1 0.1392 126.4 1.4118
(4,100) 8.4 0.5346 4.0 0.3405 5.0 2.1085 9.6 3.5381 9.9 1.9866 280.0 51.571
(4,150) 6.0 2.0199 3.0 1.4520 5.0 10.7969 10.0 18.7512 9.7 9.3607 403.1 369.39

(5,10) 19.0 0.0013 8.9 0.0010 5.0 0.0293 7.5 0.0416 90.5 0.2250 28.2 0.0708
(5,30) 9.0 0.1345 4 0.0805 5.0 0.5789 7.3 0.7566 76.4 3.1008 19.4 1.0028
(5,50) 4.0 0.8641 2 0.5109 5.0 6.2314 6.5 7.9730 169.3 96.8653 18.9 11.1137

Following an anonymous referee’s suggestion, we compared S-MEQM and A-Newton
method with some existing algorithms that can find a nonnegative solution to the M-tensor
equation. The methods to be compared together with their abbreviations are listed in the
following.

• HM: the Homotopy method [10].

• QCA: the Quadratically Convergent Algorithm [11].

• NGS: the Newton-Gauss-Seidel method [13].

• CTNN: the Continuous time neural network method [22].

We take parameters δ = 0.5, γ = 0.8, σ = 0.2, t̄ = 2/(5γ) in QCA and β = 0.45 in CTNN.
The sub-problem in QCA is solved by ’pcg’ method. The code of method HM by Han [10]
was downloaded from Han’s homopage. The codes of the methods QCA and CTNN were
provided by the authors of the methods. We compared our method with the above methods
on problems 1 and 2 with positive constant term b. The initial point is to x0 = b[1/(m−1)].
The results are listed in Tables 6 and 7.

To facilitate understanding the performance of those methods, we draw two figures to
show the comparison among the methods. They are Figures 1 and 2. We can easily see from
Tables 6 and 7 and Figures 1 and 2 that the method A-Newton performed best among all
the methods.

6 Conclusion

We developed a sequential M-matrix equation based method and its improvement for solving
M-tensor equations. The methods can be regarded as approximate Newton methods. An
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Figure 1: Comparison among different methods on Problem 1.
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Figure 2: Comparison among different methods on Problem 2.

advantage of the method is that the subproblems of the methods are systems of linear
equations with the same M-matrix as coefficient matrix. If the initial point is appropriate
chosen, the methods possess monotone convergence property even if the constant term b has
negative elements. Our numerical results show that when α ∈ (1, 2) the performance of the
sequence M-matrix method can be better than the method with α ∈ (0, 1]. However, at the
moment, we could not establish the related convergence theory. We leave it as a further
research topic.
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