
2020

442 FENLAN WANG

dynamic programming method and the branch and bound method. The dynamic program-
ming method is used to solve separable integer programming problems with a single con-
straint [2,10,14]. Due to the property ’curse of dimensionality’ of the dynamic programming,
it is difficult to be extended to solve multiple constrained separable integer programming
problems. Branch and bound methods based on the continuous relaxation problem are used
for solving convex integer programming problems, since the continuous relaxation problems
can be solved easily [4,7,8,11,15,16,21,24,25]. For concave integer programming problems,
branch and bound methods based on global optimization over a polyhedron were presented
in [3,5,9,12]. Hybrid approach that is a combination of the dynamic programming method
and the branch-and-bound method was presented in [20, 22, 23] for solving nonlinear sepa-
rable integer programming problems. Although this method partially overcomes the curse
of dimensionality of the dynamic programming, it requires the objective function to be non-
increasing and needs to store many feasible solutions that may cause a storage problem. A
new exact algorithm is presented in [18] for separable quadratic integer programming prob-
lems and the numerical results were also reported. This algorithm adopts the contour cut
technique according to the properties of the objective function. Recently, a new domain cut
technique is presented in [26] for solving separable integer programming problems with a
concave objective function and linear constraints, and the numerical results were also given.

In this paper, we extend the algorithm in [26] to solve general separable integer pro-
gramming problem with linear constraints. The objective function can be convex, concave
or nonconvex and nonconcave functions. The proposed algorithm is essentially a frame of
the branch and bound method, but it is very different from the traditional branch and bound
method. The lower bound of the presented algorithm is obtained by combining a simple lin-
ear programming problem with the Lagrangian dual problem. As we know, the Lagrangian
dual method provides a very efficient way for finding a lower bound of the optimal objective
function value of separable integer programming problems, since the Lagrangian relaxation
problem can be solved easily by being decomposed into n subproblems of minimizing a
one-dimensional nonlinear function over integers in a finite interval. Thus the dual optimal
solution can be searched for efficiently. The optimal dual value is a lower bound of the opti-
mal objective function value of problem (P). The branches are divided by a special domain
cut and partition technique which reduces the feasible region and the duality gap. Thus the
optimal solutions can be found quickly in a finite number of iterations. The computational
experiments and comparison results are also reported in the paper.

In [19], a convergent Lagrangian and domain cut method is presented for solving sepa-
rable nonlinear integer programming problems. Compared the algorithm presented in this
paper with the method in [19], on the one hand, the lower bound of the problem in [19] is
obtained only by solving the Lagrangian dual problem, while we can obtain a better lower
bound by solving the linear underestimation problem and the Lagrangian dual problem in
this paper. On the other hand, the domain cut methods are also different. The domain
cut in [19] depends on monotonicity of the problem where the objective function and the
constraint functions are all nondecreasing. But there are no restriction on monotonicity of
the problem in this paper.

The remainder of this paper is organized as follows: Section 2 gives the lower bounds
for the subproblems with different objective functions: convex, concave or nonconvex and
nonconcave. A special domain cut and partition technique is presented in section 3. In
section 4, the main algorithm is described in details. Finally, numerical computational and
comparison results are reported in section 5.

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 443

2 The Lower Bounds for the Subproblems

First some notations are introduced. Denote [α, β] as the box (hyper-rectangle) formed by
α, β and ⟨α, β⟩ as the set of integer points in [α, β].

[α, β] = {x | αj ≤ xj ≤ βj , j = 1, . . . , n}

⟨α, β⟩ = {x | αj ≤ xj ≤ βj , xj integer, j = 1, . . . , n} = Πn
j=1⟨αj , βj⟩. (2.1)

where α, β ∈ Zn. For convenience, the set ⟨α, β⟩ is called an integer box and define
[α, β] = ⟨α, β⟩ = ∅ if α ̸≤ β. In addition, denote v(·) as the optimal value of the problem
(·). Let (SP) be a subproblem of (P) by replacing X with ⟨α, β⟩ where l ≤ α ≤ β ≤ u.

Now consider the lower bound of the following subproblem (SP) of (P):

(SP) min f(x) =

n∑
j=1

fj(xj)

s.t. Ax ≤ b,

x ∈ ⟨α, β⟩.

2.1 Linear underestimation

• fj(xj) is a convex function.

Since fj(xj) is a convex function over the interval [αj , βj], we have fj(xj) ≥ fj(x
0) +

f ′
j(x

0)(x − x0) where x0 ∈ [αj , βj]. Therefore the tangent underestimating function

L1
j (xj) can be taken as the lower bound of fj(xj) over [αj , βj]. The linear underesti-

mating function of f(x) =
∑n

j=1 fj(xj) over box [α, β] can be expressed as:

L(x) =

n∑
j=1

L1
j (xj)

where

L1
j (xj) =

{
fj(x

0
j) + f ′

j(x
0
j)(xj − x0

j), αj < βj ,
fj(αj), αj = βj .

(2.2)

where x0
j is taken as the center point of [αj , βj], j = 1, . . . , n.

• fj(xj) is a concave function.

The lower bound of fj(xj) over [αj , βj] can be taken as the linear underestimation
function of fj(xj) over [αj , βj], which is a line segment connecting two endpoints αj

and βj of the closed interval [αj , βj]. The linear underestimating function of f(x) =∑n
j=1 fj(xj) over the box [α, β] can be written as:

L(x) =

n∑
j=1

L2
j (xj),

where

L2
j (xj) =

{
fj(αj) +

fj(βj)−fj(αj)
βj−αj

(xj − αj), αj < βj ,

fj(αj), αj = βj .
(2.3)

444 FENLAN WANG

According to the above two situations, the linear underestimation taken as the lower
bound can be extended to the situation where fj(xj) is a nonconvex and nonconcave
function.

• fj(xj) is a nonconvex and nonconcave function.

When fj(xj) is nonconvex and nonconcave, these points satisfying f ′′
j (xj) = 0 can

divide the interval [αj , βj] into several subintervals, then fj(xj) is either convex or
concave over these subintervals. Thus the lower bound of fj(xj) over each subinter-
val can be taken as the tangent underestimating function L1

j (xj) (2.2) or the linear

underestimation function L2
j (xj) (2.3).

In the following, quadratic, cubic or quartic nonconvex and nonconcave objective func-
tion f(x) is taken respectively as examples to explain the lower bounds of the subprob-
lems in details, and note that here fj(xj) can be convex, concave or nonconvex and
nonconcave.

(i) fj(xj) is a quadratic function, i.e. fj(xj) = ajx
2
j + bjxj , j = 1, 2, . . . , n.

- when aj > 0, fj(xj) is a convex function. Thus the lower bound of fj(xj) over
[αj , βj] can be taken as L1

j (xj) (2.2).

- when aj < 0, fj(xj) is a concave function. Then the lower bound of fj(xj) over
[αj , βj] can be taken as L2

j (xj) (2.3).

(ii) fj(xj) is a cubic function, i.e. fj(xj) = ajx
3
j + bjx

2
j + cjxj . We know f ′

j(xj) =

3ajx
2
j +2bjxj + cj and f ′′

j (xj) = 6ajxj +2bj . Let f
′′
j (xj) = 0, we have x̂j = − bj

3aj
.

- when aj > 0,

∗ if x̂j ⩽ αj , then fj(xj) must be convex, and L1
j (xj) (2.2) is taken as the

lower bound of fj(xj) over [αj , βj].

∗ if x̂j ⩾ βj , then fj(xj) must be concave, and L2
j (xj) (2.3) is taken as the

lower bound of fj(xj) over [αj , βj].

∗ if αj < x̂j < βj , then fj(xj) is concave over [αj , x̂j] and convex over [x̂j , βj].
Thus fj(xj) has different convexity and concavity over the closed interval
[αj , βj]. In order to easily calculate the lower bound of fj(xj) over [αj , βj] via
(2.2) and (2.3), we must ensure fj(xj) has the same convexity or concavity
over an interval. So the interval [αj , βj] should be partitioned into the union
of two subintervals [αj , x̂j] and [x̂j , βj] over which fj(xj) is either convex or
concave. Thus the lower bound of fj(xj) over [αj , x̂j] can be taken as the
linear underestimation function (2.3) where βj is replaced by x̂j and the lower
bound of fj(xj) over [x̂j , βj] can be taken as the tangent underestimating
function (2.2) where αj is replaced by x̂j .

- when aj < 0,

∗ if x̂j ⩽ αj , then fj(xj) must be concave and the linear underestimation
function (2.3) is taken as the lower bound of fj(xj) over [αj , βj].

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 445

∗ if x̂j ⩾ βj , then fj(xj) must be convex and the tangent underestimating
function (2.2) is taken as the lower bound of fj(xj) over [αj , βj].

∗ if αj < x̂j < βj , then fj(xj) is convex over [αj , x̂j] and concave over [x̂j , βj].
Also the closed interval [αj , βj] should be partitioned into the union of two
subintervals [αj , x̂j] and [x̂j , βj] over which fj(xj) should be ensured the
same convexity or concavity. Thus the lower bound of fj(xj) over [αj , x̂j]
can be taken as the tangent underestimating function (2.2) with βj replaced
by x̂j and the lower bound of fj(xj) over [x̂j , βj] can be taken as the linear
underestimation function (2.3) with αj replaced by x̂j .

(iii) fj(xj) is a quartic function, i.e. fj(xj) = ajx
4
j + bjx

3
j + cjx

2
j + djxj . We know

f ′
j(xj) = 4ajx

3
j + 3bjx

2
j + 2cjxj + dj and f ′′

j (xj) = 12ajx
2
j + 6bjxj + 2cj . Let ∆j =

9b2j − 24ajcj and f ′′
j (xj) = 0 , we have x̂(1)j =

−3bj−
√

∆j

12aj
and

ˆ
x
(2)
j =

−3bj+
√

∆j

12aj
.

- ∆j > 0,

∗ when aj > 0,

· if βj ≤ x̂
(1)
j or αj ≥ x̂

(2)
j , then fj(xj) must be convex over [αj , βj].

· if x̂
(1)
j ≤ αj < βj ≤ x̂

(2)
j , then fj(xj) must be concave over [αj , βj].

· if αj < x̂
(1)
j < βj < x̂

(2)
j , then fj(xj) is convex over [αj , x̂

(1)
j] and

concave over [x̂
(1)
j , βj].

· if x̂
(1)
j < αj < x̂

(2)
j < βj , then fj(xj) is concave over [αj , x̂

(2)
j] and

convex over [x̂
(2)
j , βj].

· if αj < x̂
(1)
j < x̂

(2)
j < βj , then fj(xj) is convex over [αj , x̂

(1)
j] and

[x̂
(2)
j , βj], concave over [x̂

(1)
j , x̂

(2)
j]. .

∗ when aj < 0,

· if βj ≤ x̂
(2)
j or αj ≥ x̂

(1)
j , then fj(xj) must be concave over [αj , βj].

· if x̂
(2)
j ≤ αj < βj ≤ x̂

(1)
j , then fj(xj) must be convex over [αj , βj].

· if αj < x̂
(2)
j < βj < x̂

(1)
j , then fj(xj) is concave over [αj , x̂

(2)
j] and

convex over [x̂
(2)
j , βj].

· if x̂
(2)
j < αj < x̂

(1)
j < βj , then fj(xj) is convex over [αj , x̂

(1)
j] and

concave over [x̂
(1)
j , βj].

· if αj < x̂
(2)
j < x̂

(1)
j < βj , then fj(xj) is concave over [αj , x̂

(2)
j] and

[x̂
(1)
j , βj], convex over [x̂

(2)
j , x̂

(1)
j].

- ∆j ≤ 0,

446 FENLAN WANG

∗ when aj > 0, f ′′
j (xj) ≥ 0, so fj(xj) is always convex over [αj , βj].

∗ when aj < 0, f ′′
j (xj) ≤ 0, so fj(xj) is always concave over [αj , βj].

As discussed above, if fj(xj) is always convex over [αj , βj], the tangent underestimating
function L1

j (xj) (2.2) is taken as the lower bound of fj(xj) over [αj , βj]; if fj(xj) is

always concave over [αj , βj], the linear underestimation function L2
j (xj) (2.3) is taken

as the lower bound of fj(xj) over [αj , βj]; if fj(xj) has different convexity and concavity
over [αj , βj], i.e., fj(xj) is convex over one subinterval [αj , γ] and fj(xj) is concave over
another subinterval [γ, βj], then the closed interval [αj , βj] should be divided into two
subintervals [αj , γ] and [γ, βj], so that fj(xj) has the same convexity or concavity over
each subinterval, and the lower bound of fj(xj) can be calculated easily via (2.2) or
(2.3). Of course the integer box ⟨α, β⟩ should also be accordingly partitioned into the
union of some integer subboxes, over which all fj(xj), j = 1, 2, . . .,n, should be ensured
to be either convex or concave.

Thus the linear approximation problem of (SP) is as follows:

(LP) min L(x) =

n∑
j=1

Lj(xj)

s.t. Ax ≤ b,

x ∈ [α, β],

where Lj(xj) is L1
j (xj) or L2

j (xj). Obviously, the problem (LP) is a linear programming
problem which can be solved easily via the simplex method. Also v(LP) is the lower bound
of the problem (SP).

2.2 Lagrangian duality and dual search

As we know, the Lagrangian dual method to find the lower bound is a very efficient method
for separable integer programming problems. Therefore the Lagrangian dual method can
provide us another lower bound for (SP).

The Lagrangian relaxation of (SP) is

(Lµ) d(µ) = min
x∈⟨α,β⟩

L(x, µ)

where
L(x, µ) = f(x) + µT (Ax− b), µ ≥ 0

Let
S = {x ∈ ⟨α, β⟩|Ax ≤ b},

f∗ = min
x∈S

f(x)

Then the following weak duality holds

d(µ) ≤ f(x), ∀x ∈ S, µ ≥ 0.

Therefore, d(µ) always provides a lower bound for f∗. The Lagrangian dual problem of
(SP) is

(D) max
µ≥0

d(µ).

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 447

Let µ∗ be the optimal solution to (D). The nonnegative constant f∗ − d(µ∗) is called the
duality gap of the problem.

Due to the separability of f(x), the problem (Lµ) can be calculated very easily over
⟨α, β⟩ via decomposition:

L(x, µ) = f(x) + µT (Ax− b)

=

n∑
j=1

fj(xj) + µT (Ax− b)

= −µT b+

n∑
j=1

(fj(xj) + µTajxj)

where aj , j = 1, 2, . . . , n is column vectors of matrix A. That is A = (a1, a2, . . . , an).

The subgradient method can be used to update the Lagrangian multiplier vector µ for
the problem (D):

µk+1
i = max{0, µk

i − tkhk
i /∥hk∥}, i = 1, . . . ,m, k = 1, . . . ,

where hk = Ax− b and tk is the stepsize satisfying the conditions:

tk → 0,

∞∑
k=1

tk = +∞.

We can take tk = 1
2k . Due to the slow convergence of the subgradient method, there

is a tradeoff between CPU time and the accuracy of the solution. So we can stop at an
approximate optimal solution either when ∥µk+1 − µk∥ is small enough or the number of
iterations exceeds a given maximum iteration number. The dual search procedure will be
described as follows.

Procedure 2.1 (Lagrangian dual search).

Step 0. Let µ1 = 1, v = −1.d+ 10 and k = 1.

Step 1. If k > M (M is a given maximum iteration number), then stop and v is the
approximate optimal value of (D). Otherwise, go to Step 2.

Step 2. Solve (Lµk) and yield an optimal solution xk with the optimal value d(µk).

Step 3. If |d(µk) − v| < ϵ, then stop and v is the approximate optimal value of (D).
Otherwise go to Step 4.

Step 4. hk = Axk − b, tk = 1
2k , µ

k+1
i = max{0, µk

i − tkhk
i /∥hk∥}, i = 1, . . . ,m. If ∥µk+1 −

µk∥ < ϵ, then stop and v is the approximate optimal value of (D). Otherwise, let
v := max{v, d(µk)} and k := k + 1, then go to Step 1.

Thus the lower bound of the problem (SP) over the integer subbox ⟨α, β⟩ can be taken
as max{v(LP), v(D)}.

448 FENLAN WANG

3 Domain Cut and Partition

This section will describe a special domain cut technique which cut off some integer subboxes
that do not contain the optimal integer solution of (P) from the super-rectangle domain.

By solving the problem (LP), we obtain a continuous feasible solution x̃ and a lower
bound v(LP) of (SP) in the integer subbox ⟨α, β⟩. The following two cases need to be
considered.

Case (a): If x̃ is an integer solution, obviously f(x̃) is an upper bound of (P).

• For the convex objective function, the following lemma will give us a special domain
cut technique about x̃ :

Lemma 3.1. there is no feasible solution better than x̃ in the integer subbox R(x̃) = ⟨ᾱ, β̄⟩,
where ᾱ, β̄ are defined as follows:

ᾱj =

{
x̃j , (∇f(x̃))j > 0
αj , (∇f(x̃))j < 0

(3.1)

β̄j =

{
βj , (∇f(x̃))j > 0
x̃j , (∇f(x̃))j < 0

Proof. Since the objective function f(x) is a convex function, it is bounded below by the
hyperplane g(x) = f(x̃)+(∇f(x̃))T (x− x̃). By (3.1), for all x ∈ R(x̃) we have (∇f(x̃))T (x−
x̃) ≥ 0 Thus f(x) ≥ g(x) ≥ f(x̃).

Then the integer box R(x̃) can be cut off from ⟨α, β⟩ without remove any feasible
solutions better than x̃.

• For the concave objective function,

- If fj(xj), j = 1, . . . , n are quadratic concave functions, consider the ellipsoid con-
tour of f(x):

n∑
i=1

[cjx
2
j + djxj] = f(x̃)

where cj < 0, j = 1, . . . , n. The center of the ellipsoid is o = (o1, o2, . . . , on) =
(− d1

2c1
,− d2

2c2
, . . . ,− dn

2cn
)T . By the symmetry of the ellipsoid contour, the maximum

integer subbox ⟨ᾱ, β̄⟩ inside the ellipsoid passing through x̃ can be found, where

ᾱ = (⌈o1 − |x̃1 − o1|⌉, . . . , ⌈on − |x̃n − on|⌉), (3.2)

β̄ = (⌊o1 + |x̃1 − o1|⌋, . . . , ⌊on + |x̃n − on|⌋).

Then we can conclude that the domain ⟨ᾱ, β̄⟩ ∩ ⟨α, β⟩ can be cut off from ⟨α, β⟩
and will not remove any feasible solutions better than x̃.

- If fj(xj), j = 1, . . . , n are not quadratic concave functions, we can at least cut the
point {x̃} off from ⟨α, β⟩. That is ⟨ᾱ, β̄⟩ = {x̃}.

• For the indefinite objective function, we can also cut the point {x̃} off from ⟨α, β⟩.
That is ⟨ᾱ, β̄⟩ = {x̃}.

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 449

Case (b): If x̃ is not an integer solution, then we can obtain two integer points x(1) and x(2)

by rounding x̃ up or down along the gradient direction ∇L(x̃) and the negative gradient
direction −∇L(x̃) of (LP) respectively. Also the following lemmas will present us the special
domain cut about x(1) and x(2):

Lemma 3.2. x(2) must be an infeasible solution, there is no feasible solution in the integer
box N1(x

(2)) = ⟨γ, δ⟩, where γ, δ are determined by

γj =

{
(x(2))j , (∇L(x(2)))j < 0
αj , (∇L(x(2)))j > 0

(3.3)

δj =

{
βj , (∇L(x(2)))j < 0
(x(2))j , (∇L(x(2)))j > 0

Proof. Suppose x(2) is a feasible solution. Since x(2) is obtained by rounding x̃ up or down
along the negative gradient direction −∇L(x̃) of the problem (LP), we must have L(x(2)) <
L(x̃), which is in contradiction with x̃ being the optimal solution to the problem (LP).

N1(x
(2)) is from x(2) along the negative gradient direction −∇L(x(2)) which is a descent

direction and the feasible region is a convex set, so there must be not any feasible solutions
in the integer box N1(x

(2)).

The integer box N1(x
(2)) can also be discarded from ⟨α, β⟩ without removing any feasible

solutions.
For x(1), two cases are considered according to whether x(1) being feasible or not.

• If x(1) is feasible, we can cut off the integer box R(x(1)) = ⟨ᾱ, β̄⟩ accordingly as the
above Case (a) where x̃ is replaced by x(1).

• If x(1) is not a feasible solution, without loss of generality, suppose Aix
(1) > bi, where

Ai = (ai1, ai2, . . . , ain). Then we have the following lemma.

Lemma 3.3. There is no feasible solution in the integer box N2(x
(1)) = ⟨γ, δ⟩, where γ, δ

are determined by

γj =

{
(x(1))j , (Ai)j > 0
αj , (Ai)j < 0

(3.4)

δj =

{
βj , (Ai)j > 0
(x(1))j , (Ai)j < 0

Proof. For any x ∈ N2(x
(1)), we have Ai(x−x(1)) > 0 by (3.4). So Aix > Aix

(1) > bi. Thus
there is no feasible solution in this integer box N2(x

(1)).

Cut the integer box N2(x
(1)) off from ⟨α, β⟩ without missing any feasible solutions.

The above lemmas show us the special domain cut skills which cut off some integer
subboxes not containing the optimal solution to the problem (P) from a hyper-rectangle.
Thus the feasible region is reduced greatly and the optimal solution to the problem (P) can
be found more quickly.

After the domain cut, the revised domain (⟨α, β⟩\⟨ᾱ, β̄⟩)\⟨γ, δ⟩ usually isn’t an integer
box. In order to easily calculate the lower bound of the problem (P) over the revised domain
by solving a linear programming problem (LP) in Section 2, the revised domain need to be

450 FENLAN WANG

divided into a union of some integer subboxes, over which new subproblems are generated.
The following lemma will show us how to divide the revised domain into a union of some
integer subboxes.

Lemma 3.4. (see [18]) Let α, β, γ, δ ∈ Zn and ⟨α, β⟩, ⟨γ, δ⟩ be two integer subboxes
satisfying α ≤ γ ≤ δ ≤ β. Then

⟨α, β⟩ \ ⟨γ, δ⟩ = {∪n
j=1

(
Πj−1

i=1 ⟨αi, δi⟩ × ⟨δj + 1, βj⟩ ×Πn
i=j+1⟨αi, βi⟩

)
}

∪{∪n
j=1

(
Πj−1

i=1 ⟨γi, δi⟩ × ⟨αj , γj − 1⟩ ×Πn
i=j+1⟨αi, δi⟩

)
}. (3.5)

By lemma 3.4, the revised domain (⟨α, β⟩\⟨ᾱ, β̄⟩)\⟨γ, δ⟩ is partitioned into a union of
some integer subboxes. In each new generated integer subboxes, the lower bound can be
calculated by solving a linear programming problem in Section 2 and the domain cut tech-
nique mentioned above can also be applied accordingly.

4 The Main Algorithm

The presented algorithm incorporates the lower bound in Section 2 and a special domain
cut and partition technique in Section 3 into the branch and bound method. By the domain
cut in Section 3, remove some integer subboxes that don’t contain the optimal solutions to
the problem (P) from the integer box ⟨l, u⟩, thus the hyper-rectangle region gets smaller
and also the duality gap is reduced. Then the revised domain is decomposed into a union
of several integer subboxes, over which the subproblems are generated. The lower bound
can be calculated easily via a linear programming problem and its Lagrangian dual problem
in Section 2 over each generated integer subboxes. If the lower bound of a subproblem is
greater than or equal to the upper bound (the function value of the incumbent solution) of
the problem (P), then we can conclude that there are no feasible solutions to this subproblem
better than the incumbent. So this subproblem can be pruned in advance. If there are no
feasible solutions to this problem, this subproblem can also be discarded. The domain cut
and partition technique continues to be performed over the remaining integer subboxes after
pruning. In this iteration process, if a feasible integer solution to (P) is found, then update
the incumbent solution. Therefore, the lower bound of the problem (P) is increasing and
the upper bound is decreasing. After a finite number of iterations, the optimal solution to
the problem (P) can be found quickly.

The following will describe the exact algorithm for problem (P) in details.

Algorithm 4.1. (A New Algorithm for Separable Integer Programming Prob-
lems)

Step 0. (Initialization) Set fopt = +∞, X0 = {X}, k = 0.
Step 1. Select the integer subbox ⟨αk, βk⟩ from Xk with the minimum lower bound.
Step 2. (Bounding and partition)
(i) (Bounding) We can obtain a lower bound v(LP) with the optimal continuous solution

x̃k or conclude that there are no feasible solutions in the box ⟨αk, βk⟩ by solving the linear
approximation problem (LP), and we also have v(D) by solving the Lagrangian dual problem
(D) using procedure 2.1.

(ii) (Fathoming) Remove the integer subbox ⟨αk, βk⟩, if one of the following conditions
is satisfied:

• There are no feasible solutions in the integer box ⟨αk, βk⟩.

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 451

• The lower bound LB = max{v(LP), v(D)} in the integer box ⟨αk, βk⟩ is greater than
or equal to the upper bound fopt of the problem (P).

(iii) (Domain cut and partition)
(a) If x̃k is an integer solution, when f(x̃k) < fopt, update the incumbent xopt :=

x̃k, fopt := f(x̃k). Then cut off the integer box R(x̃k) from ⟨αk, βk⟩, where R(x̃k) is defined
in (3.1) for a convex objective function, (3.2) for a quadratic concave objective function, and
R(x̃k) = {x̃k} for others.

(b) If x̃k is not an integer solution, then obtain two integer points xk,1 and xk,2 by
rounding x̃k up or down along the gradient direction ∇L(x̃k) and the negative gradient
direction −∇L(x̃k) of (LP) respectively.

xk,2 must be infeasible and the integer box N1(x
k,2) can be cut off from ⟨αk, βk⟩, where

N1(x
k,2) is defined in (3.3).

If xk,1 is a feasible solution, when f(xk,1) < fopt, update the incumbent xopt := xk,1, fopt =
f(xk,1). Cut off the integer box R(xk,1) defined in (3.1) for the convex objective function,
(3.2) for the quadratic concave objective function, and R(xk,1) = {x̃k} for others;

If xk,1 is infeasible, then cut off the integer box N2(x
k,1) defined in (3.4) where x1 is

replaced by xk,1 and αj , βj are replaced by (αk)j , (β
k)j .

After the domain cut, the remaining domain is partitioned into a union of some integer
subboxes by lemma 3.4 and add the generated new subproblems to the set Y k+1.

Step 3. Set Xk+1 = Y k+1
∪
(Xk \ ⟨αk, βk⟩)

Step 4. (Termination) If Xk+1 is empty, then stop and xopt is an optimal solution to
(P). Otherwise, set k := k + 1, goto Step 1.

Theorem 4.2. The algorithm terminates at an optimal solution of (P) within a finite
number of iterations.

Proof. During the domain cut and partition process in Step2, At least xk,1 and xk,2 are cut
off from the integer box ⟨α, β⟩. Also no optimal solution can be removed . Therefore, the
incumbent solution xopt must be the optimal solution to (P) when the algorithm stops in
Step 4 with Xk+1 = ∅. The finite termination of the algorithm is clear due to the finiteness
of X.

5 Computational Experiments

The algorithm has been coded by Fortran 90 and has run on PC with Pentium(R) Dual-core
CPU E6700@3.2GHz. There are two kinds of objective functions for the test problems in
the experiment. They are of the following forms:

Type 1:

min f(x) =

n∑
j=1

(cjx
4
j + djx

3
j + ejx

2
j + hjxj)

s.t. Ax ≤ b,

x ∈ X = {x | lj ≤ xj ≤ uj , xj integer, j = 1, . . . , n},

where cj , dj , and ej are positive real numbers for the convex objective function, negative real
numbers for the concave objective function and arbitrary real numbers for the nonconvex
and nonconcave objective function. For each n, 10 test problems are randomly generated
by a uniform distribution. For convex problems, take cj ∈ (0, 1), dj ∈ [1, 6], ej ∈ [1, 10],

452 FENLAN WANG

Table 1: Numerical results for quadratic convex problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
Min Max Avg Min Max Avg Min Max Avg

15× 30 3.734 153.188 49.177 808 7721 3536.1 63 646 274.2
20× 15 0.922 119.844 35.414 3120 224101 73467.6 251 14743 4900.2
20× 20 0.547 128.859 37.220 939 167037 52861.9 47 10758 3327.4
20× 30 9.750 176.641 74.492 5778 74616 37528.1 361 4169 2199.4
25× 20 30.672 7477.016 1369.394 59591 5625816 1138243.2 3160 306179 57925.9
25× 25 9.125 4456.922 603.753 8289 2471303 350477.3 511 116619 16606.9
25× 30 70.125 2824.578 1148.253 32604 1242280 558306.7 1595 60539 27703.3
30× 5 0.109 147.953 37.620 92 150250 37553.7 29 48557 7296.9

hj ∈ [−10, 10] and cj ∈ (−1, 0), dj ∈ (−1, 0), ej ∈ [−10,−1], hj ∈ [−5, 5] for concave
problems. In addition, take cj = 0 for the cubic objective function and cj = 0, dj = 0 for
the quadratic objective function. For nonconvex and nonconcave problems, take cj ∈ [−1, 1],
dj ∈ [−30, 30], ej ∈ [−40, 40], hj ∈ [−50, 50] for the quartic function; cj = 0, dj ∈ [−1, 1],
ej ∈ [−8, 8], hj ∈ [−50, 50] for the cubic function; cj = 0, dj = 0, ej ∈ [−1, 1], hj ∈ [−50, 50]
for the quadratic function.

Type 2:

min f(x) =

n∑
j=1

[cj ln(xj) + djxj]

s.t. Ax ≤ b,

x ∈ X = {x | lj ≤ xj ≤ uj , xj integer, j = 1, . . . , n},

where cj , j = 1, . . . , n are negative real numbers for the convex objective function, pos-
itive real numbers for the concave objective function, and arbitrary real numbers for the
nonconvex and nonconcave objective function. For each n, 10 test problems are randomly
generated by a uniform distribution. Take cj ∈ (−1, 0) for convex problems, cj ∈ (0, 1) for
concave problems, and cj ∈ [−1, 1] for nonconvex and nonconcave problems. In addition,
take dj ∈ [−20,−10] in all test problems.

For all test problems, the constraint matrix A = (aij)m×n ∈ [−20, 20], i = 1, . . .m, j =
1, . . . n, bi = min(

∑n
j=1 aijxj)+ r ∗ [max(

∑n
j=1 aijxj)−min(

∑n
j=1 aijxj)], i = 1, . . . ,m, and

lj = 1, uj = 5, j = 1, . . . , n, r = 0.6.
In the computational experiments, take the given maximum iteration number M = 50

and stop criteria ϵ = 0.001 in Procedure 2.1. Tables 1 - 13 summarize the numerical results,
where min, max and avg stand for minimum, maximum and average respectively.

The performance of Algorithm 4.1 has been compared with the traditional branch and
bound method for a quadratic convex objective function. The comparison results are re-
ported in Table 4 where average CPU time, average subbox number (or average branches)
and average iterations are obtained by running 10 test problems for each n.

From Table 4, it is clear that the proposed algorithm is much better than the traditional
branch and bound method in terms of average CPU time. This main reason is the innovation
of the presented algorithm which lies in diminishing the duality gap gradually by a special
domain cut technique and calculating its lower bound by solving easily a linear programming
problem and its Lagrangian dual problem.

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 453

Table 2: Numerical results for cubic convex problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
Min Max Avg Min Max Avg Min Max Avg

15× 15 2.203 10.859 6.217 7117 37720 21878.3 556 3377 1884.2
15× 20 2.750 10.938 6.147 5468 24713 11665.3 366 2029 989.3
15× 30 5.578 118.828 52.863 1162 11924 5448.1 72 926 425.6
20× 5 0.125 93.031 22.498 170 162661 39219.0 25 27105 5494.1

20× 15 65.625 1947.359 681.631 100000 3862773 1580176.1 13826 280376 120580.3
20× 20 82.609 681.531 318.513 95462 868343 445457.5 5439 58382 30327.4
20× 30 26.203 255.828 115.847 16123 133289 68404.9 921 7883 3989.5

Table 3: Numerical results for quartic convex problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
Min Max Avg Min Max Avg Min Max Avg

15× 15 1.891 50.625 12.838 5472 158629 39326.0 419 16380 3765.0
15× 20 4.094 18.078 8.734 8531 29834 16339.9 754 2775 1403.6
15× 30 17.938 89.938 55.800 3603 15059 7297.4 246 1437 591.7
20× 5 0.031 160.594 23.759 19 236412 33002.2 1 45824 5449.2

20× 15 56.234 3660.391 880.166 100000 7765867 1995763.0 14650 724937 165329.1
20× 20 52.672 734.953 334.711 74667 922503 458018.0 3932 65804 31001.5
20× 30 21.672 414.844 198.272 10994 214976 108917.3 613 13540 6462.4

Table 4: Comparison results with the traditional branch and bound method

Algorithm 4.1 Traditional BB
n×m

Avg CPU Avg iters Avg boxes Avg CPU Avg iters Avg branches
10× 10 0.034 54.5 450.6 18.395 379.8 378.8
10× 15 0.064 54.2 397.7 15.725 321.2 320.2
10× 20 0.244 50.2 408.5 15.417 307.2 306.2
15× 5 0.834 1998.1 16396.6 21.623 280.4 279.4
15× 10 2.088 1572.4 17059.0 134.420 1740.6 1739.6
15× 15 1.691 870.6 9542.5 208.164 2481.2 2480.2
20× 5 52.175 64102.3 681613.6 138.453 1381.2 1380.2

454 FENLAN WANG

Table 5: Numerical results for quadratic concave problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

30× 10 0.464 0.016 1.313 3081.2 51 10590 130.7 4 500
50× 10 3.738 0.031 26.359 12032.4 107 83580 314.1 3 2041
70× 10 2.641 0.219 8.313 5643.7 365 17230 118.2 6 353

100× 10 8.411 0.203 39.000 10170.3 173 45487 152.0 2 654
200× 10 45.989 0.016 323.672 15984.1 1 108721 117.6 1 746
300× 10 129.492 0.031 572.641 26570.9 1 123568 171.3 1 737
400× 10 153.320 0.031 1156.734 16092.2 1 106579 67.2 1 354
30× 20 9.591 0.156 38.500 24163.8 294 89991 1089.5 13 4209
40× 20 188.277 1.313 717.734 353263.9 1688 1347783 12132.4 48 48100
50× 20 306.359 1.922 1988.516 440319.0 2538 3284355 12233.9 110 95859
60× 20 2154.697 45.641 13319.703 1494197.6 21063 9592826 33083.5 377 208559

100× 20 2565.502 69.250 19386.656 1072157.3 22776 8137901 15031.4 318 112758
30× 25 878.141 37.719 6384.469 1137861.2 32990 8018066 46661.7 1258 314032

Table 6: Numerical results for cubic concave problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

30× 10 0.342 0.001 0.703 1570.4 29 3648 53.1 1 129
50× 10 10.706 0.141 63.422 24368.4 268 142574 606.5 6 3704
70× 10 20.975 0.109 95.063 30261.5 121 134732 511.9 2 2442

100× 10 41.811 0.001 140.281 9697.9 1 32863 52.3 1 193
300× 10 199.420 0.031 902.016 24053.5 1 101354 85.3 1 369
30× 20 154.222 2.234 958.000 310130.0 2654 1902937 12698.3 72 76434
40× 20 169.013 3.438 1100.781 224395.9 3443 1496426 7135.5 100 47679
50× 20 467.148 2.078 4107.828 388770.7 1359 3451262 9241.2 29 81435
60× 20 1024.091 72.672 2548.063 727084.6 45358 1969596 16019.5 1018 49943
30× 25 643.002 10.422 2900.859 780051.0 9579 3450713 30640.1 324 148868
40× 25 938.283 2.578 4348.016 825613.7 1504 3342168 26469.7 41 124756

Table 7: Numerical results for quartic concave problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

30× 10 0.547 0.016 3.031 3006.5 56 17619 112.1 1 676
50× 10 2.392 0.047 8.625 5498.8 77 19844 117.2 2 406
70× 10 3.630 0.250 15.813 5721.1 300 25966 110.9 3 496

100× 10 10.633 0.203 72.391 8249.3 136 52971 89.8 1 502
200× 10 312.022 1.547 2931.875 105042.7 325 999978 767.9 1 7372
30× 20 15.670 1.109 65.484 28211.2 1463 132314 1115.3 43 5462
40× 20 107.197 0.516 568.469 148888.8 597 888832 5645.2 19 37418
50× 20 1311.817 7.938 4938.094 1109759.9 6051 4749367 27442.4 140 117076
60× 20 927.548 71.109 4511.172 627373.0 45134 3370997 13114.9 884 74384
30× 25 193.605 3.969 949.047 217387.1 3172 1110700 8269.9 115 43149
40× 25 1010.931 3.906 4437.031 777812.1 3455 3649881 23483.2 123 113174

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 455

Table 8: Numerical results for quadratic nonconvex and nonconcave problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

40× 5 29.111 0.813 88.125 18339.2 399 53848 700.4 8 1907
20× 10 0.109 0.016 0.234 944.5 141 2011 55.3 7 106
30× 10 2.592 0.203 10.828 13926.0 879 55327 530.9 40 1973
40× 10 24.689 0.969 119.250 106834.8 3860 561672 3723.5 112 21146
60× 10 447.147 49.828 1630.766 886573.2 89299 2930382 16887.4 1545 46703
65× 10 3487.561 69.563 13170.406 5733711.6 100000 21564731 105265.4 2327 380080
20× 15 0.542 0.094 2.766 2866.2 257 15313 179.9 12 1032
30× 15 11.648 0.828 45.359 36686.1 2107 167360 1382.4 71 6436
40× 15 51.964 2.078 176.219 109257.2 4129 384329 3403.6 130 11423
20× 20 3.983 0.156 19.719 12707.0 386 58347 805.4 17 3530
30× 20 101.328 2.484 236.953 190359.0 4002 447198 8146.8 162 22416
40× 20 663.378 18.344 2459.656 794163.0 23359 2614320 25805.1 633 82647
30× 25 217.730 10.797 1426.766 247523.5 14498 1515520 9615.5 703 56809
40× 25 655.094 37.422 2773.156 526475.1 29878 2203335 17344.5 966 76960
30× 30 943.655 22.328 3985.719 701886.4 19715 2968514 27604.9 1048 121019
40× 30 4810.697 131.953 32754.391 2778449.2 56846 19726675 82912.6 1799 590758

Table 9: Numerical results for cubic nonconvex and nonconcave problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

20× 5 2.477 0.313 10.906 3543.1 532 16095 224.2 23 884
20× 10 5.145 0.641 17.953 47445.8 6687 153005 2854.3 333 9791
25× 10 20.478 3.625 47.406 143116.6 26590 305885 6100.6 994 14703
30× 10 1434.822 4.563 3717.844 7324516.0 18520 19895136 278892.7 534 857136
20× 15 18.730 4.797 75.703 108196.3 17497 494254 6141.4 1055 29750
25× 15 609.128 22.188 2263.938 2378019.4 72308 8606078 107888.8 2631 408620
20× 20 61.178 1.500 162.281 181471.8 6048 547034 10523.6 393 33637
25× 20 479.922 19.609 1708.766 1304565.6 64345 4879657 64986.8 2891 280195

Table 10: Numerical results for quartic nonconvex and nonconcave problems of Type 1

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

20× 5 37.989 0.359 177.328 57667.1 455 281356 3241.0 20 16592
20× 10 17.402 0.672 35.641 153545.6 6782 324439 8256.2 294 17610
25× 10 1231.808 3.484 6893.625 6359249.5 18359 31816011 297796.0 578 1506535
20× 15 141.058 7.063 844.266 695470.0 33932 4078943 44737.4 1606 290255
20× 20 224.664 10.609 1169.281 784369.9 23364 4506699 54384.6 983 342667

Table 11: Numerical results for convex problems of Type 2

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

20× 10 0.417 0.109 1.078 366.1 86 1017 27.0 5 75
40× 10 5.416 0.766 13.703 1842.0 121 4819 71.6 6 167
60× 10 16.864 1.984 62.141 2945.5 350 11315 75.6 5 295
80× 10 143.453 2.563 626.219 16396.7 206 72964 302.8 2 1318

100× 10 843.055 16.500 6519.969 72200.5 1260 553271 1163.9 21 8646
20× 15 4.016 0.141 10.047 3381.3 97 9921 217.1 6 677
40× 15 113.188 1.563 933.172 32980.8 302 270857 1094.9 11 9023
60× 15 644.122 4.016 1899.141 101942.0 442 306291 2849.6 9 8622

456 FENLAN WANG

Table 12: Numerical results for concave problems of Type 2

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

20× 10 0.461 0.078 1.500 496.0 89 1533 28.0 4 83
40× 10 6.041 0.438 16.078 2562.1 158 6884 79.1 6 205
60× 10 18.109 2.078 74.234 4127.2 348 17700 82.5 5 355
80× 10 121.969 1.953 517.578 16910.5 206 74302 258.0 2 1166

100× 10 1005.416 15.359 7180.078 114485.9 1662 801438 1611.3 20 11699
20× 15 3.977 0.188 9.813 3738.6 128 9368 219.7 6 612
40× 15 138.458 2.047 1182.500 50142.1 546 427089 1634.0 11 14148
60× 15 683.477 3.484 2568.406 143582.6 531 550901 3619.7 9 14076

Table 13: Numerical results for nonconvex and nonconcave problems of Type 2

CPU Time (seconds) Number of Subboxes Number of Iterationsn×m
avg min max avg min max avg min max

20× 10 0.517 0.125 1.625 558.2 124 1860 31.8 6 96
40× 10 9.034 0.969 24.953 3821.0 374 10860 116.4 10 330
60× 10 33.284 3.984 100.875 7588.8 790 23890 149.7 12 472
80× 10 296.617 5.531 1521.625 43526.7 657 225560 663.0 7 3551

100× 10 3042.853 30.391 24811.516 348118.9 3298 2817407 4853.7 53 40100
20× 15 4.355 0.203 12.156 4032.8 129 10707 235.6 6 614
40× 15 161.566 3.641 1353.328 58302.9 1020 487810 1900.9 22 16223
60× 15 1006.855 4.938 3938.547 207552.4 794 837453 4980.5 13 20885

For the problems of Type 1, from Tables 1 - 10 we can find that it usually spends much
more time with the degree increasing for the problems with the same dimension, since the
problems become more complicated when the degree increases. For different dimension
problems with the same degree objective function, the CPU time for the algorithm usually
increases with the dimensions increasing. Sometimes the abnormal situation may arise
mainly due to the random generated data. In Table 10, we see that it spends 1231.808
seconds when solving the problem with n = 25 and m = 10. This case occurs, on the
one hand, owing to the random generated data. On the other hand, it shows that the
nonconvex and nonconcave problem is more difficult to solve when the degree increases.
This is because more integer subboxes are generated in order to ensure that fj(x) is a either
convex or concave function over the subintervals when we calculate the lower bound via the
linear underestimation problem for the nonconvex and nonconcave problems in Section 2
and more subproblems will be solved.

For the problems of Type 2, we can also observe that solving the nonconvex and noncon-
cave problems takes much more time than solving the convex and concave problems with
the same dimension, since the nonconvex and nonconcave problems are more complicated
than the convex and concave problems with the same dimension.

From the above results in Tables 1 - 13, we can observe that the algorithm can find
the exact solutions of medium-scale separable integer programming problems in reasonable
computation time. According to our computational numerical results, the CPU time spent
by the algorithm mainly depends both on the number of subboxes and on the computation
time to solve the dual problem using the subgradient method and search for the optimal
solution to the linear approximation problem in each subbox. If the lower bound is not very
good, then more integer subboxes will be left for further consideration. Thus much more
time is needed for solving these subproblems. Therefore, if the lower bound can be further

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 457

improved, the algorithm will be more efficient.

6 Concluding Remarks

A new exact algorithm for nonlinear separable integer programming problems is proposed
in this paper. The algorithm incorporates a new cut strategy into the branch and bound
method. The domain cut technique makes the algorithm different from the traditional
branch and bound method. In the domain cut and partition process, removing the domains
that don’t contain the optimal solution of the primal problem makes the feasible region
shrink greatly. The lower bound is taken as the maximum of the optimal value of the
linear approximation problem and the Lagrangian dual value, which ensures that we can
get a better lower bound to fathom more integer subboxes. The lower bound of the primal
problem is increasing gradually and the duality gap is decreasing. Thus the optimal solution
of the primal problem can be found quickly in a finite numbers of iterations. The efficiency
of the proposed algorithm can be witnessed from the above computation experiments in
Tables 1 - 13. Finally, the algorithm presented in this paper can also be extended to solve
general separable integer programming problems with nonlinear constraints.

References

[1] A. Beck and M. Teboulle, Global optimality conditions for quadratic optimization prob-
lems with binary constraints, SIAM J. Optim. 11 (2000) 179–188.

[2] R. Bellman and S.E. Dreyfus, Applied Dynamic Programming, Princeton, Princeton
University Press, 1962.

[3] H.P. Benson and SS. Erenguc, An algorithm for concave integer minimization over a
polyhedron, Naval Res. Logist. 37 (1990) 515–525.

[4] H. P. Benson, S.S. Erengue and R. Horst, A note on adopting methods for continuous
global optimization to the discrete case, Ann. Oper. Res. 25 (1990) 243–252.

[5] K.M. Bretthauer, A.V. Cabot and M.A. Venkataramanan, An algorithm and new penal-
ties for concave integer minimization over a polyhedron, Naval Res. Logist. 41 (1994)
435–454.

[6] K.M. Bretthauer and B. Shetty, The nonlinear resource allocation problem, Oper. Res.
43 (1995) 670–683.

[7] K.M. Bretthauer and B. Shetty, The nonlinear knapsack problem–algorithms and ap-
plications, Eur. J. Oper. Res. 138 (2002a) 459–472.

[8] K.M. Bretthauer and B. Shetty, A pegging algorithm for the nonlinear resource alloca-
tion p roblem, Comput. Oper. Res. 29 (2002b) 505–527.

[9] A.V. Cabot and S.S. Erengue, A Branch and Bound Algorithm for Solving a Class of
Nonlinear Integer Programming Problems, Naval Res. Logist. 33 (1986) 559–567.

[10] M. Held and R.M. Karp, A dynamic programming approach to sequencing problems,
J. Soc. Ind. Appl. Math. 10 (1962) 196–210.

[11] D. Hochbaum, A nonlinear knapsack problem, Oper. Res. Lett. 17 (1995) 103–110.

458 FENLAN WANG

[12] R. Horst, P.M. Pardalos and N.V. Thoai, Introduction to Global Optimization, Second
Edition, Nonconvex optimization and its application, Kluwer, Dordrecht, Netherlands,
2000.

[13] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Springer-Verlag,
Heidelberg, 1993.

[14] R.A. Howard, Dynamic programming, Manage. Sci. 12 (1966) 317–348.

[15] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches, Cam-
bridge, Mass., MIT Press, 1988.

[16] M.S. Kodialam and H. Luss, Algorithm for separable nonlinear resource allocation
problems, Oper. Res. 46 (1998) 272–284.

[17] J. B. Lasserre, An explicit equivalent positive semidefinite program for nonlinear 0-1
programs, SIAM J. Optim. 12 (2002) 756–769.

[18] D. Li, X.L. Sun and F.L. Wang, Convergent Lagrangian and contour cut method for
nonlinear integer programming with a quadratic objective function, SIAM J. Optim.
17 (2006) 372–400.

[19] D. Li, X.L. Sun, J. Wang and K.I.M. McKinnon, Convergent Lagrangian and domain
cut method for nonlinear knapsack problem, Comput. Optim. Appl. 42 (2009) 67–104.

[20] R.E. Marsten and T.L. Morin, A hybrid approach to discrete mathematical program-
ming, Math. Program. 14 (1978) 21–40.

[21] K. Mathur, H.M. Salkin and S. Morito, A branch and search algorithm for a class of
nonlinear knapsack problems, Oper. Res. Lett. 2 (1983) 55–60.

[22] T.L. Morin and R.E. Marsten, An algorithm for nonlinear knapsack problems, Manage.
Sci. 22 (1976a) 1147–1158.

[23] T.L. Morin and R.E. Marsten, Branch and bound strategies for dynamic programming,
Oper. Res. 24 (1976b) 611–627.

[24] P.M. Pardalos and J.B. Rosen, Reduction of nonlinear integer separable programming
problems, Int. J. Comput. Math. 24 (1988) 55–64.

[25] X.L. Sun and D. Li, Optimality condition and branch and bound algorithm for con-
strained redundancy optimization in series systems, Optim. Eng. 3 (2002) 53–65.

[26] F.L. Wang, A new exact algorithm for concave knapsack problems with integer vari-
ables, Int. J. Comput. Math. 96 (2019) 126-134.

Manuscript received 8 March 2019
revised 24 May 2019

accepted for publication 21 July 2019

A NEW ALGORITHM FOR SEPARABLE INTEGER PROGRAMMING PROBLEMS 459

Fenlan Wang
College of Science
Nanjing University of Aeronautics and Astronautics
29 Yudao St., Nanjing 210016, P. R. China
E-mail address: flwang@nuaa.edu.cn

