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βHS
k =

gTk yk−1

dTk−1yk−1
, Hestenes & Stiefel (HS) [19] (1.5)

βPR
k =

gTk yk−1

∥gk−1∥2
, Polak & Ribière (PR) [22] (1.6)

βDY
k =

∥gk∥2

dTk−1yk−1
, Dai & Yuan (DY) [9] (1.7)

βHZ
k = βHS

k − 2∥yk−1∥2
dTk−1gk

(dTk−1yk−1)2
, Hager & Zhang (HZ) [17] (1.8)

where ∥ · ∥ is the Euclidean norm and yk−1 = gk − gk−1. In the case that the objective
function f is strictly convex quadratic and the exact line search is used, all the choices for
βk are equivalent, see [18].

In convergence analysis of the conjugate gradient methods, we say that the descent
condition holds if for each search directions dk

gTk dk < 0, ∀k ≥ 1. (1.9)

Also, the direction dk satisfies the sufficient descent condition, if there exists a constant
c > 0 such that

gTk dk ≤ −c∥gk∥2, ∀k. (1.10)

The conjugacy condition is utilized to accelerate the conjugate gradient methods. So,
the order accuracy in the estimation of the curvature is improved. By modifying the HS

method, Dai & Liao [10] proposed the conjugacy condition as follows

dTk yk−1 = −ξgTk sk−1, (1.11)

where ξ > 0 is a constant and sk−1 = xk − xk−1. Recently, Babaie-Kafaki [4] and
Fatemi [15] discussed how to find the optimal choice for the parameter ξ.

In each conjugate gradient iterate, the step-size αk is chosen as an approximate minimum
of one dimensional optimization problem

min
α≥0

f(xk + αdk). (1.12)

The termination conditions for the line search are often based on some versions of the Wolfe
conditions. The standard Wolfe conditions [21] are

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk, (1.13)

gTk+1dk ≥ σ2g
T
k dk, (1.14)

where 0 < σ1 < σ2 < 1. Furthermore, the strong Wolfe conditions are presented by

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk, (1.15)

|gTk+1dk| ≤ −σ2g
T
k dk. (1.16)

Assumption 1.1 The gradient g is Lipschitz continuous, i.e., there exists a constant L > 0
such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.



SOME THREE-TERM CONJUGATE GRADIENT METHODS 463

Assumption 2.1 The function f : Rn → R is an uniformly convex function, i.e., there
exists a constant µ > 0 such that(

g(x)− g(y)
)T

(x− y) ≥ µ∥x− y∥2, ∀x, y ∈ Rn.

Birgin & Mart́ınez [7] proposed a spectral conjugate gradient method by combining
the spectral gradient method with the conjugate gradient ideas. In the spectral conjugate
gradient methods, the direction dk is computed by

dk =

{
−gk, k = 0,

−θkgk + βkdk−1, k ≥ 1,
(1.17)

where βk is the conjugate parameter and θk is a scalar. Recently, the three-term conju-
gate gradient (TTCG) methods have been proposed to solve the unconstrained optimization
problem (1.1). In the first, these methods proposed by Beale [6] as

dk = −gk + βkdk + γkdt, (1.18)

where βk = βFR
k , βHS

k , βDY
k . Also, dt is a restart direction and

γk =

0, k = t+ 1,

gTk yt
dTt yt

, k > t+ 1.
(1.19)

In recent years, many researchers obtain further results the three-term conjugate gradient
algorithms and established their global convergence properties. Furthermore, they showed
that the three-term conjugate gradient algorithms are robust and efficient, especially for
large scale problems. [2, 26,27].

2 TTCG Methods with Sufficient Descent Condition

All proposed three-term conjugate gradient methods by Al-Baali et al. [1] (TTM1),
Babaie-Kafaki [3] (TTM2) and Yuan et al. [23] (TTM3) satisfy the sufficient descent
condition. In TTM1, the descent direction is given by

dk =

{
−gk, k = 0 or |gTk yk−1| ≤ θ∥gk∥∥yk−1∥,
−gk + βkdk−1 + ηkyk−1, k ≥ 1,

(2.1)

in which βk = βHS
k , βPR

k , βHZ
k , 0 < θ < 1 is a constant and

ηk = − (γk − 1)∥gk∥2 + βkg
T
k dk−1

gTk yk−1
. (2.2)

The condition |gTk yk−1| ≤ θ∥gk∥∥yk−1∥ is as a restarting criterion, since it holds for suf-
ficiently large values of θ. In numerical experiments, we use θ = 10−5. Also, there are
16 different choices for the parameter γk, one of which is robust than others, proposed by
Barzilai & Borwein with the following form [5]:

γk =
∥sk−1∥2

sTk−1yk−1
.
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The global convergence property for TTM1 is established under Lipschitz continuous for the
gradient g while the step-size αk satisfies the standard Wolfe conditions.

Although the PR method is numerically efficient, but the descent condition is not estab-
lished even for uniformly convex objective functions, in many cases. TTM2 is a hybridization
of PR method and a three-term conjugate gradient method with the sufficient descent con-
dition, i.e., gTk dk = −∥gk∥2, ∀k ≥ 0, based on an eigenvalue analysis for convex objective
functions, independent of the line search. In this method, the search direction is computed
by

dk =

−gk, k = 0,

−gk + βPR
k dk−1 − tk

gTk dk−1

∥gk−1∥2
yk−1, k ≥ 1,

(2.3)

in which tk ∈ [0, 1]. Note that if tk = 0 or the exact line search is used, TTM2 reduces to
the PR method. The hybridization parameter tk is computed such that TTM2 satisfies the
sufficient descent condition. Hence, TTM2 is considered as a quasi-Newton method, in which
the inverse Hessian is approximated by the non-symmetric matrix. The parameter tk is
given by

tk =

{
1, dTk−1yk−1 + ∥dk−1∥∥yk−1∥ = 0 or tk < 0,

tk, tk ≥ 0,
(2.4)

in which

tk = 1 + 2(ζ − 1)
∥gk−1∥2

dTk−1yk−1 + ∥dk−1∥∥yk−1∥
,

with ζ = 0.80. The global convergence of TTM2 has been established under the Armijo-type
line search and the Lipschitz continuous of the gradient g.

A derivative-free approach for the large-scale nonlinear equations is proposed in TTM3.
It is clear that solving the nonlinear equation F (x) = 0 (F : Rn → Rm) is equivalent with
the optimization problem

min
x∈Rn

f(x) =
1

2
∥F (x)∥2.

To solve the above optimization problem, Yuan et al. [23] defined the search direction dk
by

dk =

{
−gk, k = 0,

−gk + δkdk−1 − ηkyk−1, k ≥ 1,
(2.5)

where

δk =
gTk yk−1

max{µ∥dk−1∥∥yk−1∥, ∥gk−1∥2}
, (2.6)

ηk =
gTk dk−1

max{µ∥dk−1∥∥yk−1∥, ∥gk−1∥2}
, (2.7)

with µ = 0.01. Now, for ∥g(zk)∥ < 10−4, zk = xk + αkdk is a new iterate. In other words,
if the search direction belongs to a trust-region without special conditions, then TTM3 has
the trust-region technique. Also, the scaling term max{µ∥dk−1∥∥yk−1∥, ∥gk−1∥2} in the
denominator guarantees that all search directions automatically will stay in a trust-region
because

∥gk∥ ≤ ∥dk∥ ≤
(
1 +

2

µ

)
∥gk∥.
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As well as, for ∥g(zk)∥ ≥ 10−4 the new iterate is computed by

xk+1 = xk − g(zk)
T (xk − zk)

∥g(zk)∥2
g(zk).

TTM3 is stopped in the finite number of iterates and its global convergence results are estab-
lished with a new line search technique as follows [20]:

−F (xk + αkdk)
T dk ≥ σαk∥F (xk + αkdk)∥∥dk∥2.

3 TTCG Methods with Descent and Conjugacy Conditions

Recently, many three-term conjugate gradient algorithms have introduced satisfying both
the descent condition and the conjugacy condition. The presented three-term conjugate
gradient method by Andrei [2] (TTM4) generates the search direction by minimizing an
one dimensional quadratic model of the objective function. TTM4 uses the quadratic Taylor
approximate of the objective function at xk+1 such that the symmetric matrix Bk is as an
approximation of the Hessian matrix satisfying Bksk−1 = ω−1yk−1 with ω ̸= 0. After a
simple algebra, the search direction in TTM4 has the following form

dk =

{
−gk, k = 0,

−gk + δksk−1 − ηkyk−1, k ≥ 1,
(3.1)

where the parameters δk and ηk are

δk =
yTk−1gk − ωsTk−1gk

yTk−1sk−1
, (3.2)

ηk =
sTk−1gk

yTk−1sk−1
. (3.3)

There are obtained many choices for the parameter ω in (3.2). For example, if ω = 0 (3.1)
reduces to the HS direction. For ω = 0.1, TTM4 reduces to the Dai & Liao method [10].
However, for ω > 0 the search direction (3.1) satisfies the descent condition and the Dai–Liao
conjugacy condition (1.11) with ξ = ω+ ∥yk−1∥2/yTk−1sk−1. Therefore, a suitable choice for
the parameter ω is

ω =
2

∥sk−1∥2
√
∥sk−1∥2∥yk−1∥2 − (yTk−1sk−1)2, (3.4)

which is well-defined whenever ∥sk−1∥ ̸= 0. The global convergence of TTM4 is established
by using the strong Wolfe line search (1.15)- and (1.16) and Lipschitz continuous of the
gradient for the uniformly convex objective function.

Another three-term conjugate gradient algorithm with descent and conjugacy conditions
to solve large-scale unconstrained optimization problem is developed in [11], called TTM5.
In this method, the search direction is close to the Newton direction which does not need
to compute or store any Hessian matrix of the objective function, but the search direction
satisfies an approximate secant equation such that the numerical performance is greatly
improved. In TTM5, the search direction is computed by

dk =

{
−gk, k = 0,

−gk − δksk−1 − ηkyk−1, k ≥ 1,
(3.5)



466 L. ARMAN,Y. XU, M. ROSTAMI AND F. RAHPEYMAII

where

δk =
(
1−min

{
1,

∥yk−1∥2

yTk−1sk−1

}) sTk−1gk

yTk−1sk−1
−

yTk−1gk

yTk−1sk−1
, (3.6)

ηk =
sTk−1gk

yTk−1sk−1
. (3.7)

It is established that (3.5) is the descent direction. Furthermore, the conjugacy condition
(1.11) is established with

ξ = 1−min
{
1,

∥yk−1∥2

yTk−1sk−1

}
+

∥yk−1∥2

yTk−1sk−1
> 0.

It is clear that, if ∥yk−1∥ < yTk−1sk−1 then ξ = 1. Similar to TTM4, the global convergence is
obtained under the strong Wolfe line search using Lipschitz continuous of the gradient for
the uniformly convex objective function in TTM5.

4 TTCG Methods with Sufficient Descent and Conjugacy Conditions

Two new versions of the three-term conjugate gradient methods with sufficient descent
and Dai–Liao conjugacy conditions are introduced by Dong et al. [13] (TTM6) and [14]
(TTM7). In TTM6, the search direction dk satisfied the Dai–Liao conjugacy condition and
the sufficient descent condition, simultaneously. They started from the descent steepest
direction dk = −gk and then the search direction is presented by

dk =

{
−gk, ∥yk−1∥∥dk−1∥ ≥ µ∥gk∥,
−gk + βMHZ+

k dk−1 − θkyk−1, ∥yk−1∥∥dk−1∥ < µ∥gk∥,
(4.1)

where µ > 0 is a large enough constant. Furthermore, they used θk = gTk dk−1/d
T
k−1yk−1

and

βMHZ+
k =

gTk yk−1

dTk−1yk−1
− tk

∥yk−1∥2

(dTk−1yk−1)2
max{0, gTk dk−1}, (4.2)

as the conjugate parameters. Since the numerical stability is a significant property of nu-
merical algorithms, an optimal parameter for tk in (4.2) is obtained based on an eigenvalue
study and a singular value analysis in [13]. Hence, they discussed on eigenvalue and singular
value of iterate matrix

Qk = I − sk−1

sTk−1yk−1

(
yk−1 − t

∥yk−1∥2

sTk−1yk−1
sk−1

)T

+
yTk−1sk−1

sTk−1yk−1
,

and obtained the optimal parameter t∗ as follows:

t∗ =
2

γk

√
γk − 1,

in which

γk =
(∥sk−1∥∥yk−1∥

sTk−1yk−1

)2

. (4.3)

However, this choice for t∗ is suggested in the sense that the condition number of the
iterate matrix could arrive at its minimum, which can be regarded as the inheritance and
development of the spectral scaling quasi-Newton equation.
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TTM7 is the modified HS conjugate gradient method for solving unconstrained optimiza-
tion problems which generates the sufficient descent direction at each iterate as well as being
close to the Newton direction. Based on some three-term conjugate gradient methods and
Gram-Schmidt orthogonalization into dk and gk, the search direction is obtained as follows

dk =

{
−gk, gTk yk−1 ≤ 0,

dNHS
k , otherwise

(4.4)

where dNHS
k is an affine combination as follows

dNHS
k = (1− λk)d

HS3
k + λk

( βHS2
k︷ ︸︸ ︷

−gk + βHS
k dk−1 − βHS

k

gTk dk−1

∥gk∥2
gk

)
=

(
−gk + βHS

k dk−1 −
gTk dk−1

dTk−1yk−1
yk−1︸ ︷︷ ︸

dHS3
k

)
+ λk

gTk dk−1

dTk−1yk−1

(
yk−1 −

gTk yk−1

∥gk∥2
gk

)
.

Note that the parameter λk is chosen such that the quasi-Newton condition Bksk−1 = yk−1

holds. Thus, the optimal parameter λ∗
k is given by

λ∗
k =

∥gk∥2
∥yk−1∥2 − tsTk−1yk−1

∥gk∥2∥yk−1∥2 − (gTk yk−1)2
, k ∈ K,

0, k ∈ N\K,

(4.5)

where the index set K is

K =
{
k | k ∈ N, 0 <

gTk yk−1

∥gk∥∥yk−1∥
≤ 1− η

}
.

In the numerical experiments, the parameter η is chosen 10−6 and the parameter t has
different values t ∈ {0.1k}10k=1. The optimal choice for this parameter is t = 0.5, which
performs slightly better than others.

5 Numerical Experiments

In this section, we report the numerical results on a set of 142 nonlinear unconstrained
optimization test problems from the CUTEst collection [8], which are given in Table 1. The
initial points are standard ones proposed in CUTEst. All algorithms are implemented in
Matlab 2015 programming environment on a 2.3Hz Intel core i3 processor laptop and 4GB
of RAM with the double precision data type in Linux operations system. The stop criteria
for all algorithms is ∥gk∥∞ ≤ 10−6 or the total number of iterates exceeds 10000.

We use the performance profiles proposed by Dolan & Moré [12] to display the per-
formance of each algorithm where Ni, Nf and Ct are the total number of iterates, the total
number of function evaluations and the times in second, respectively. In Dolan & Moré
performance profile, the top curve corresponds to the method that solved most test prob-
lems in a time that was within a given factor of the best time. The percentage of the test
problems for which a method is the fastest is given on the left axis of the plot. The right
side of the plot gives the percentage of the test problems that were successfully solved by
these algorithms, which is a measure of the robustness of an algorithm.
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Figures 1–3 show the numerical performance of the three-term conjugate gradient algo-
rithms. As shown by Figure 1, TTM5 outperforms respect to other methods in terms of the
total number of iterates. Figure 2 shows that TTM2, TTM5 and TTM7 are robust than others
in terms of the total number of function evaluations. Finally, from Figure 3, we see that
TTM5 has acceptable numerical results for the times in second about 31%. As a result, TTM5
has excellent performance in comparison with the other algorithms.
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Figure 1: A comparison among TTM1, TTM2, TTM3, TTM4, TTM5, TTM6 and TTM7 by perfor-
mance profiles for number of iterates (Ni).
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Figure 2: A comparison among TTM1, TTM2, TTM3, TTM4, TTM5, TTM6 and TTM7 by perfor-
mance profiles for number of function evaluations (Nf).
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Table 1: Test problems (name & dimensions); Collected by CUTEst

name dimension name dimension name dimension
3PK 30 ALLINIT 4 ALLINITU 4
ARGLINA 500 ARGLINB 200 ARWHEAD 5000
BARD 3 BDQRTIC 100 BEALE 2
BIGGS6 6 BOX2 3 BOX3 3
BRKMCC 2 BROWNDEN 4 BROYDN3D 5000
BROYDN7D 500 BROYDNBD 5000 BRYBND 500
CHAINWOO 1000 CHNROSNB 50 CLIFF 2
COSINE 1000 CRAGGLVY 1000 CUBE 2
CUBENE 2 DALLASM 196 DALLASS 46
DECONVU 63 DENSCHNA 2 DENSCHNB 2
DENSCHNC 2 DENSCHNF 2 DIXMAANA 3000
DIXMAANB 3000 DIXMAANC 3000 DIXMAAND 3000
DIXMAANE 3000 DIXMAANF 3000 DIXMAANG 3000
DIXMAANH 3000 DIXMAANI 3000 DIXMAANJ 3000
DIXMAANK 3000 DIXMAANL 3000 DIXON3DQ 1000
DJTL 2 DQDRTIC 10000 DQRTIC 5000
EDENSCH 100 EG2 1000 EG3 10001
EIGENA 2550 ENGVAL1 100 ENGVAL2 3
ERRINROS 50 EXPFIT 2 EXTROSNB 1000
FLETCBV2 5000 FLETCHCR 500 FMINSRF2 5625
FMINSURF 5625 FREUROTH 2 GENHUMPS 5000
GENROSE 500 GROWTHLS 3 GULF 3
HAIRY 2 HATFLDD 3 HATFLDF 3
HATFLDFL 3 HEART6LS 6 HEART8LS 8
HELIX 3 HILBERTA 10 HILBERTB 10
HIMMELBA 2 HIMMELBC 2 HIMMELBF 4
HIMMELBG 2 HIMMELBH 2 HUMPS 2
JENSMP 2 JIMACK 3549 KOWOSB 4
LIARWHD 5000 LOGHAIRY 2 MANCINO 100
MATRIX2 6 METHANOL 12005 MOREBV 5000
MSQRTALS 1024 MSQRTBLS 1024 NINE5D 10733
NONCVXU2 1000 NONDIA 5000 NONDQUAR 5000
OSCIPANE 5000 OSCIPATH 10 OSLBQP 8
PALMER1C 8 PALMER1D 7 PALMER2C 8
PALMER3C 8 PALMER4C 8 PALMER5C 6
PALMER6C 8 PALMER7C 8 PALMER8A 6
PALMER8C 8 PENALTY1 200 PENALTY2 50
POWELLBC 1000 POWELLSG 5000 QR3DLS 610
QUARTC 5000 ROSENBR 2 S308 2
SCHMVETT 1000 SENSORS 100 SINEVAL 2
SINVALE 2 SISSER 2 SNAIL 2
SPARSINE 5000 SPARSQUR 10000 SPMSRTLS 4999
SROSENBR 10000 TAME 2 TESTQUAD 5000
TOINTGOR 50 TOINTGSS 5000 TOINTPSP 50
TOINTQOR 50 TQUARTIC 5000 TRIDIA 5000
VAREIGVL 1000 VIBRBEAM 8 WATSON 12
WEEDS 3 WOODS 1000 YFITU 3
ZANGWIL2 2

6 Conclusion

In this paper, we compare several versions of three-term conjugate gradient methods to
solve the unconstrained optimization problems. The selected three-term conjugate gradient
methods satisfy the descent condition, the sufficient descent condition and the Dai–Liao con-
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Figure 3: A comparison among TTM1, TTM2, TTM3, TTM4, TTM5, TTM6 and TTM7 by perfor-
mance profiles of CPU times (Ct).

jugacy condition. To review these methods, we use the nonlinear unconstrained optimization
test problems on the CUTEst collection.
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