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the parameters which used genetic optimization as well as gradient-based optimization al-
gorithm [10]. Rumyantsev et al. presented a control law of linear feedback regulator to
optimize the information constrained. Besides, this approach can apply to the real problem
successfully [29]. Kabamba et al. designed a step tracking controller and simplified the
technical process for the quasi-linear control theory [14].

However, some flaws can be seen in the proposed methods. Firstly, the counting process
is a little complicated and difficult to compute. Secondly, the approaches mentioned above
are not flexible and have a little degrees of freedom. Thirdly, the closed-loop system ob-
tained by this method is usually nonlinear, and it can also be stabilized by the Lyapunov
function. However, in this study, the proposed approach can stabilize the quasi-linear system
effectively with proportional-plus-derivative state feedback.

It is well known that PD feedback is a widely used approach in controller designing.
In particularly, proportional feedback can control part of the system in advance before the
deviation is formed. However, excessive ones will weaken the anti-interference performance
of the system. So designing an appropriate PD feedback controller is necessary. About
the proportional-plus-derivative feedback, there has been a lot of research in the past few
years. Ren et al. presented a proportional plus derivative feedback based on the problem
of descriptor systems with uncertainties and designed a PD feedback controller to deal with
it [26]. Ren and Zhang designed a PD controller to improve the stability of the closed-loop
system [27]. Aktas et al. presented a PD feedback controller to improve performance better
than nominal fixed gain controllers [1]. Also, there are other scholars have presented the
PD feedback to kinds of systems and achieve the desired purpose [22,23,28].

This paper comes up with a parametric control approach for a quasi-linear system by
PD feedback controller to stabilize a system. Compared with other methods for quasi-
linear systems, this paper proposed an approach with higher freedom degrees of arbitrary
parameters. The PD feedback controller with a parameterized form will be less computa-
tional complexity. It is more practical and advanced. The theoretical basis of the proposed
method is the solution of a group of generalized Sylvester matrix equation [13, 24]. There
are several advantages to this approach. First of all, the parametric approach can simplify
the computational calculation process. Secondly, according to the parametric approach, its
dynamic performance is determined by eigenvalues and eigenvectors. Because that a closed-
loop system can be transformed into a linear constant one [5]. Thirdly, it can provide more
degrees of freedom when control is achieved [6].

The present work is set out as follows. In Section 2 some necessary mathematical pre-
liminaries and problem statement are given. The main results are provided in Section 3.
Finally, a practical example is worked out in Section 4 to illustrate the effectiveness of the
proposed approach.

2 Problem Description and Preliminary Results

2.1 Problem statement

According to the actual system mentioned above, we propose a class of quasi-linear system
in this paper as following form

ẋ = A(α, x)x+B(α, x)u, (2.1)

where x ∈ Rn, u ∈ Rr are the state vector and control vector; α is a time-variant parameter
vector which staisfies the following condition

α(t) =
[
α1(t) α2(t) . . . αl(t)

]T ∈ Ω ⊂ Rl, t ≥ 0, (2.2)
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where Ω is a compact set. The values of the system parameter α = α(t) ∈ Rl are within
some compact set Ω, α(t) ∈ Ω ⊂ Rl. A(α, x) ∈ Rn×n and B(α, x) ∈ Rr×n are system
coefficient matrices, we assume the following assumptions are satified.

Assumption 2.1. B(α, x) is consistently related to x and α(t) ∈ Ω.

Assumption 2.2. rank
[
sI −A(α, x) B(α, x)

]
= n, ∀s ∈ C.

In order to achieve the purpose of the design to system (2.1), we propose a PD controller
in the following form

u = K(α, x)x− L(α, x)ẋ, (2.3)

where K(α, x) is the proportional feedback gain matrix, and L(α, x) ∈ Rr×n is the derivative
feedback gain matrix

With the controller (2.3) applied to system (2.1), the closed-loop system is obtained as
following form

Ec(α, x)ẋ = Ac(α, x)x, (2.4)

with

Ec(α, x) = I +B(α, x)L(α, x), (2.5)

Ac(α, x) = A(α, x) +B(α, x)K(α, x). (2.6)

Problem 2.1. Given the system (2.1) satisfying Assumptions 2.1-2.2, and an arbitrarily
chosen matrix F ∈ Rn×n, find a right prime decomposition matrix V (α, x) ∈ Rn×n, and a
gain matrix K(α, x) ∈ Rr×n to satisfy the following equation

Ac(α, x)V (α, x) = Ec(α, x)V (α, x)F. (2.7)

Remark 2.2. Let Γ = {λi, i = 1, . . . , n′, 1 ≤ n′ ≤ n} be the set of eigenvalues of matrix pair
(Ec(α, x), Ac(α, x)), which is symmetric about the real axis, and the algebraic and geometric
multiplicity of λi are denoted by ai and bi respectively. Then in the Jordan form of matrix
pair (Ec(α, x), Ac(α, x)), corresponding with λi, there bi sub-Jordan blocks of orders denoted
by pij , j = 1, 2, . . . , bi, and the following relations hold

pi1 + pi2 + · · ·+ piqi = ai, a1 + a2 + · · ·+ an′ = n.

Denote the right eigenvectors with respect to λi by vkij ∈ Cn, k = 1, 2, . . . , pij , j =
1, 2, . . . , bi. Then, by the definition we have

(Ac(α, x)− λiEc(α, x))v
k
ij = Ec(α, x)v

k−1
ij , v0ij = 0. (2.8)

2.2 Preliminary results

Consider a right coprime factorization (RCF) as follows

[sI −A(α, x)]N(α, x, s) = B(α, x)D(α, x, s), (2.9)

among them, N(α, x, s) ∈ Rn×r[s] and D(α, x, s) ∈ Rr×r[s] are polynomial matrices. Denote
N(α, x, s) =

[
nij(s)

]
n×r

and D(α, x, s) =
[
dij(s)

]
n×r

, and
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
ω1 = max {deg (nij(s)), i = 1, 2, . . . , n, j = 1, 2, . . . , r},
ω2 = max {deg (dij(s)), i = 1, 2, . . . , r, j = 1, 2, . . . , r},
ω = max {ω1, ω2},

(2.10)

where deg denotes the degree of the polynomial matrix. Then, N(α, x, s) and D(α, x, s) can
be written as 

N(α, x, s) =

ω∑
i=0

Ni(α, x)s
i,

D(α, x, s) =

ω∑
i=0

Di(α, x)s
i.

. (2.11)

3 Solution to Problem 2.1

3.1 Case of F arbitrary

We now are ready to deal with the Problem 2.1. First, we propose the following theorem.

Theorem 3.1. Let N(α, x, s) and D(α, x, s) be polynomial matrices which are satisfying
RCF (2.9), then,

1. Problem 2.1 has a solution if and only if there is a matrix Zc ∈ Rr×n satisfying

det V (α, x) ̸= 0, (3.1)

where

V (α, x) =

ω∑
i=0

NiZcF
i. (3.2)

2. For maintaining the regularity of closed-loop system, we choose a matrix L(α, x) sat-
isfying

det Ec(α, x) ̸= 0. (3.3)

3. When the conditions mentioned above are satisfied, K(α, x) can be obtained as

K(α, x) = (W (α, x) + L(α, x)V (α, x)F )V −1(α, x), (3.4)

where

W (α, x) =

ω∑
i=0

DiZcF, (3.5)

and Zc ∈ Rr×n is a group of arbitrary parameter matrix that represent the degrees of
freedom in the solutions.
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Proof. Taking V (α, x),K(α, x) and L(α, x) into Equation (2.7), we obtain

A(α, x)V (α, x) +B(α, x)Wc(α, x) = V (α, x)F, (3.6)

with

Wc(α, x) = K(α, x)V (α, x)− L(α, x)V (α, x)F. (3.7)

Using Equation (2.11), we have

(sI −A)N(α, s) =

ω∑
i=0

Nis
i+1 −

ω∑
i=0

ANis
i

= Nωs
ω+1 +

ω∑
i=1

Ni+1s
i −

ω∑
i=1

ANis
i −AN0

= Nωs
ω+1 +

ω∑
i=1

(Ni−1 −ANi)s
i −AN0

and

BD(α, s) =

ω∑
i=0

B0Dis
i =

ω∑
i=1

BDis
i +BD0.

We possess relations following

AN0 = −BD0, Nω = 0, (3.8)

and

BDi = Ni−1 −ANi, i = 1, 2, . . . , ω. (3.9)

So, we can obtain

V F −AV =

ω∑
i=0

NiZcF
i+1 −A

ω∑
i=1

ANiZcF
i

= NωZcF
ω+1 +

ω∑
i=1

Ni−1ZcF
i −AN0Z

= NωZcF
ω+1 +

ω∑
i=1

(Ni−1 −ANi)ZcF
i −AN0Zc

= 0 +

ω∑
i=1

BDiZcF
i +BD0Zc

= B

ω∑
i=0

DiZcF
i

= BW.

According to the above deduction, we can obtain the expressions of V (α, x) andW (α, x), and
we choose an arbitrary diagonal F and a derivative feedback gain matrix L(α, x) based on
constraint condition. So, the generally completely parameterized expression of PD feedback
gain matrices are given in Equation (3.4).

With the above description, the proof of Theorem 3.1 is completed.
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3.2 Case of F diagonal

In practical systems, F is usually chosen to be a diagonal one as follows

F = diag {λ1, λ2, . . . , λn} , (3.10)

where λi ∈ C−, i = 1, 2, . . . , n are a set of self-conjugate complex poles. In this situation, a
class of general solutions of generalized Sylvester matrix Equation (3.5) can be written as{

V (α, x) =
[
v1(α, x) v2(α, x) . . . vn(α, x)

]
vi(α, x) = N(α, s, λi)z

c
i , i = 1, 2, . . . , n

(3.11)

and {
Wc(α, x) =

[
ωc
1(α, x) ωc

2(α, x) . . . ωc
n(α, x)

]
ωc
i (α, x) = D(α, s, λi)z

c
i , i = 1, 2, . . . , n

. (3.12)

Therefore, in this case, we possess the following corollary to deal with Problem 2.1.

Corollary 3.2. Let N(s) and D(s) be a pair of polynomial matrices satisfying RCF (2.9),
then,

1. Problem 2.1 possesses a solution if and only if there exists a set of parameter vector
zci ∈ Rr, i = 1, 2, . . . , n, such that

det V (α, s, λi, z
c
i , i = 1, 2, . . . , n) ̸= 0. (3.13)

2. In order to satisfy the regularity of closed-loop system, we choose a matrix K1(α, x) to
satisfy

det Ec(α, x) ̸= 0. (3.14)

3. When it is meeting the conditions, we can calculate the proportional feedback gain
K(α, x) in Equation (3.3).

Proof. According to Theorem 3.1, when the matrix F is diagonal as the one shown in
Equation (3.6), the matrices V (α, x) and Wc(α, x) can be given as Equations (3.7) and
(3.8), the Corollary 3.2 can be proven.

3.3 Robust criteria

In order to improve the robust stability of the calculated results, we optimize it to obtain
more accurate results. The robust optimization satisifies the following criteria

ϕ =∥ η ∥2, (3.15)

with

η = (η1, η2, . . . , ηn), (3.16)

ηi =
∥ vi ∥2∥ pi ∥2
∥ pTi vi ∥2

. (3.17)

The vectors vi and pi are column vectors of V ∈ Rn×n and P ∈ Rn×n, which are desired
closed-loop right and left eigenvectors in the allowable subspaces. And they satisfy the
constraint as follows

PTV (α, x) = I. (3.18)
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3.4 General procedure

We can propose a parametrized form of solution of PD feedback controller based on Theorems
3.1 and 3.2.

Step 1 Based on Theorem 3.1 or Corollary 3.2, we design a parameterized form of PD
feedback controller to a type of quasi-linear system. Choose an appropriate diagonal matrix
F which has desired eigenstructure, and usually a diagonal form. That is, all eigenvalues of
F are on the left-half s-plane [12].

λi(F ) ∈ C−, i = 1, 2, . . . , n. (3.19)

Step 2 According to (2.11) we can obtain the following solution{
N(s) = adj(sI −A(α, x))B(α, x),

D(s) = det(sI −A(α, x))Ir.
(3.20)

Step 3 Based on the norm illustrated above, we use Function fimnsearch to finish
simulation and find a group of Z ′

c ∈ Rr×n which can minimize the value of ϕ in Equation
(3.15). Considering the effect of non-optimized system dynamics and external disturbance
in the closed-loop system, a disturbance is presented as following form

Ẋ = ĀcX + Ḡw(t). (3.21)

Step 4We choose arbitrary matrices Zc and L which can make Ec is constant. According
to V (α, x) and W (α, x) are shown in Equations (3.2) and (3.5). Further we can calculate
the proportional feedback gain K as Equation (3.4).

4 Example — A Two-Link Robot System

4.1 System description

2q

1q

1 1,m l

2 2,m l

Endpoint

Revolute Shoulder 

Joint

  Revolute 

Elbow Joint

x

y

Figure 1: two-link robot with rigid links of machine model

Consider a two-link robot with rigid links as shown in Figure 1 [7], and the mathematical
model is given as

M(q)q̈ + C(q, q̇)q̇ + ξ(q, q̇) = τ, (4.1)

where q and τ are respectively the coordinate vector and the control vector, both of dimen-
sion n. The control vector τ is in fact composed of the torques produced by the motors at the
joint. M(q) is the n× n symmetric and positive definite robot inertia matrix, C(q, q̇) com-
prises the Coriolis and centrifugal effects, and ξ(q, q̇) is some uniformly bounded piece-wisely
continuous vector function.
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The detailed derivation of the dynamics model can be found in [30] and [32]. As a result,
ξ(q, q̇) = 0. Then, let

x =

[
q
q̇

]
, (4.2)

we can obtain the following system

Eẋ = Ax+Bτ, (4.3)

with

E =

[
I 0
0 M(q)

]
, A =

[
0 I
0 C(q, q̇)

]
, B =

[
0
I

]
,

with

M(q) =

[
M11 M12

M21 M22

]
, C(q, q̇) = −m2l1lc2sin q2

[
q̇2 q̇1 + q̇2
q̇1 0

]
, (4.4)

where 
M11 = m1l

2
c1 +

m1l
2
1+m2l

2
2

12 +m2(l
2
1 + l2c2 + 2l1lc2cos q2)

M12 = M21 = m2(l
2
c2 + l1lc2cos q2) +

m2l
2
2

12

M22 = m2l
2
c2 +

m2l
2
2

12

. (4.5)

Consider Equation (3.21), to further illustrate the robust stability of optimization, we
add a disturbance as following

Ḡ =
[
0 0 2 0

]T
, (4.6)

w(t) =

{
1, t ∈ [8, 10]

0, else
. (4.7)

4.2 Non-optimized solutions

Let τ = Kx− Lẋ, we can obtain the following system

ẋ = Ax+B(Kx− Lẋ), (4.8)

According to RCF (2.9), there are some solutions of mentioned system as

N(s) =

[
1 0 s 0
0 1 0 s

]T
, (4.9)

D(s) =

[
4s2cos q2 +

20
3 s2 + 2sq̇2sin q2 2s2cos q2 +

4
3s

2 + 2ssin q2(q̇1 + q̇2)
2s2cos q2 +

4
3s

2 + 2sq̇1sin q2
4
3s

2

]
. (4.10)

Choose

F = diag{−1,−2,−3,−4}. (4.11)

and

Zc =

[
1 1 1 1
0 2 1 1

]
, (4.12)
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according to Equation (3.2), V (α, x) can be calculated as

V (α, x) =


1 1 1 1
0 2 1 1
−1 −2 −3 −4
0 −4 −3 −4

 , (4.13)

further, based on Equation (3.7), we possess

W (α, x) =

[
4cos q2 +

20
3 − 2q̇2sin q2 32cos q2 +

112
3 − 4q̇2sin q2 − 8sin q2(q̇1 + q̇2)

2cos q2 +
20
3 − 2q̇1sin q2 8cos q2 + 16− 4q̇1sin q2

54cos q2 + 72− 6q̇2sin q2 − 6sin q2(q̇1 + q̇2) 96cos q2+128−8q̇2sin q2−8sin q2(q̇1+q̇2)
18cos q2 + 24− 6q̇1sin q2 32cos q2 +

128
3 − 8q̇1sin q2

]
.

(4.14)

According to Equation (3.3), let

L(α, x) =

[
0 0 −4cos q2 − 17

3 −2cos q2 − 4
3

0 0 −2cos q2 − 4
3 − 1

3

]
, (4.15)

then, based on Equation (3.4), we can obtain the matrix K(α, x) as

K(α, x) =

[
−2 −14 2q̇2sin q2 + 1 2sin q2(q̇1 + q̇2)− 8
4 −16 2q̇1sin q2 + 4 −11

]
. (4.16)

Under the controllers designed above, the closed-loop system can be obtained as

ẋ =


0 0 1 0
0 0 0 1
2 −14 1 −8
4 −16 4 −11

x. (4.17)

4.3 Robust Solutions

This subsection is concerned with robust control design on the basic parametric eigenstruc-
ture assignment. The robustness indices as cost functions expressed in the frequency domain.
The optimization is achieved via the gradient calculation of the robustness indices.

The initial selections of parameters Zc, N(s), D(s), and F are chosen as the same as
Section 4.2. According to Equation (3.15), we obtain that the initial value of ϕ is 31.3741.
Many scholars have proposed various methods to solve the robust optimization, such as
fminsearch Function and distributionally robust optimization [17–19]. In the paper, we
utilize Particle Swarm Optimization (PSO) to minimize the index ϕ in Equation (3.15).
Based on the proposed approach, we choose the learning factors c1 = c2 = 2, the maximum
number of iterations M = 300, the dimension of search space D = 1, the number of ini-
tialization group individuals N = 30, the inertia weight minimum wmin = −0.5, and the
inertia weight max wmax = 0.5. Finally, through the optimization, the minimum value ϕ′

is obtained as 7.2457. Further, we can cacaulate

Z ′
c =

[
−0.0063 0.7769 1.7635 0.4562
0.0014 3.3994 −0.4030 1.9962

]
. (4.18)
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Therefore, according to Equations (3.2), (3.4) and (3.18), we can obtain

W ′(α, x) =

[
63q̇2 sin q2

5000 − 7 sin q2(q̇1+q̇2)
2500 − 14 cos q2

625 − 301
7500

63q̇1 sin q2
5000 − 63q̇2 cos q2

5000 − 49
7500

24766 cos q2
625 − 16997 sin q2(q̇1+q̇2)

1250 − 7769q̇2 sin q2
2500 + 72839

1875
7769 cos q2

1250 − 7769q̇1 sin q2
2500 + 13921

625

7029 cos q2
125 + 1209 sin q2(q̇1+q̇2)

500 − 10581 cos q2 sin q2
1000 + 50487

500
31743 cos q2

1000 − 10581q̇1 sin q2
1000 + 8163

500

58172 cos q2
625 + 9981 sin q2(q̇1+q̇2)

625 − 2281q̇2 sin q2
625 + 171088

1875
9124 cos q2

625 − 2281q̇1 sin q2
625 + 98096

1875

]
,

V ′(α, x) =


−0.0063 0.7769 1.7635 0.4562
0.0014 3.3994 −0.4030 1.9962
0.0063 −1.5538 −5.2905 −1.8248
−0.0014 −6.7988 1.2090 −7.9848

 ,

T (α, x) =


−226.5877 0.1240 −0.2695 −0.1067
51.7840 0.5600 0.0616 −0.4766
−75.5292 0.0307 −0.2695 −0.0537
17.2612 0.1401 0.0616 0.2382

 ,

K ′(α, x) =

[
−3.2423 −1.0873 −4.0973 −0.4348
−1.0603 −7.7577 −0.4285 −5.9027

]
.

The derivative feedback matrix L(α, x) is the same as Equation (4.15). Based on Equa-
tion (2.6), the closed-loop system is obtained as

ẋ =


0 0 1 0
0 0 0 1

−3.2423 −1.0873 −4.0973 −0.4348
−1.0603 −7.7577 −0.4258 −5.9027

x. (4.19)

Remark 4.1. PID controller has been attracting considerable research attention, e.g. [16]
and [20]. PID controller is chosen as following form

u(t) = kP e(t) + kI

∫ t

0

e(s)ds+ kD ė(t), (4.20)

where e(t) = q(t)− qd is the position error, qd ∈ R denotes the desired constant, kP , kI , kD
are the proportional, integral and derivative gains of the controller. The main purpose is to
determine the control gain k = [kP kI kD]T under optimization. Applying the PID controller
(4.20), the original system (4.1) can be rewritten as

ẋ1(t) = x2(t),

ẋ2(t) =
1

M(q)
u(t)− C(q, q̇)

M(q)
x2(t),

ẋ3(t) = x1(t)− qd.

(4.21)

where x1(t) = q(t), x2(t) = q̇(t), u(t) = τ(t). Then, we aim to find a control gain k to
minimize cost function

J(k) =

∫ 2

0

[x1(t)− qd]
2dt. (4.22)
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The principle of the proposed approach and PID method is to transform the controller
design problem into the parameters selection problem. We can see that there is an integral
gain kI in PID control which can eliminate the steady state error. However, comparing with
PID controller design, the proposed method is much easier to calculate.

4.4 Simulation Analysis

In this subsection, the results of numerical simulations are presented to compare the perfor-
mance of non-optimized and optimized solutions. The comparison of the time responses of
states x1 − x4 between the non-optimized and optimized solutions with the disturbance are
shown in Figures 2-5. From these figures we clearly see that the closed-loop system is stable
and robust, furthermore, the optimized solutions leads to a better transient performance
than the non-optimized.

The control of signals of the closed-loop system are shown in Figures 6 and 7. We can
clearly see that the optimized solution leads to better transient performances at the cost of
less control energy and magnitude of the control signals.
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Figure 2: Comparison of the state variable x1 between the non-optimized and optimized
solutions
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Figure 3: Comparison of the state variable u2 between the non-optimized and optimized
solutions
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Figure 4: Comparison of the state variable x3 between the non-optimized and optimized
solutions
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Figure 5: Comparison of the state variable x4 between the non-optimized and optimized
solutions
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Figure 6: Comparison of the input variable u1 between the non-optimized and optimized
solutions

5 Conclusion

The paper designs a proportional plus derivative feedback controller for quasi-linear systems
by parameterized approach and gives a general parametric form of the right eigenvector
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Figure 7: Comparison of the input variable x2 between the non-optimized and optimized
solutions

matrix. It is a significant result of the proposed approach that the closed-loop system can
be converted into a linear constant one with desired eigenstructure. The proposed approach
can simplify the design process for the complicated quasi-linear systems. An example of
a two-link robot system is developed to show the proposed approach can effectively solve
the positions and velocities control problem. The next major work is to find the pulse
elimination conditions to improve the performance of the system.
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