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Abstract: In this paper, a derivative-free method is developed to solve a large-scale nonlinear system
of equations. The method is an extension of a descent Liu-Storey conjugate gradient method for solving
unconstrained optimization problems. Under mild conditions, the global convergence of the proposed method
is established with a nonmonotone line search. The method is suitable to large-scale problems for the low
memory requirement. It is shown from the numerical results that the proposed method is effective in practical
computation.

Key words: Liu-Storey method, onlinear system of equations, nonmonotone line search, global convergence

Mathematics Subject Classification: 65H10, 90C30

Introduction

In this paper, we consider the nonlinear system of equations

g(z) =0, (1.1)

where g : R® — R"™ is a continuously differentiable nonlinear mapping. Given an initial point
xg, an iterative scheme for solving (1.1) generally generates a sequence of iterates {xy} by

Tht1 = Tp + agdy, k=0,1,..., (1.2)

where the steplength «y is determined by a line search and dy, is a search direction. Among
numerous algorithms for solving (1.1), the most popular schemes are based on Newton’s
method or quasi-Newton methods [1,2,4,11,15,16,19,24,32,33]. These methods are attractive
because of their locally fast convergence rates. However, they are typically unsuitable for
large-scale problems because they need to solve a linear system of equations at each iteration
using the Jacobian matrix or an approximation of it.

Recently, some spectral gradient methods have been developed to solve problem (1.1),
see [5,7,8,29], etc. La Cruz and Raydan [8] introduced the Spectral Algorithm for Nonlinear
Equations (SANE) and established the global convergence with a nonmonotone line search,
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which is a modification of the Grippo-Lampariello-Lucidi (GLL) [12] line search. If f(x)
is a merit function such that f(x) = 0 if and only if ||g(x)|| = 0, then, a simplified GLL
condition can be rewritten as follows:

< » T
flzr + agdy) < Ogjgmrirrll?;c{,Mfl} flxe—j) + 0axV f(zk)" dg,

where M is a positive integer, 0 < § < 1 is a constant and V f(xy) denotes the gradient of f
at xp. If we set M = 1, then the nonmonotone line search above will reduce to the standard
Armijo line search.

La Cruz, Martinez and Raydan [7] proposed the Derivative-Free SANE (DF-SANE)
method to solve equation (1.1). They analyzed the global convergence of the method with
a nonmonotone line search, which is based on the GLL [12] and Li-Fukushima (LF) [16]
schemes. The LF line search requires the steplength ay to satisfy

lg(zx + ardi) | = llg(zn)ll < —oraglldill* + exllg(z)ll, (1.3)

where || - || denotes the Euclidean norm, o7 is a positive constant and {¢;} is a positive
sequence satisfying

Zek < 0. (1.4)
k=0

It is clear that as aj — 0T, the left-hand side of (1.3) tends to zero, while the right-hand
side goes to the positive constant €||g(zy)||. Therefore, the line search is well defined.

Nonlinear conjugate gradient methods are welcome for unconstrained optimization prob-
lems for their low memory requirements and strong local and global convergence proper-
ties. Recently, some sufficient descent conjugate gradient methods were proposed, e.g.,
[13,17,20, 21, 26,27, 30,31]. In the survey paper, Narushima and Yabe [20] gave a com-
prehensive review of the development of different versions of descent conjugate gradient
methods, with special attention given to their global convergence properties. Readers can
refer to the paper for more details. Very recently, there are several studies of conjugate
gradient methods for solving large-scale nonlinear system of equations [6,25]. Yu [25] ex-
tended the Polak-Ribiere-Polyak (PRP) [22,23] method to solve problem (1.1). Based on
the three-term conjugate gradient method by Zhang, Zhou and Li [30], Cheng, Xiao and
Hu [6] developed a family of derivative-free methods for solving large-scale nonlinear system
of equations. Inspired by these studies, in this paper, we attempt to extend the sufficient
descent Liu-Storey method proposed by Li and Feng [17] to solve problem (1.1).

The paper is organized as follows. In the next section, we propose the method. In Section
3, we establish the global convergence of the proposed algorithm. Some numerical results
are reported to test the efficiency of the method in the last section.

Throughout the paper, || - || denotes the Euclidean norm, J(z) denotes the Jacobian
matrix of g(z), i.e., J(z) = Vg(z)T € R"*" N denotes the set of all nonnegative integers,
ie,N=1{0,1,2,..}.

Algorithm

In this section, we first recall the nonlinear conjugate gradient method for solving the fol-
lowing unconstrained optimization problem

min f(z), xe€R", (2.1)
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where f : R™ — R is a continuously differentiable function and its gradient V f(z) is avail-
able. A nonlinear conjugate gradient method always generates a sequence {xy} by

Tk+1 :xk+akdka k:031327-"a (22)

where the steplength oy, is determined by a line search and the search direction dj, is defined
by

o = { —Vf(:cZ) + Brdp_1, if k>1. (2.3)

Here, (i is the conjugate gradient update parameter. Different choices for the scalar S
correspond to different conjugate gradient methods.

Recently, based on the Liu-Storey method [18], Li and Feng [17] proposed a sufficient
descent conjugate gradient method (MLS method), in which the scalar 8 is defined by

VI (@e)" (Vf(xe) = V(@) IV (@r) = VI @e )PV () dya

/BMLS _
F Vf(xp—1)Tdr—1 (Vf(xgp—1)Tdr—1)?

. (24)

where t > 1/4 is a constant. They proved that the method can generate sufficient descent
directions for the objective function and established the global convergence with the strong
Wolfe line search. The reported numerical results showed that the MLS method is efficient
for the unconstrained optimization problems in the CUTEr library [3].

Now, we attempt to extend the MLS method [17] to solve nonlinear system of equations.
If g(x) is the gradient of f(x), then equation g(x) = 0 is the first order necessary optimality
condition of unconstrained optimization problem (2.1). Therefore, based on the MLS method
and the GLL [12] and LF [16] nonmonotone line search methods, we design the following
algorithm to solve problem (1.1).

Algorithm 2.1. (Derivative-Free MLS method: DF-MLS method)
Step 0. Given an initial point zg € R™ and a positive integer M. Let 0 < p < 1,

A1, A2, A3 > 0 and 0 < Qupin < Qmae be given positive constants. Select a positive
sequence {7} such that

oo
D g < oo (2.5)
k=0

Set k = 0.
Step 1. Stop if ||g(zk)|| = 0.

Step 2. Compute dj by

_ —9o, if k= 07
d ‘{ g BMSd, i k>, (2:6)

B[l;/ILS:_ ggyk—l _ ||3/k—1||29]{dk—1 (2.7)
gg_ldk—l (g/{_ldk—l)2 ’

where t > % is a constant, gr = g(xx) and yr—1 = gk — gr—1-

Step 3. Choose an initial steplength ag k € [Qmin, Cmaz), and set ay = ag k-
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Step 4. Nonmonotone line search.
If

de 2< . 27)\ 2 d 27>\ 2 d 47)\ 2 2
lotontardl? < max - gtons) P a [dul s~ Ao g -+
(2.8)

then set xp11 = xf + axdy, and goto Step 5.
Else if

lo(s—andl? < e flg(riny)|P- Mo a2 Aoy~ AaoF lgel >+
(2.9)

then set x11 = ), — axdy and goto Step 5.
Else set ap = pay and goto Step 4.

Step 5. Set k =k + 1 and goto Step 1.

Remark. (I) The formula for 5 is derived from (2.4). From the definition of dj, we have
that if g # 0 and gf ,dk—1 # 0 for some k > 1, then

gr dx = =gkl + B g dr—s
T 2T
Ik Yk—1 lyr-1ll"9s dr—1\ ©
= —llgkl? - +1 95 dk—1
gi_1dr—1 (971 dik—1)?

—llgkl*(gi—1dk-1) — (g yr—1)(gk de—1)(ge_1dr—1) — tllye-1]* (9 dr-1)°
(91{71(1}’971)2
= —lgelP(oF sdim1)? + 3o (o di1)® + $2t s | din)* (21O
- (o7 1dh1)?
 tlye-1l*(gf dk-1)*
(95— 1dr—1)?

1
==-1 2
(4t )gk,

where the inequality follows from an upper bound for the second term of the third equa-
tion, which is obtained from u”v < Z(|[ul|? + ||v]|?) with u = \;—%(g{_ldk,l)gk and v =

V2t(gFdy—1)yx—1. Obviously, inequality (2.10) also holds for k = 0. Therefore, the direc-
tion generated at Step 2 will always satisfy

s < (1) Il <0, (2.11)
This means that the scalar B}XILS in (2.7) is well defined as long as gx—1 # 0 for k > 1, since
gt _,di—1 # 0 by (2.11). In this paper, we focus on extending the MLS method [17] to solve
nonlinear system of equations not only because the method is efficient, but also because we
can establish the convergence of the DF-MLS method in a simple way.

(IT) At Step 4, the nonmonotone line search is a modification of the GLL [12] and LF [16]
schemes. Since dj, is not necessarily a descent direction of ||g(x)||? at xx, we determine the
next iteration by two inequalities in the line search step. Noting that n; > 0, (2.8) or (2.9)
will be satisfied when «y, is small enough. Therefore, the algorithm is well defined. For
convenience, we call this algorithm as DF-MLS method.
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Convergence Property

This section is devoted to the global convergence of the DF-MLS method. In the remainder
of this paper, we always assume that the sequence {x} is generated by the DF-MLS method
and the finite termination never occurs, i.e., g # 0 for all £ > 0, which implies that the
generated {z} is an infinite sequence. Moreover, we also assume that the function g satisfies
the following assumptions.

Assumption 3.1.

(i) The level set Q :={z € R™ | |lg(z)|| < +/llg(x0)]|> +n} is bounded, where zo € R" is
an arbitrary initial point, and 7 is a positive constant such that

Z e < 0. (3.1)

(ii) The function g(z) is continuously differentiable on some neighborhood I' of Q2. Hence,
g(x) is Lipschitz continuous on I'. That is, there exists a constant L > 0 such that

lg(@) =gl < Lllz —yl, Vo,yeT. (3:2)
From the definition of ©, it is obvious that, for v1 = +/||g(z0)||2 + 7 > 0,
lg@)| <m, VzeQ. (3.3)

Before we proceed with the convergence analysis, we give some preliminary definitions.
Define Vy = ||g(z0)||? and

Vi = I, VeE=1,2,....
T VI lg(zr—5)|l

Let v(k) € {k — min{k, M — 1}, ...,k} be such that
”g(xv(k))”2 = Vi, Vk=1,2,....

Lemma 3.1. Suppose that {x} is an infinite sequence generated by the DF-MLS method
and Assumption 8.1 holds. Then {zy} C 2.

Proof. Tt follows from the line search step of the algorithm that, for any k£ > 0,

lg(err)lI* < Vi = Aailldill® = A2ailldill* = Asallgrll* + m:

(3.4)
S Vk + Nk -
From the definition of Vj, we have, for any k > 0,
Vis1 = Y
r OSjSmiIIll«%%fl,Mfl} 19(zr41-5)]l
_ NE
- ijﬁnlifl?gfjiw—z}_i_l ”g(xkle*J)H
= max lg(zrr1-5)I1? (3.5)

0<j<min{k,M—1}+1

= max{Vi, [|g(zr+1)|I°}
< Vi + 1.
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Clearly, zg € Q. By (3.4) and (3.5), we have, for all k£ > 0,

lg(@rr)I? < Vi +
SVee1+ M1+ Mk

IN

k

< Vo+z77j
§=0

< llgoll* + .
Thus, k41 € 2, which completes the proof. O

Note that if K > M — 1, then k — M + 1 < v(k) < k, so that limg_, v(k) = co. Then
we have the following lemma.

Lemma 3.2. Suppose that {x} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then

limy, s oo (k) —1l|do(ry—11l = 0,
limy, 00 @y (k) —1 | du(ry 111> = 0, (3.6)
limys 0o k)~ 11| Gu(ky -1l = 0.

Proof. Tt follows from (3.5) that for all k& > 0,
Vb1 < Vie +me < (14 m) Vie + - (3.7)

We get from Lemma 3.3 in [9] that the sequence {V}} is convergent. Moreover, we get from
(3.4) that

Vi = [lg(@om)lI” < Vamy—1 — Ml -1 ldury -1 l* = Xea2 4y 1 [1dugy—1 || (35)
- >‘3O‘12;(k)—1||gv(k)71||2 + No(k)—1-

This inequality implies

/\1043(1@)—1 [ dury -1l + /\2043(k)—1 o)1 1I* + >\3043(k)—1 1go(r)-111%
(3.9)
<Votky=1 — Vi + No()—1-

Taking limits for & — oo, we will obtain (3.6) since the sequence {Vj} is convergent and

Based on the result given by Grippo, Lampariello and Lucidi [12], we get the following
lemma, which shows that the infinite sequence {||g(zx)||} is convergent.

Lemma 3.3. Suppose that {xr} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then the sequence {||g(xk)||} is convergent. Furthermore,

limk-*)oo Ozk”dk” = 0,
limk-*)oo Ozk||dk||2 = 0, (310)
limy 00 k|| gr|| = 0.

Proof. Here and in the sequel we assume that the iteration index k is large enough and k& > j
for a given j > 1. Tt follows from the Assumption 3.1 that ||g(x)|| is uniformly continuous
on the level set Q. Let 5(k) = v(k + M). Note that

1<k—j4+1<vk)—j<k—j+M (3.11)
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since k — M +1 < wv(k) <k and k > j. First, we will prove by induction that, for any given
Jj=1

klggo |25 (k) —j+1 — To)—sll = 0 (3.12)
and
i lg(@ae) ;)| = Hm gz, (3.13)

It follows from (3.6) that limy oo ||7y(k) — Tyk)—1l| = 0. Therefore, (3.12) holds for j =1
since {2y} C {Ty(x)}. Using the uniform continuity of ||g(z)[| on the level set € and the
fact that the sequence {[|g(z,(x))||} is convergent from the proof of Lemma 3.2, we have that
(3.13) is satisfied for j = 1. Assume now that (3.12) and (3.13) hold for a given j . Then
we get from (3.4) that

2

||2 - Alo‘%(k)—j—lHdi(k)—j—IHQ - >\2%(k)—j—1||da(k)—j—1H4

l9(z5x) )11 < lg(2o@ry—j-1))
- As@%(k)—j—l 9w~ 51 1% + thw(ry—j-1-

This implies

Mz alldsw—i—1l? < l9(@u@m—i—)I? = lg@sm)—) I + o) —j—1-

Taking limits for k — oo, it follows from the assumption (3.13) that

kl;r& ||x6(k)—j - xg(k)_j_lﬂ = thHE.IO ag(k)_j_lﬂd@(k)_j_lﬂ =0. (314)

Since ||g(z)] is uniformly continuous on the level set €2, we get from the assumption (3.13)
that

i {lgze)—j-1ll = Lm llga)—;ll = Hm {lg,ull- (3.15)

Hence, (3.12) and (3.13) hold for any given j > 1.
Moreover, for every k,

Tyk) = Tk + (Trgr — Tr) + -+ (Tpe) — Toe)—1)
o(k)—k

= o+ Z (#5(k) 541 — To(k) 5 )-
j=1

(3.16)

Noting from (3.11) for j = k that 1 <w(k) — k < M, we get from (3.12) and (3.16) that

k—o0

Therefore, based on (3.17) and the uniform continuity of ||g(z)||, we conclude that the
sequence {||g(x)||} is convergent and

Jim (lg(zg)l| = lm {lg(z,e)) (3.18)
—00 k—oo
Combining this with (3.4), we get (3.10) and complete the proof. O

The following lemma shows that the sequence of directions {d} is bounded.

Lemma 3.4. Suppose that {x} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. If there exists a constant v > 0 such that

lgxll =,  Vk >0, (3.19)



496 MIN LI

then there exists a constant B > 0 such that

ldell < B, VE>0 (3.20)
and

lim S3"5|dy—[| = 0. (3.21)

k—o0

Proof. From (2.6), (2.11), (3.2), (3.3), (3.10) and (3.19), we have

ldell < llgwll + 185™ldi— |
gty lllde—ll , ,Myx—1]*llgellide—l]

< llgell + dj_
H H ‘g]zﬂ,ldkfﬂ |gg,1dk71‘2 H 1||
N Vory 2 Y ) 2 YY1 G 322
= (4t — 1)72 (4t — 1)244 -1
Aty L 5 326397L )
- 1 1oz Ch-tlldi— 5 1 k-1l dk—1 7| dk-1]]-
Y1+ (4t_1)7204k 1lldk—1]” + (4t—1)274ak k1|17 || dg—1]]

We get from (3.10) that, for any constant b € (0, 1), there exists an index ko such that

32342 L
ﬁoﬁcfludkilng < b, Vk > ko. (323)
Then A 2
t—1
Jaul) < 70+ S b = e Bl (3.24)

where ¢ = 1 + (4t — 1)7?b/(8t%v1) is a constant. For any k > ko we have
ldill < e(1+b+ b + -+ bE7FRF) 4 5oy || < 1%1) + lld |l (3.25)

Therefore, (3.20) holds with B = max{||d1||, |d2]|,- - , |dk, ||, 155 + ld, |l }-
By (3.2), (3.19) and (3.20), we have

lye—11I gk [l dr—1

_1 ||| dp—
|ﬁ£/ILS|Hdk_1|| < ”gk”Hyk 1H|| k 1”

“ g |
|91?—1dk71| ‘gg_ldk71|2 526)
< (AL 326342 L J e
T\ 4t —1)y2 (4t —1)244 ldk—1ll | cr—1lldr—1]"
Combining this with (3.10) gives (3.21). -

The following theorem establishes the global convergence of Algorithm 2.1. It is similar
to the Theorem 1 in reference [7].

Theorem 3.5. Suppose that {xy} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then we have

lim [|gx[| = 0, (3.27)
k—o0
or every limit point x* of {xi} satisfies

9@ I () g(a") = 0. (3.28)



A LIU-STOREY CONJUGATE GRADIENT METHOD 497

Proof. From Lemma 3.3, it follows that limy_ ||gx|| = ¢ > 0. We only need to prove the
case of ¢ > 0. Then, since by (3.10) limg_ o ak|lgx|| = 0, we have limg_, o, o, = 0. It follows
from the line search step of the algorithm that, when k is sufficiently large, p~'oy, satisfies
neither (2.8) nor (2.9). So we have,

1 ”2

= llgwl®
[

agdy)

ardy)

lg(zx +p~

>[lg(ze +p7"

(12
Ogjgnfirrll%iiM—l} Hg(xki])” (3.29)
>~ up 2Rl = Ao 2o el - Aap e laul + e

> = Ap2og|ldrll” — Xep 2o ldi ||t — Asp~2aillgwll?

and
lg(r — o~ ardi)[I” — llgxll?
> — o land)I? — Y
Zllg(xr — p~ crdi) || o< llg(zr—s)ll (3.30)
> = Mp2aqlldil® = Map~?alldi |l — Xsp™?ail|gkll® + mk
> = Aup~2aR[dgll? — Aap~2aR i — Aap~2a? el
Using (3.3) and (3.20), we have
lg(@s + p~ ardi)lI” = llgrll* > —Cai (3.31)
and
lg(@r — p~ ardi)lI” — llgwll* > —Cai, (3.32)
where C' = A\1p 2B? 4+ \op 2 B* + A\3p~ 241,
By (3.31),
“Lard )2 — 2
lg(zx +p OZO/: )I° = llgxl > —Coy. (3.33)
k
By the mean-value theorem and (3.33), there exists a &, € (0,1) such that
2,0719(1‘]@ + fkpilakdk)TJ(l‘k + fkpilakdk)dk > —Cay. (3.34)
Namely,
20" g(@p + &ep Landr) " T (zk + Eep P owdi) (—gi + By P di—1) > —Coay,. (3.35)
Combining this with (3.10) and (3.21) and taking limits in (3.35) give
9(@")T (@) g(a") < 0. (3.36)
Using (3.32) and proceeding in the same way, we obtain
g(z) T J(z*)g(z*) > 0. (3.37)
The last two inequalities imply (3.28). The proof is complete. O

By Theorem 3.5 and the continuity of ||g(x)||, we immediately have the following corol-
lary.

Corollary 3.6. Suppose that {x} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Suppose also that x* is a limit point of {xy} and

y J(x*)y #£0, Vy Ry #0. (3.38)
Then g(z*) = 0.

For example, if a mapping g(«) is uniformly monotone, then its Jacobian matrix J(z)
satisfies yT J(x)y # 0 for all x,y € R",y # 0.
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Numerical Results

In this section, we compare numerical performance of the DF-MLS method with that of
the DF-SANE method [7], the N-DF-SANE method [5] and the DF-CGNE method [25].
The test problems are the unconstrained minimization problems in the CUTEr [3] library.
Letting f be an objective function of such problems the stationary point is a solution of
the equation g(z) = 0, where g is the gradient of f. We used the above four methods to
find the stationary points of the test problems by using only their gradients. We tested 142
problems with dimensions varying from 10 to 10000. We often ran two different versions of
the problems randomly for which the dimensions can be chosen arbitrarily. Since different
methods may converge to different stationary points of the same function, we selected the
available results by using the rule in [14]. Table 1 lists all the numerical results, which
include, for each problem, the name of the problem (Prob), the dimension of the problem
(Dim), the total number of iterations (Iter), the total number of function evaluations (Nfun)
and the CPU time in seconds (Time), respectively. We use the symbol “—” to specify either
of the following two cases:

(a) The number of iterations exceeded 5000.

(b) The number of backtracking iterations at some line search step exceeded 100.

- ———— DF-SANE
R —-—-— DF-CGNE
02 I N-DF-SANE
————  DF-MLS
OO I L 1 1 1 1 1 1 L L L 1 L L L 1 L L L | L L L 1 J T
2 4 6 8 10 12 14 16

Figure 1: Performance profile relative to CPU time

The methods were coded in Fortran and run on a PC with 3.7 GHz CPU processor
and 4 GB RAM and Linux operating system. The code for the DF-SANE method was ob-
tained from professor Raydan’s home page at http://kuainasi.ciens.ucv.ve/mraydan/
mraydan_pub.html. In all these four methods, we stopped the process when

lotwol _, ., , ot (1)

VI Vi

where e, = 107 and e, = 10~%. This termination condition comes from [7].
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P
1.0 -
0.8 L
L _r"__‘_l-’_
}_,__r‘
0.6
0.4
DF-SANE
5 [ DF-CGNE
0. [ N-DF-SANE
DF-MLS
1 1 L ! 1 L ! L | T
10 12 14 16

00
2 4 6 8
Figure 2: Performance profile relative to the number of iterations

T —— ——  DF-SANE
0 H ; —-—-— DF-CGNE
S e N-DF-SANE
/;f ———— DF-MLS

-"" | . . A N =

6 8 10 12 14 16

0.0 Lt
2 4
Figure 3: Performance profile relative to the number of function evaluations
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We used the performance profiles by Dolan and Moré [10] to compare the performance of
these four methods. Figures 1—3 show the performance of the above methods relative to the
CPU time (in seconds), the total numbers of iterations and the total numbers of function
evaluations, respectively. The curves in the figures have the following meanings:

“DF-SANE ” denotes the DF-SANE method [7] with nexp = 2, 0.min = 1070, 0100 =
10°, 0 = 1, Tmin = 0.1, Tynay = 0.5,7 = 1074, M = 10 and 7 = 1980l for all .

“N-DF-SANE” stands for the N-DF-SANE method [5] with 7, = 0.6, 0yni, = 10710,
Tmaz = 10", prin = 0.1, pmaz = 0.5, 7 = 1074 and ¢, = 192 for a1 k.

“DF-MLS” stands for the DF-MLS method. The parameters are specified as follows:
M=10,p=05t=1, A = X = A3 = 107%, apmin = 1079, tnae = 10'° and
N = w for all k. At Step 3, the choice of the initial steplength oy j, is

Umazx, if o> Umax,
Qo =14 O, if o€ [min, Ymaz)s (4.2)
Amin, if o< Qmin,

where

—adrd d) —
o= 975 k7 Zk: g(xk+6 k)) g(xk)7 6210_8. (43)
dy. z €

Suppose that f : R®™ — R is a twice continuously differentiable function and its gradient
Vf(x) = g(x). Consider the following quadratic model

2
P+ td) = a(t) 2 fon) + gl d + S ATV f () (4.4)

If € > 0 is sufficiently small, then we have the following approximate equation

d) —
V2 f(an)dy ~ 2 & glow + edr) ~ glar) (4.5)
€
Then, we get
t2
a(t) =~ flxg) +tgldy + Edgzk (4.6)
and
a0, (t) = gi di, + td] 2. (4.7)
Let gFdy + td} z;, = 0. We get
L (4.8)
N d{zk ' !

Therefore, it is reasonable to determine the initial steplength o by (4.2).

“DF-CGNE” means the DFCGNE method [25] with the same line search as the DF-
MLS method. The original DFCGNE method consists of a search direction dj based
on the PRP method and an approximately monotone line search. Yu [25] also proposed
a modified version of the method, which uses a sufficiently nonmonotone line search.
In order to compare the efficiency of the directions of the DFCGNE and DF-MLS
methods, we used the same line search in practical computation. More precisely, the
DF-CGNE method here means the DF-MLS method with dj replacing M at Step
2 by the PRP parameter
PRP _ Ok Yh—1
9r—19k—1
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In Figure 1, for each method, we plot the fraction P of problems for which the method is
within a factor 7 of the best time. It is shown that the DF-MLS method is the fastest for
about 46% (66 out of 142) of the test problems. From Figure 2, we note that the DF-MLS
method solves 62% (88 out of 142) of the test problems with the least number iterations.
The performance of the DF-MLS method relative to the CPU time and the total number of
iterations is better than that of other methods. However, we also see from Figure 3 that the
DF-MLS method requires more function evaluations than the DF-SANE method. Maybe
this is because that the two algorithms used different line search methods. Moreover, in
the DF-MLS method, the formula for the initial steplength ag ; also needs an additional
function evaluation at each iteration. How to improve the practical efficiency of the DF-MLS
method will be a future topic for us.

Table 1: Comparison of the four derivative-free methods

DF-MLS DF-SANE N-DF-SANE DF-CGNE
Prob Dim Iter/ Nfun/Time Iter/Nfun/Time Iter/Nfun/Time Iter/Nfun/Time
ARGLINA 100 2/5/0 3/3/0.001 3/5/0.001 2/5/0.001
ARGLINA 200 2/5/0.001 3/3/0.001 3/5/0.001 2/5/0.000999
ARGLINB 50 111/2597/0.044994 615/13715/0.18997 3/27/0 100/2478/0.032995
ARGLINB 200 146/4537/0.80888 867/24347/4.3563 3/33/0.006999 39/1209/0.21297
ARGLINC 50 173/4043/0.047993 550/12218/0.14198 3/27/0.001 5/74/0.001
ARGLINC 200 80/2455,0.43693 39/1071/0.19497 3/33/0.006999 121/4160/0.73189
ARWHEAD 100 5/15/0 10/16/0 6/17/0.001 36/81/0.000999
ARWHEAD 1000  4/15/0.001 5/13/0.001 4/15/0.001 52/250,/0.013998
BDQRTIC 500 16/41/0.002 67/131/0.004999 86,/297/0.014998 65/141/0.005999
BDQRTIC 5000 12/35/0.013998 50/110/0.040994 194/1019/0.40494 264/896/0.35795
BOX 100 51/195/0.002 66/198/0.002 309/873/0.006999 63/231/0.002
BOX 1000 70/455/0.032995 1820/7294/0.51692 706/4367/0.34895 285/1490/0.10698
BROWNAL 100 3/15/0.001 3/13/0.001 3/15,/0.001 3/15/0.001
BROWNAL 200 3/15/0.001999 3/13/0.001999 3/15/0.001999 5/19/0.002
BROYDN7D 100 28/57/0.001999 — /=)= 91/183/0.005999 42/85/0.002
BROYDNT7D 1000 25/51/0.014998 —/=/— 68/137/0.044993 —-/=/-
BRYBND 500 19/43/0.001999 20/31/0.002 36/84,/0.004999 76/161/0.007999
BRYBND 10000 15/35/0.036994 22/34/0.034994 26/55/0.079988 34/76/0.079987
CHAINWOO 4000 36/81/0.023997 170/355/0.095986 94/332/0.11198 49/109/0.031994
CHAINWOO 10000 22/51/0.038995 41/67/0.048992 2130/18738/13.534 162/406/0.31395
CHNROSNB 50 —/=/- —-/=/- —/=/- —/=/-
COSINE 1000  —/—/— R )= 111/317/0.025996
COSINE 10000 —-/=/- —/=/— 527/3176/2.5826 —/=/—
CRAGGLVY 500 19/45/0.003999 28/44/0.004999 35/81,/0.008999 82/181/0.020997
CRAGGLVY 5000 22/53/0.053992 31/51/0.050992 28/63/0.073989 84/187/0.16997
CURLY10 100 702/2154/0.015997 —/=/— 435/2610/0.015997 —/=/=
CURLY10 1000 722/1819/0.088987 —/=/— 185/752/0.045993 884/3698/0.18197
CURLY20 100 —/=/= —/=/— 593/3842/0.027996 —/=/—
CURLY20 1000 527/1371/0.11298 —/=/— 182/942/0.080988 3784/20396/1.3248
CURLY30 100 —/=)= —)=)= 809/4720/0.049993  —/—/—
CURLY30 1000 553/1439/0.12398 —/=/— 457/1520/0.15098 —/=/—
DECONVU 61 22/47/0.001 19/23/0 24/51/0 206/844,/0.007999
DIXMAANA 1500  5/11/0.000999 6/8/0.001 5/11/0.001 23/47/0.003999
DIXMAANA 9000 7/17/0.008999 6/8/0.003999 5/11/0.006999 21/46/0.025996
DIXMAANB 300 6/13/0 7/9/0.001 6/13/0.001 144/294/0.004999
DIXMAANB 1500 7/17/0.000999 7/9/0.001 6/13/0.002 32/69/0.008999
DIXMAANC 90 7/17/0 9/13/0.001 7/17/0 50/109/0.001
DIXMAANC 9000 7/17/0.009997 9/13/0.007999 7/17/0.009999 35/77/0.042993
DIXMAAND 90 6/15/0 7/11/0.000999 6/15/0 62/131/0.001
DIXMAAND 3000  5/13/0.002999 7/11/0.003 6/15/0.003999 58/128/0.023997
DIXMAANE 90 19/39/0.000999 22/26/0.001 45/91,/0.000999 25/51,0.001
DIXMAANE 9000 26/55/0.029995 22/26/0.014998 47/95/0.06699 32/68/0.037994
DIXMAANF 3000 13/29/0.005999 17/19/0.003999 25/51,/0.012998 51/108/0.020997

Continued
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DF-MLS DF-SANE N-DF-SANE DF-CGNE
Prob Dim Iter/ Nfun/Time Iter/ Nfun/Time Iter/ Nfun/Time Iter/Nfun/Time
DIXMAANF 9000  13/29/0.015997 17/19/0.010998 25/51/0.039994 50/106/0.071989
DIXMAANG 3000 11/25/0.004999 14/18/0.003 13/29/0.005999 78/167/0.030995
DIXMAANG 9000 11/25/0.013998 14/18/0.008998 13/29/0.017997 32/69/0.037994
DIXMAANH 90 8/19/0 9/13/0.001 9/21/0 51/109/0.000999
DIXMAANH 9000 11/27/0.019997 9/13/0.006999 9/21/0.011998 42/89/0.049993
DIXMAANI 90 28/57,/0.000999 25/31/0.001 83/169/0.001 39/79/0
DIXMAANI 9000 37/77/0.042993 29/37/0.019997 84/169/0.12198 46/96,/0.053992
DIXMAANJ 90 18/37/0.001 18/20/0.001 33/67/0.001 72/148/0.001
DIXMAANJ 9000 15/33/0.018997 18/20/0.010998 33/67/0.048992 39/82/0.045993
DIXMAANK 90 12/27/0.000999 14/18/0.001 15,/33,/0.000999 45/96,/0.001
DIXMAANK 300 12,/27/0.000999 14/18/0.001 15/33/0.001 50/105/0.002
DIXMAANL 90 8/19/0 12/16/0.001 9/21/0.001 54/114/0.000999
DIXMAANL 300 8/19/0.001 12/16/0.000999 9/21/0.000999 66/140,/0.003
DIXMAANL 1500 8/19/0.001999 12/16/0.002 9/21/0.001999 81/174/0.015997
DIXMAANL 9000 11/27/0.015998 12/16,/0.008999 9/21/0.011998 65/135/0.074988
DIXON3DQ 1000  1062/2185/0.070989 —/—/— === —/—/—
DIXON3DQ 10000 1725/3455/0.98785  —/—/— )=/ )=
DQDRTIC 1000 7/19/0.001 12/18/0.001 40/91,/0.004999 18/42/0.002
DQDRTIC 5000  7/27/0.006999 5/11/0.002999 4/13/0.003999 8/29/0.007999
DQRTIC 50 10/29/0 11/19/0.000999 8/23/0 93/203,/0.000999
DQRTIC 5000 —/=/— 11/27/0.002999 8/31/0.003999 —/=/—
EDENSCH 2000  13/33/0.005 19/25/0.004 12,/29/0.004999 67/156/0.022996
EG2 1000 6/13/0.001999 9/15/0.001999 6/13/0.001999 79/406/0.033995
ENGVAL1 1000 7/17/0.001999 11/15/0.001 9/21/0.002 38/83/0.004999
ENGVAL1 5000 6/15/0.004999 8/12/0.002999 7/17/0.004999 63/135/0.040993
ERRINROS 50 12/33/0.001 20/32,/0.001 12/33/0 43/95/0.001
EXTROSNB 100 20/47,/0.000999 40/55,/0.000999 36/81/0.001 36/79,/0.001
EXTROSNB 1000  18/47/0.002999 22/28/0.002 17/39/0.002 27/65/0.003
FLETCBV2 100 2896/23901/0.31595 1851/9315/0.130 2171/16781/0.236 3730/32437/0.4349
FLETCBV2 10000 1/1/0.002 1/1/0.001999 1/1/0.002 1/1/0.002
FLETCBV3 100 —/=/— —/=/— —/=/— —/=/—
FMINSRF2 1024 594/3301/0.23996 1005/3883/0.27796 936/5999/0.45993 949/5491/0.39794
FMINSRF?2 10000  4229/37715/29.887 3434/17962/14.737 3839/30309/24.214 —/=/—
FMINSURF 5625  —/—/— 4723/26015/11.862  —/—/— /=)=
FMINSURF 10000 —/—/— —/—/— —/—/— —/—/—
FREUROTH 50 32/77/0.001 694/2604/0.009998 87/446,/0.001999 1019/5483/0.021996
FREUROTH 500 22/56,/0.002 2165/11092/0.43493 74/315/0.012998 97/318/0.012998
GENHUMPS 1000  —/—/— —/=/- )=/ —/—/)—
GENHUMPS 5000 —/=/- —/=/- —/=/- —-/=/-
GENROSE 100 —/=/- —/=/- —/=/- —-/=/-
HILBERTA 10 6/11/0 12/12/0.001 93/193/0.001 19/38/0
HILBERTB 50 5/11/0.001 5/7/0.001 5/11/0.001 9/20/0.001
HYDC20LS 99 42/103/0.015998 828/3346/0.15598 287/1439/0.07099 —/=/-
INDEF 1000 —-/=/- —/=/- —/=/- —/=/-
INDEF 5000 —/=/— —/=/— —/=/— —/=/—
LIARWHD 5000 20/51/0.014998 43/97/0.025996 957/7417/1.9567 2979/21994/5.7451
LIARWHD 10000 14/49/0.027996 —/=/— 1313/10287/5.5132 —/=/—
MANCINO 50 5/23/0.013998 4/16/0.009998 4/19/0.011998 15/43/0.026995
MANCINO 100 30/161/0.40494 5/19/0.047992 5/23/0.06599 32/165/0.42094
MODBEALE 200 44/95/0.003 21/41/0.002 466/2913/0.10498 150/472/0.014998
MODBEALE 2000 31/78/0.022997 571/2332/0.6919 186/993/0.31195 179/667,/0.20997
MOREBV 50 442/2133/0.005999 1078/4934/0.0120 742/4909/0.0120 805/4792/0.013
MOREBV 5000  3/5/0.002999 5/5/0.000999 6/11/0.003 7/13/0.004
NONCVXUN 100 41/103,/0.001999 37/45/0.001 42/97/0.002 52/125/0.001
NONDIA 5000  3/17/0.004 3/15/0.003 3/17/0.007999 10/122/0.029995
NONDIA 10000  4/21/0.010999 4/18/0.007999 4/21/0.010998 30/499/0.24696
NONDQUAR 5000 18/49/0.006999 17/29/0.003999 17/43/0.006999 78/185/0.029996
NONDQUAR 10000 18/49/0.014997 15/27/0.007999 17/45/0.014997 202/460/0.15398
NONMSQRT 100 —/=/— —/=/— 177/805/0.014997 338/1097/0.022997
OSCIPATH 100 9/19/0 12/14/0.001 13,/27/0.001 16,/34/0.000999
OSCIPATH 500 8/17/0.001 11/13/0.001 12/25/0.001 16,/34/0.001
PENALTY1 500 669/4897/0.087987 10/26/0.001 9/33/0.001 673/4907/0.080987
PENALTY1 1000 4364/109573/3.4675 10/28/0.002 7/31/0.002 4364/109573/3.4555
PENALTY2 50 9/27/0.001 12/22/0.001 9/27/0.000999 106/229/0.004999
PENALTY2 100 9/29/0.002 13/25/0.002 10/31/0.001999 175/381/0.016998
POWELLSG 5000 24/53/0.007999 48/64,/0.008999 251/591/0.10598 37/79/0.010998
POWELLSG 10000 24/53/0.016997 48/64/0.017997 159/685/0.19897 44/93/0.027996
POWER 100 10/31/0 12/24/0.001 10/31/0 132/289/0.000999
POWER 5000 17/401/0.035995 8/92/0.008999 11/43/0.004999 100/2432/0.22497
POWER 10000 17/391/0.06999 15/321/0.058991 9/41/0.008998 61/1606/0.30795
QUARTC 5000 —/—/— 11/27/0.003 8/31/0.003999 )=/
QUARTC 10000 —/=/—= 13/31/0.007 9/35/0.008998 —/=/—
SENSORS 100 177/441/1.1798 353/483/1.3058 13/33/0.096985 179/412/1.2258
SINQUAD 5000  66/161/0.11698 —/=/— 305/2441/1.7627 —)=)—
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Conclusion

A derivative-free algorithm for solving large-scale nonlinear system of equations has been
introduced and analyzed. It was developed based on the modified Liu-Storey conjugate
gradient method in [17] and the Grippo-Lampariello-Lucidi [12] and Li-Fukushima [16] non-
monotone line search methods. The global convergence of the proposed method has been
analyzed. Extensive numerical results were reported. The performance profiles showed that
the proposed method is very efficient.
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