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which is a modification of the Grippo-Lampariello-Lucidi (GLL) [12] line search. If f(x)
is a merit function such that f(x) = 0 if and only if ∥g(x)∥ = 0, then, a simplified GLL
condition can be rewritten as follows:

f(xk + αkdk) ≤ max
0≤j≤min{k,M−1}

f(xk−j) + δαk∇f(xk)
T dk,

where M is a positive integer, 0 < δ < 1 is a constant and ∇f(xk) denotes the gradient of f
at xk. If we set M = 1, then the nonmonotone line search above will reduce to the standard
Armijo line search.

La Cruz, Mart́ınez and Raydan [7] proposed the Derivative-Free SANE (DF-SANE)
method to solve equation (1.1). They analyzed the global convergence of the method with
a nonmonotone line search, which is based on the GLL [12] and Li-Fukushima (LF) [16]
schemes. The LF line search requires the steplength αk to satisfy

∥g(xk + αkdk)∥ − ∥g(xk)∥ ≤ −σ1α
2
k∥dk∥2 + ϵk∥g(xk)∥, (1.3)

where ∥ · ∥ denotes the Euclidean norm, σ1 is a positive constant and {ϵk} is a positive
sequence satisfying

∞∑
k=0

ϵk < ∞. (1.4)

It is clear that as αk → 0+, the left-hand side of (1.3) tends to zero, while the right-hand
side goes to the positive constant ϵk∥g(xk)∥. Therefore, the line search is well defined.

Nonlinear conjugate gradient methods are welcome for unconstrained optimization prob-
lems for their low memory requirements and strong local and global convergence proper-
ties. Recently, some sufficient descent conjugate gradient methods were proposed, e.g.,
[13, 17, 20, 21, 26, 27, 30, 31]. In the survey paper, Narushima and Yabe [20] gave a com-
prehensive review of the development of different versions of descent conjugate gradient
methods, with special attention given to their global convergence properties. Readers can
refer to the paper for more details. Very recently, there are several studies of conjugate
gradient methods for solving large-scale nonlinear system of equations [6, 25]. Yu [25] ex-
tended the Polak-Ribière-Polyak (PRP) [22, 23] method to solve problem (1.1). Based on
the three-term conjugate gradient method by Zhang, Zhou and Li [30], Cheng, Xiao and
Hu [6] developed a family of derivative-free methods for solving large-scale nonlinear system
of equations. Inspired by these studies, in this paper, we attempt to extend the sufficient
descent Liu-Storey method proposed by Li and Feng [17] to solve problem (1.1).

The paper is organized as follows. In the next section, we propose the method. In Section
3, we establish the global convergence of the proposed algorithm. Some numerical results
are reported to test the efficiency of the method in the last section.

Throughout the paper, ∥ · ∥ denotes the Euclidean norm, J(x) denotes the Jacobian
matrix of g(x), i.e., J(x) = ∇g(x)T ∈ Rn×n, N denotes the set of all nonnegative integers,
i.e., N = {0, 1, 2, . . .}.

2 Algorithm

In this section, we first recall the nonlinear conjugate gradient method for solving the fol-
lowing unconstrained optimization problem

min f(x), x ∈ Rn, (2.1)
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where f : Rn → R is a continuously differentiable function and its gradient ∇f(x) is avail-
able. A nonlinear conjugate gradient method always generates a sequence {xk} by

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (2.2)

where the steplength αk is determined by a line search and the search direction dk is defined
by

dk =

{
−∇f(x0), if k = 0,
−∇f(xk) + βkdk−1, if k ≥ 1.

(2.3)

Here, βk is the conjugate gradient update parameter. Different choices for the scalar βk

correspond to different conjugate gradient methods.

Recently, based on the Liu-Storey method [18], Li and Feng [17] proposed a sufficient
descent conjugate gradient method (MLS method), in which the scalar βk is defined by

βMLS
k = −∇f(xk)

T (∇f(xk)−∇f(xk−1))

∇f(xk−1)T dk−1
− t

∥∇f(xk)−∇f(xk−1)∥2∇f(xk)
T dk−1

(∇f(xk−1)T dk−1)2
, (2.4)

where t > 1/4 is a constant. They proved that the method can generate sufficient descent
directions for the objective function and established the global convergence with the strong
Wolfe line search. The reported numerical results showed that the MLS method is efficient
for the unconstrained optimization problems in the CUTEr library [3].

Now, we attempt to extend the MLS method [17] to solve nonlinear system of equations.
If g(x) is the gradient of f(x), then equation g(x) = 0 is the first order necessary optimality
condition of unconstrained optimization problem (2.1). Therefore, based on the MLS method
and the GLL [12] and LF [16] nonmonotone line search methods, we design the following
algorithm to solve problem (1.1).

Algorithm 2.1. (Derivative-Free MLS method: DF-MLS method)

Step 0. Given an initial point x0 ∈ Rn and a positive integer M . Let 0 < ρ < 1,
λ1, λ2, λ3 > 0 and 0 < αmin < αmax be given positive constants. Select a positive
sequence {ηk} such that

∞∑
k=0

ηk < ∞. (2.5)

Set k = 0.

Step 1. Stop if ∥g(xk)∥ = 0.

Step 2. Compute dk by

dk =

{
−g0, if k = 0,
−gk + βMLS

k dk−1, if k ≥ 1,
(2.6)

βMLS
k = − gTk yk−1

gTk−1dk−1
− t

∥yk−1∥2gTk dk−1

(gTk−1dk−1)2
, (2.7)

where t > 1
4 is a constant, gk = g(xk) and yk−1 = gk − gk−1.

Step 3. Choose an initial steplength α0,k ∈ [αmin, αmax], and set αk = α0,k.
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Step 4. Nonmonotone line search.
If

∥g(xk+αkdk)∥2 ≤ max
0≤j≤min{k,M−1}

∥g(xk−j)∥2−λ1α
2
k∥dk∥2−λ2α

2
k∥dk∥4−λ3α

2
k∥gk∥2+ηk,

(2.8)
then set xk+1 = xk + αkdk and goto Step 5.

Else if

∥g(xk−αkdk)∥2 ≤ max
0≤j≤min{k,M−1}

∥g(xk−j)∥2−λ1α
2
k∥dk∥2−λ2α

2
k∥dk∥4−λ3α

2
k∥gk∥2+ηk,

(2.9)
then set xk+1 = xk − αkdk and goto Step 5.
Else set αk = ραk and goto Step 4.

Step 5. Set k = k + 1 and goto Step 1.

Remark. (I) The formula for βk is derived from (2.4). From the definition of dk, we have
that if gk ̸= 0 and gTk−1dk−1 ̸= 0 for some k ≥ 1, then

gTk dk = −∥gk∥2 + βMLS
k gTk dk−1

= −∥gk∥2 −

(
gTk yk−1

gTk−1dk−1
+ t

∥yk−1∥2gTk dk−1

(gTk−1dk−1)2

)
gTk dk−1

=
−∥gk∥2(gTk−1dk−1)

2 − (gTk yk−1)(g
T
k dk−1)(g

T
k−1dk−1)− t∥yk−1∥2(gTk dk−1)

2

(gTk−1dk−1)2

≤
−∥gk∥2(gTk−1dk−1)

2 + 1
2

1
2t∥gk∥

2(gTk−1dk−1)
2 + 1

22t∥yk−1∥2(gTk dk−1)
2

(gTk−1dk−1)2

− t∥yk−1∥2(gTk dk−1)
2

(gTk−1dk−1)2

=

(
1

4t
− 1

)
∥gk∥2,

(2.10)

where the inequality follows from an upper bound for the second term of the third equa-
tion, which is obtained from uT v ≤ 1

2 (∥u∥
2 + ∥v∥2) with u = −1√

2t
(gTk−1dk−1)gk and v =

√
2t(gTk dk−1)yk−1. Obviously, inequality (2.10) also holds for k = 0. Therefore, the direc-

tion generated at Step 2 will always satisfy

gTk dk ≤
(

1

4t
− 1

)
∥gk∥2 < 0. (2.11)

This means that the scalar βMLS
k in (2.7) is well defined as long as gk−1 ̸= 0 for k ≥ 1, since

gTk−1dk−1 ̸= 0 by (2.11). In this paper, we focus on extending the MLS method [17] to solve
nonlinear system of equations not only because the method is efficient, but also because we
can establish the convergence of the DF-MLS method in a simple way.

(II) At Step 4, the nonmonotone line search is a modification of the GLL [12] and LF [16]
schemes. Since dk is not necessarily a descent direction of ∥g(x)∥2 at xk, we determine the
next iteration by two inequalities in the line search step. Noting that ηk > 0, (2.8) or (2.9)
will be satisfied when αk is small enough. Therefore, the algorithm is well defined. For
convenience, we call this algorithm as DF-MLS method.
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3 Convergence Property

This section is devoted to the global convergence of the DF-MLS method. In the remainder
of this paper, we always assume that the sequence {xk} is generated by the DF-MLS method
and the finite termination never occurs, i.e., gk ̸= 0 for all k ≥ 0, which implies that the
generated {xk} is an infinite sequence. Moreover, we also assume that the function g satisfies
the following assumptions.

Assumption 3.1.

(i) The level set Ω := {x ∈ Rn | ∥g(x)∥ ≤
√
∥g(x0)∥2 + η} is bounded, where x0 ∈ Rn is

an arbitrary initial point, and η is a positive constant such that

∞∑
k=0

ηk ≤ η. (3.1)

(ii) The function g(x) is continuously differentiable on some neighborhood Γ of Ω. Hence,
g(x) is Lipschitz continuous on Γ. That is, there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Γ. (3.2)

From the definition of Ω, it is obvious that, for γ1 =
√

∥g(x0)∥2 + η > 0,

∥g(x)∥ ≤ γ1, ∀x ∈ Ω. (3.3)

Before we proceed with the convergence analysis, we give some preliminary definitions.
Define V0 = ∥g(x0)∥2 and

Vk = max
0≤j≤min{k,M−1}

∥g(xk−j)∥2, ∀k = 1, 2, . . . .

Let v(k) ∈ {k −min{k,M − 1}, . . . , k} be such that

∥g(xv(k))∥2 = Vk, ∀k = 1, 2, . . . .

Lemma 3.1. Suppose that {xk} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then {xk} ⊂ Ω.

Proof. It follows from the line search step of the algorithm that, for any k ≥ 0,

∥g(xk+1)∥2 ≤ Vk − λ1α
2
k∥dk∥2 − λ2α

2
k∥dk∥4 − λ3α

2
k∥gk∥2 + ηk

≤ Vk + ηk.
(3.4)

From the definition of Vk, we have, for any k ≥ 0,

Vk+1 = max
0≤j≤min{k+1,M−1}

∥g(xk+1−j)∥2

= max
0≤j≤min{k,M−2}+1

∥g(xk+1−j)∥2

≤ max
0≤j≤min{k,M−1}+1

∥g(xk+1−j)∥2

= max{Vk, ∥g(xk+1)∥2}
≤ Vk + ηk.

(3.5)
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Clearly, x0 ∈ Ω. By (3.4) and (3.5), we have, for all k ≥ 0,

∥g(xk+1)∥2 ≤ Vk + ηk
≤ Vk−1 + ηk−1 + ηk
≤ . . .

≤ V0 +

k∑
j=0

ηj

≤ ∥g0∥2 + η.

Thus, xk+1 ∈ Ω, which completes the proof.

Note that if k ≥ M − 1, then k −M + 1 ≤ v(k) ≤ k, so that limk→∞ v(k) = ∞. Then
we have the following lemma.

Lemma 3.2. Suppose that {xk} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then limk→∞ αv(k)−1∥dv(k)−1∥ = 0,

limk→∞ αv(k)−1∥dv(k)−1∥2 = 0,
limk→∞ αv(k)−1∥gv(k)−1∥ = 0.

(3.6)

Proof. It follows from (3.5) that for all k ≥ 0,

Vk+1 ≤ Vk + ηk ≤ (1 + ηk)Vk + ηk. (3.7)

We get from Lemma 3.3 in [9] that the sequence {Vk} is convergent. Moreover, we get from
(3.4) that

Vk = ∥g(xv(k))∥2 ≤ Vv(k)−1 − λ1α
2
v(k)−1∥dv(k)−1∥2 − λ2α

2
v(k)−1∥dv(k)−1∥4

− λ3α
2
v(k)−1∥gv(k)−1∥2 + ηv(k)−1.

(3.8)

This inequality implies

λ1α
2
v(k)−1∥dv(k)−1∥2 + λ2α

2
v(k)−1∥dv(k)−1∥4 + λ3α

2
v(k)−1∥gv(k)−1∥2

≤ Vv(k)−1 − Vk + ηv(k)−1.
(3.9)

Taking limits for k → ∞, we will obtain (3.6) since the sequence {Vk} is convergent and
limk→∞ ηk = 0.

Based on the result given by Grippo, Lampariello and Lucidi [12], we get the following
lemma, which shows that the infinite sequence {∥g(xk)∥} is convergent.

Lemma 3.3. Suppose that {xk} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then the sequence {∥g(xk)∥} is convergent. Furthermore, limk→∞ αk∥dk∥ = 0,

limk→∞ αk∥dk∥2 = 0,
limk→∞ αk∥gk∥ = 0.

(3.10)

Proof. Here and in the sequel we assume that the iteration index k is large enough and k ≥ j
for a given j ≥ 1. It follows from the Assumption 3.1 that ∥g(x)∥ is uniformly continuous
on the level set Ω. Let v(k) = v(k +M). Note that

1 ≤ k − j + 1 ≤ v(k)− j ≤ k − j +M (3.11)
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since k−M +1 ≤ v(k) ≤ k and k ≥ j. First, we will prove by induction that, for any given
j ≥ 1,

lim
k→∞

∥xv(k)−j+1 − xv(k)−j∥ = 0 (3.12)

and
lim
k→∞

∥g(xv(k)−j)∥ = lim
k→∞

∥g(xv(k))∥. (3.13)

It follows from (3.6) that limk→∞ ∥xv(k) − xv(k)−1∥ = 0. Therefore, (3.12) holds for j = 1
since {xv(k)} ⊂ {xv(k)}. Using the uniform continuity of ∥g(x)∥ on the level set Ω and the
fact that the sequence {∥g(xv(k))∥} is convergent from the proof of Lemma 3.2, we have that
(3.13) is satisfied for j = 1. Assume now that (3.12) and (3.13) hold for a given j . Then
we get from (3.4) that

∥g(xv(k)−j)∥2 ≤ ∥g(xv(v(k)−j−1))∥2 − λ1α
2
v(k)−j−1∥dv(k)−j−1∥2 − λ2α

2
v(k)−j−1∥dv(k)−j−1∥4

− λ3α
2
v(k)−j−1∥gv(k)−j−1∥2 + ηv(k)−j−1.

This implies

λ1α
2
v(k)−j−1∥dv(k)−j−1∥2 ≤ ∥g(xv(v(k)−j−1))∥2 − ∥g(xv(k)−j)∥2 + ηv(k)−j−1.

Taking limits for k → ∞, it follows from the assumption (3.13) that

lim
k→∞

∥xv(k)−j − xv(k)−j−1∥ = lim
k→∞

αv(k)−j−1∥dv(k)−j−1∥ = 0. (3.14)

Since ∥g(x)∥ is uniformly continuous on the level set Ω, we get from the assumption (3.13)
that

lim
k→∞

∥gv(k)−j−1∥ = lim
k→∞

∥gv(k)−j∥ = lim
k→∞

∥gv(k)∥. (3.15)

Hence, (3.12) and (3.13) hold for any given j ≥ 1.
Moreover, for every k,

xv(k) = xk + (xk+1 − xk) + · · ·+ (xv(k) − xv(k)−1)

= xk +

v(k)−k∑
j=1

(xv(k)−j+1 − xv(k)−j).
(3.16)

Noting from (3.11) for j = k that 1 ≤ v(k)− k ≤ M , we get from (3.12) and (3.16) that

lim
k→∞

∥xv(k) − xk∥ = 0. (3.17)

Therefore, based on (3.17) and the uniform continuity of ∥g(x)∥, we conclude that the
sequence {∥g(xk)∥} is convergent and

lim
k→∞

∥g(xk)∥ = lim
k→∞

∥g(xv(k))∥. (3.18)

Combining this with (3.4), we get (3.10) and complete the proof.

The following lemma shows that the sequence of directions {dk} is bounded.

Lemma 3.4. Suppose that {xk} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. If there exists a constant γ > 0 such that

∥gk∥ ≥ γ, ∀k ≥ 0, (3.19)
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then there exists a constant B > 0 such that

∥dk∥ ≤ B, ∀k ≥ 0 (3.20)

and
lim
k→∞

βMLS
k ∥dk−1∥ = 0. (3.21)

Proof. From (2.6), (2.11), (3.2), (3.3), (3.10) and (3.19), we have

∥dk∥ ≤ ∥gk∥+ |βMLS
k |∥dk−1∥

≤ ∥gk∥+
∥gk∥∥yk−1∥∥dk−1∥

|gTk−1dk−1|
+ t

∥yk−1∥2∥gk∥∥dk−1∥
|gTk−1dk−1|2

∥dk−1∥

≤ γ1 +
4tγ1Lαk−1∥dk−1∥2

(4t− 1)γ2
+

t(4t)22γ2
1Lαk−1∥dk−1∥2

(4t− 1)2γ4
∥dk−1∥

= γ1 +
4tγ1L

(4t− 1)γ2
αk−1∥dk−1∥2 +

32t3γ2
1L

(4t− 1)2γ4
αk−1∥dk−1∥2∥dk−1∥.

(3.22)

We get from (3.10) that, for any constant b ∈ (0, 1), there exists an index k0 such that

32t3γ2
1L

(4t− 1)2γ4
αk−1∥dk−1∥2 < b, ∀k > k0. (3.23)

Then

∥dk∥ ≤ γ1 +
(4t− 1)γ2b

8t2γ1
+ b∥dk−1∥ = c+ b∥dk−1∥, (3.24)

where c = γ1 + (4t− 1)γ2b/(8t2γ1) is a constant. For any k > k0 we have

∥dk∥ ≤ c(1 + b+ b2 + · · ·+ bk−k0+1) + bk−k0∥dk0
∥ ≤ c

1− b
+ ∥dk0

∥. (3.25)

Therefore, (3.20) holds with B = max{∥d1∥, ∥d2∥, · · · , ∥dk0∥, c
1−b + ∥dk0∥}.

By (3.2), (3.19) and (3.20), we have

|βMLS
k |∥dk−1∥ ≤ ∥gk∥∥yk−1∥∥dk−1∥

|gTk−1dk−1|
+ t

∥yk−1∥2∥gk∥∥dk−1∥
|gTk−1dk−1|2

∥dk−1∥

≤
(

4tγ1L

(4t− 1)γ2
+

32t3γ2
1L

(4t− 1)2γ4
∥dk−1∥

)
αk−1∥dk−1∥2.

(3.26)

Combining this with (3.10) gives (3.21).

The following theorem establishes the global convergence of Algorithm 2.1. It is similar
to the Theorem 1 in reference [7].

Theorem 3.5. Suppose that {xk} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Then we have

lim
k→∞

∥gk∥ = 0, (3.27)

or every limit point x∗ of {xk} satisfies

g(x∗)TJ(x∗)g(x∗) = 0. (3.28)
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Proof. From Lemma 3.3, it follows that limk→∞ ∥gk∥ = ζ ≥ 0. We only need to prove the
case of ζ > 0. Then, since by (3.10) limk→∞ αk∥gk∥ = 0, we have limk→∞ αk = 0. It follows
from the line search step of the algorithm that, when k is sufficiently large, ρ−1αk satisfies
neither (2.8) nor (2.9). So we have,

∥g(xk + ρ−1αkdk)∥2 − ∥gk∥2

≥∥g(xk + ρ−1αkdk)∥2 − max
0≤j≤min{k,M−1}

∥g(xk−j)∥2

>− λ1ρ
−2α2

k∥dk∥2 − λ2ρ
−2α2

k∥dk∥4 − λ3ρ
−2α2

k∥gk∥2 + ηk

>− λ1ρ
−2α2

k∥dk∥2 − λ2ρ
−2α2

k∥dk∥4 − λ3ρ
−2α2

k∥gk∥2

(3.29)

and

∥g(xk − ρ−1αkdk)∥2 − ∥gk∥2

≥∥g(xk − ρ−1αkdk)∥2 − max
0≤j≤min{k,M−1}

∥g(xk−j)∥2

>− λ1ρ
−2α2

k∥dk∥2 − λ2ρ
−2α2

k∥dk∥4 − λ3ρ
−2α2

k∥gk∥2 + ηk

>− λ1ρ
−2α2

k∥dk∥2 − λ2ρ
−2α2

k∥dk∥4 − λ3ρ
−2α2

k∥gk∥2.

(3.30)

Using (3.3) and (3.20), we have

∥g(xk + ρ−1αkdk)∥2 − ∥gk∥2 > −Cα2
k (3.31)

and
∥g(xk − ρ−1αkdk)∥2 − ∥gk∥2 > −Cα2

k, (3.32)

where C = λ1ρ
−2B2 + λ2ρ

−2B4 + λ3ρ
−2γ2

1 .
By (3.31),

∥g(xk + ρ−1αkdk)∥2 − ∥gk∥2

αk
> −Cαk. (3.33)

By the mean-value theorem and (3.33), there exists a ξk ∈ (0, 1) such that

2ρ−1g(xk + ξkρ
−1αkdk)

TJ(xk + ξkρ
−1αkdk)dk > −Cαk. (3.34)

Namely,

2ρ−1g(xk + ξkρ
−1αkdk)

TJ(xk + ξkρ
−1αkdk)(−gk + βMLS

k dk−1) > −Cαk. (3.35)

Combining this with (3.10) and (3.21) and taking limits in (3.35) give

g(x∗)TJ(x∗)g(x∗) ≤ 0. (3.36)

Using (3.32) and proceeding in the same way, we obtain

g(x∗)TJ(x∗)g(x∗) ≥ 0. (3.37)

The last two inequalities imply (3.28). The proof is complete.

By Theorem 3.5 and the continuity of ∥g(x)∥, we immediately have the following corol-
lary.

Corollary 3.6. Suppose that {xk} is an infinite sequence generated by the DF-MLS method
and Assumption 3.1 holds. Suppose also that x∗ is a limit point of {xk} and

yTJ(x∗)y ̸= 0, ∀y ∈ Rn, y ̸= 0. (3.38)

Then g(x∗) = 0.

For example, if a mapping g(x) is uniformly monotone, then its Jacobian matrix J(x)
satisfies yTJ(x)y ̸= 0 for all x, y ∈ Rn, y ̸= 0.
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4 Numerical Results

In this section, we compare numerical performance of the DF-MLS method with that of
the DF-SANE method [7], the N-DF-SANE method [5] and the DF-CGNE method [25].
The test problems are the unconstrained minimization problems in the CUTEr [3] library.
Letting f be an objective function of such problems the stationary point is a solution of
the equation g(x) = 0, where g is the gradient of f . We used the above four methods to
find the stationary points of the test problems by using only their gradients. We tested 142
problems with dimensions varying from 10 to 10000. We often ran two different versions of
the problems randomly for which the dimensions can be chosen arbitrarily. Since different
methods may converge to different stationary points of the same function, we selected the
available results by using the rule in [14]. Table 1 lists all the numerical results, which
include, for each problem, the name of the problem (Prob), the dimension of the problem
(Dim), the total number of iterations (Iter), the total number of function evaluations (Nfun)
and the CPU time in seconds (Time), respectively. We use the symbol “−” to specify either
of the following two cases:

(a) The number of iterations exceeded 5000.

(b) The number of backtracking iterations at some line search step exceeded 100.

Figure 1: Performance profile relative to CPU time

The methods were coded in Fortran and run on a PC with 3.7 GHz CPU processor
and 4 GB RAM and Linux operating system. The code for the DF-SANE method was ob-
tained from professor Raydan’s home page at http://kuainasi.ciens.ucv.ve/mraydan/
mraydan_pub.html. In all these four methods, we stopped the process when

∥g(xk)∥√
n

≤ ea + er
∥g(x0)∥√

n
, (4.1)

where ea = 10−5 and er = 10−4. This termination condition comes from [7].
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Figure 2: Performance profile relative to the number of iterations

Figure 3: Performance profile relative to the number of function evaluations
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We used the performance profiles by Dolan and Moré [10] to compare the performance of
these four methods. Figures 1−3 show the performance of the above methods relative to the
CPU time (in seconds), the total numbers of iterations and the total numbers of function
evaluations, respectively. The curves in the figures have the following meanings:

“DF-SANE ” denotes the DF-SANE method [7] with nexp = 2, σmin = 10−10, σmax =

1010, σ0 = 1, τmin = 0.1, τmax = 0.5, γ = 10−4,M = 10 and ηk = ∥g(x0)∥
2k

for all k.

“N-DF-SANE” stands for the N-DF-SANE method [5] with ηk = 0.6, σmin = 10−10,

σmax = 1010, ρmin = 0.1, ρmax = 0.5, γ = 10−4 and ϵk = ∥g(x0)∥
2k

for all k.

“DF-MLS” stands for the DF-MLS method. The parameters are specified as follows:
M = 10, ρ = 0.5, t = 1, λ1 = λ2 = λ3 = 10−4, αmin = 10−10, αmax = 1010 and

ηk = ∥g(x0)∥
2k

for all k. At Step 3, the choice of the initial steplength α0,k is

α0,k =

 αmax, if σ > αmax,
σ, if σ ∈ [αmin, αmax],
αmin, if σ < αmin,

(4.2)

where

σ =
−gTk dk
dTk zk

, zk =
g(xk + ϵdk)− g(xk)

ϵ
, ϵ = 10−8. (4.3)

Suppose that f : Rn → R is a twice continuously differentiable function and its gradient
∇f(x) = g(x). Consider the following quadratic model

f(xk + tdk) ≈ qk(t) ≜ f(xk) + tgTk dk +
t2

2
dTk∇2f(xk)dk. (4.4)

If ϵ > 0 is sufficiently small, then we have the following approximate equation

∇2f(xk)dk ≈ zk ≜ g(xk + ϵdk)− g(xk)

ϵ
. (4.5)

Then, we get

qk(t) ≈ f(xk) + tgTk dk +
t2

2
dTk zk (4.6)

and
q′k(t) ≈ gTk dk + tdTk zk. (4.7)

Let gTk dk + tdTk zk = 0. We get

t = −gTk dk
dTk zk

. (4.8)

Therefore, it is reasonable to determine the initial steplength α0,k by (4.2).

“DF-CGNE” means the DFCGNE method [25] with the same line search as the DF-
MLS method. The original DFCGNE method consists of a search direction dk based
on the PRP method and an approximately monotone line search. Yu [25] also proposed
a modified version of the method, which uses a sufficiently nonmonotone line search.
In order to compare the efficiency of the directions of the DFCGNE and DF-MLS
methods, we used the same line search in practical computation. More precisely, the
DF-CGNE method here means the DF-MLS method with dk replacing βMLS

k at Step
2 by the PRP parameter

βPRP
k =

gTk yk−1

gTk−1gk−1
. (4.9)
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In Figure 1, for each method, we plot the fraction P of problems for which the method is
within a factor τ of the best time. It is shown that the DF-MLS method is the fastest for
about 46% (66 out of 142) of the test problems. From Figure 2, we note that the DF-MLS
method solves 62% (88 out of 142) of the test problems with the least number iterations.
The performance of the DF-MLS method relative to the CPU time and the total number of
iterations is better than that of other methods. However, we also see from Figure 3 that the
DF-MLS method requires more function evaluations than the DF-SANE method. Maybe
this is because that the two algorithms used different line search methods. Moreover, in
the DF-MLS method, the formula for the initial steplength α0,k also needs an additional
function evaluation at each iteration. How to improve the practical efficiency of the DF-MLS
method will be a future topic for us.

Table 1: Comparison of the four derivative-free methods
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5 Conclusion

A derivative-free algorithm for solving large-scale nonlinear system of equations has been
introduced and analyzed. It was developed based on the modified Liu-Storey conjugate
gradient method in [17] and the Grippo-Lampariello-Lucidi [12] and Li-Fukushima [16] non-
monotone line search methods. The global convergence of the proposed method has been
analyzed. Extensive numerical results were reported. The performance profiles showed that
the proposed method is very efficient.
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