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h(x) = 0 are called general constraints, and G(x) ≥ 0, H(x) ≥ 0 and G(x)TH(x) = 0 are
called complementarity constraints.

Problem (1.1) is an important subclass of mathematical programs with equilibrium con-
straints (MPEC), which has wide applications in economics, engineering, transportation,
equilibrium game and so on (see [10,18,25,30]). Therefore, problem (1.1) has been attract-
ing many researchers to investigate it profoundly. However, it is difficult to solve problem
(1.1) directly by the existing algorithms for the standard constrained optimization due to the
existence of complementarity constraints, which makes any feasible point of problem (1.1)
do not satisfy the constraints qualification of the standard constrained optimization, such
as the linear independence constraints qualification (LICQ) and the Mangasarian-Fromovitz
constraints qualification (MFCQ) (see [4] and [28]). Moreover, the feasible region of problem
(1.1) is more complex than that of the standard constrained optimization, that is, its feasible
region has no favorable properties such as connectivity, closure and convexity. In view of
these reasons, many characteristic methods have been explored for solving problem (1.1),
such as the smoothing method (see [2, 5–7, 9, 14, 19, 20, 27, 29]), the sequential quadratic
programming method (see [1, 26]), the relaxation method (see [11, 13, 15, 17, 23, 24]), the
generalized project metric method (see [8]), the efficient method for solving the stationary
point for problem (1.1) (see [16]), and the inexact log-exponential regularization method
(see [21]).

Among them, the smoothing method is one kind of typical approaches to solving problem
(1.1), in which a smooth function with a parameter is employed to approximate the comple-
mentarity constraints in problem (1.1), and then the original problem (1.1) is reformulated
into a standard smooth approximate optimization problem. Thus, a sufficiently approximate
solution or some type of stationary point of problem (1.1) can be obtained by solving a se-
ries of the constructed smooth subproblems. The existing smoothing method mainly applies
smooth functions to approximate complementarity constraints based on Fischer-Burmeister
function and maximum or minimal function. For example, Fischer-Burmeister perturbation
function

ϕε(a, b) = a+ b−
√
a2 + b2 + ε

is explored in [9], where a and b are constants, and ε is a smooth parameter. The authors
use the function based constraints to approximate the complementarity constraints and it
is proved that any sequence of stationary points converges to B-stationary point of problem
(1.1) under the MPCC-LICQ, the asymptotically weakly nondegenerate condition and the
weak second-order necessary condition.

In [7], MPEC problem with strongly monotone variational inequalities is transformed
into an equivalent one-level nonsmooth optimization problem, whose form can be regarded
as problem (1.1) to some extent. Furthermore, by means of the smooth Fischer-Burmeister
perturbation function below

φµ(a, b) =
√
(a− b)2 + 4µ2 − (a+ b),

where µ is a smooth parameter, a sequence of smooth and regular problems that progressively
approximates the nonsmooth problem is obtained, it is shown that the stationary points of
the approximate problems converge to a solution of the original problem, and the numerical
results are reported, which show the viability of the approach.

Moreover, a smooth approximation function is constructed in [6] by using the following
function

Ψε(t) =
2t

π
arctan

(
t

ε

)
,
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where t is a variable, ε is a smooth parameter, based on which only the equality
G(z)TH(z) = 0 is approximated by a smooth inequality. It is proved that the arbitrary
accumulation point of the sequence of solutions is a C-stationary point under MFCQ. If
some additional assumptions are coupled with, the accumulation point is an M-stationary
point, or even an S-stationary point. And the numerical results obtained demonstrate that
the method is much more promising than the similar ones in [7] under the same initial
conditions.

A smoothing regularization method for problem (1.1) is presented based on the construc-
tion of a new smoothing and regular function in [5], where the complementarity constrains
are replaced by

φ(a, b) =
1

2
(|a| − a+ |b| − b+ |ab|+ ab) = 0

and then problem (1.1) is reformulated as a standard smooth nonlinear program by replacing
| · | with

√
| · |2 + ε2 in the above function, where ε is a smooth parameter. It is proved that

any accumulation point of the sequence of solutions to the corresponding approximate prob-
lem is an S-stationary point of the problem (1.1) and numerical results show the efficiency
of the proposed approach by comparing with the method in [7].

Motivated by the above works, this paper focuses on investigating a smoothing method
for problem (1.1) by using the simple smooth integral of the Sigmoid function developed
in [3], which has many different interesting properties from the above functions. For example,
it has favorable smoothness. And the problem (1.1) is reformulated as a standard smooth
optimization problem with simple form by transforming the complementarity constraints
into the equality constraints by means of the smooth integral with a smooth parameter.
In addition, we find that the upper level strict complementarity, the asymptotically weakly
nondegenerate condition and the other assumptions are needed in some smoothing methods,
such as [9,14,29]. But it is interesting that the smooth integral of the Sigmoid function with a
smooth parameter has good properties such that it does not require these special conditions
in the convergence analysis of the corresponding smoothing method.

Furthermore, notice that the sequence of KKT (Karush-Kuhn-Tucker) solutions to the
smooth approximation problem is generally supposed to be existent directly in the above
mentioned smoothing methods, but they do not explore the problems that whether or not
the KKT solutions to the smooth approximation problem exist, and if so, what assumptions
on the original problem (1.1) should be made. In view of this reason, this paper aims to
discuss the linearly independent constraint qualification, the KKT condition and the second-
order sufficient condition of smooth approximation problem under some given assumptions
on problem (1.1) after the convergence of the studied method is analyzed. This argument
guarantees the existence of KKT solutions to the smooth approximation subproblem and
convince us that the KKT solutions can be available by the existing optimization methods.

This paper is organized as follows. We recall some concepts of problem (1.1) and present
the smooth approximate optimization formulation of problem (1.1) by using the smooth
integral of the Sigmoid function (see [3]) in Section 2. In Section 3, we prove that any
accumulation point of the sequence of KKT solutions obtained by solving a series of the
approximate subproblems is a C-stationary point as the smooth parameter tends to zero
under MPCC-MFCQ. Moreover, the accumulation point can be proven to be an S-stationary
point under the weak second-order necessary condition. Section 4 further makes discussion
on the existence of KKT solutions to the smooth approximate subproblem by characterizing
the linearly independent constraint qualification, the KKT condition and the second-order
sufficient condition under some mild assumptions on problem (1.1). Moreover, although
the theoretical convergence analyses are comprehensive in some references, the numerical
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experiments are not implemented to show the computational efficiency of their smoothing
method, such as Refs. [9, 14, 27, 29]. Hence, we carry out numerical experiments based on
the smooth approximate problem, in which some typical problems with different dimensions
in MacMPEC database (see [12]) are used to test the performance of the smooth method
in Section 5. Meanwhile, considering that the methods in [5, 7] have the better behaviors,
we make comparisons with them under the same experimental conditions. The reported
numerical results indicate that the proposed smoothing method is promising. In the last
section, some conclusions are drawn.

2 Preliminaries and the Smoothing Method

This section firstly recalls some preliminaries of problem (1.1), and then presents a smoothing
method for problem (1.1) based on the integral of the sigmoid function in Ref. [3].

Denote by F the feasible set of problem (1.1). Let x ∈ F , and we define the following
index sets:

I0+(x) = {i|Gi(x) = 0,Hi(x) > 0, i = 1, 2, . . . , l},
I00(x) = {i|Gi(x) = 0,Hi(x) = 0, i = 1, 2, . . . , l},
I+0(x) = {i|Gi(x) > 0,Hi(x) = 0, i = 1, 2, . . . , l},
Ig(x) = {i|gi(x) = 0, i = 1, 2, . . . ,m}.

The following definitions refer to Ref. [18] and [22].

Definition 2.1. A point x̄ in F is said to satisfy MPCC-MFCQ if and only if the vectors
of {∇hi(x̄), i = 1, 2, . . . , p}, {∇Gi(x̄), i ∈ I00(x̄)∪ I0+(x̄)} and {∇Hi(x̄), i ∈ I00(x̄)∪ I+0(x̄)}
are linearly independent, and there exists a vector d ∈ ℜn such that ∇gi(x̄)

T d < 0, i ∈ Ig(x̄),
∇hi(x̄)

T d = 0, i = 1, 2, . . . , p, ∇Gi(x̄)
T d = 0, i ∈ I00(x̄) ∪ I0+(x̄), and ∇Hi(x̄)

T d = 0, i ∈
I00(x̄) ∪ I+0(x̄).

Definition 2.2. A point x̄ in F is said to satisfy MPCC-LICQ if the vectors of {∇gi(x̄), i ∈
Ig(x̄)}, {∇hi(x̄), i = 1, 2, . . . , p}, {∇Gi(x̄), i ∈ I00(x̄) ∪ I0+(x̄)}, and {∇Hi(x̄), i ∈ I00(x̄) ∪
I+0(x̄)} are linearly independent.

Definition 2.3. The Lagrange function of problem (1.1) at x is defined as follows:

L(x, λ, µ, u, v) = f(x) + λT g(x) + µTh(x)− uTG(x)− vTH(x),

where λ ∈ ℜm, µ ∈ ℜp, u ∈ ℜl and v ∈ ℜl are Lagrange multipliers.

Then one has

∇xL(x, λ, µ, u, v) = ∇f(x) + λT∇g(x) + µT∇h(x)− uT∇G(x)− vT∇H(x),

and

∇2
xL(x, λ, µ, u, v) = ∇2f(x) +

m∑
i=1

λi∇2gi(x) +

p∑
i=1

µi∇2hi(x)

−
l∑

i=1

ui∇2Gi(x)−
l∑

i=1

vi∇2Hi(x).
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Definition 2.4. Let x̃ ∈ F . Then

(1) x̃ is said to be W-stationary, if there exist multiplier vectors λ̃ ∈ ℜm, µ̃ ∈ ℜp, ũ ∈ ℜl,
and ṽ ∈ ℜl such that

∇xL(x̃, λ̃, µ̃, ũ, ṽ) = 0,

λ̃ ≥ 0, λ̃T g(x̃) = 0,

ũi = 0, i ∈ I+0(x̃),

ṽi = 0, i ∈ I0+(x̃);

(2) x̃ is said to be C-stationary, if it is W-stationary and

ũiṽi ≥ 0 for i ∈ I00(x̃);

(3) x̃ is said to be M-stationary, if it is W-stationary and

ũi > 0, ṽi > 0, or ũiṽi = 0 for i ∈ I00(x̃);

(4) x̄ is said to be S-stationary, if it is W-stationary and

ũi ≥ 0, ṽi ≥ 0 for i ∈ I00(x̃).

Definition 2.5. A finite set of vectors {ai, i ∈ I1}∪{bi, i ∈ I2} is said to be positive-linearly
dependent if there exists (α, β) ∈ ℜ|I1|+|I2| ̸= 0 such that for all i ∈ I1, αi ≥ 0, and∑

i∈I1

αiai +
∑
i∈I2

βibi = 0. (2.1)

Conversely, if (2.1) holds if and only if (α, β) = 0, then the group of vectors is said to be
positive-linearly independent.

The following Lemma will be used in the forthcoming theoretical analysis (see [11]).

Lemma 2.6. A point x̄ in F satisfies MPCC-MFCQ if and only if the vectors of {∇gi(x̄), i ∈
Ig(x̄)}, {∇hi(x̄), i = 1, 2, . . . , p}, {∇Gi(x̄), i ∈ I00(x̄) ∪ I0+(x̄)}, and {∇Hi(x̄), i ∈ I00(x̄) ∪
I+0(x̄)} are positive-linearly independent.

Next, we shall explore a smoothing method with a simple form for problem (1.1). Notice
that the complementarity constraints

a ≥ 0, b ≥ 0, ab = 0 (2.2)

is equivalent to
min{a, b} = 0. (2.3)

Furthermore, it can be shown that (2.3) is equivalent to

a− [a− b]+ = 0, (2.4)

where [a− b]+ = max{a− b, 0}.
And it follows from [3], the nonsmooth function [x]+ = max{x, 0} can be approximated

by the following smooth function:

p(x, α) = x+ α ln(1 + e−
x
α ), (2.5)

where x ∈ ℜ, α > 0 is a smooth parameter, and p(x, α) is just the integral function of
Sigmoid function 1

1+e−
x
α
, which is commonly used in neural networks.

The following Lemma unfolds some nice properties of p(x, α) (see Ref. [3]).
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Lemma 2.7. For p(x, α) defined by (2.5), it holds that

(1) p(x, α) is increasing with respect to α, and [x]+ ≤ p(x, α) ≤ [x]+ + α ln 2;

(2) [x]+ ≈ p(x, α) as α → 0.

Thus, it follows from Lemma 2.7 that for α > 0 being small enough, (2.4) can be
approximated by the following formulation:

a−max{a− b, 0} = 0 ≈ a− (a− b)− α ln(1 + e−
a−b
α ) = 0,

which means that the complementary constraint condition (2.2) can be approximately re-
formulated as

b− α ln(1 + e(−
1
α )(a−b)) = 0.

Define function Φ(x, α) : ℜn ×ℜ+ → ℜl as

Φ(x, α) =

 Φ1(x, α)
...

Φl(x, α)

 ,

where
Φi(x, α) = Hi(x)− α ln(1 + e−

1
α (Gi(x)−Hi(x)), for i = 1, 2, . . . , l. (2.6)

Then, G(x) ≥ 0, H(x) ≥ 0, and G(x)TH(x) = 0 in problem (1.1) can be approximated by
equality Φ(x, α) = 0 for α > 0 being small enough. Thus, for α > 0 being small enough,
problem (1.1) can be reformulated as the smooth approximation problem of the form:

min f(x)

s.t. g(x) ≤ 0,

h(x) = 0,

Φ(x, α) = 0.

(2.7)

Notice that an entropic regularization approach is presented in Ref. [2] for mathemat-
ical programs with equilibrium constraints, in which the the complementarity constraints
is approximated by the equality constraints based on the smoothing function by entropic
regularization. And the smoothing function by entropic regularization in Ref. [2] is a smooth
approximation for the minimum function in (2.3), which is different from the smooth func-
tion in (2.5). Furthermore, notice that the smooth function (2.5) is mentioned as a special
case in Ref. [27]. But the different assumptions are adopted in the theoretical analysis.
For example, the multiplier with respect to the approximate smooth equality constraint is
assumed to be bounded in Ref. [27], which is not needed in the subsequent discussion in this
paper. Hence it is desirable to investigate the smoothing method for problem (1.1) based
on the approximation problem (2.7) from the different points of view.

Next, we will investigate the properties of Φ(x, α). Denote the feasible set of problem
(2.7) by Fα.

Lemma 2.8. Let Φi(x, α) (i = 1, 2, . . . , l) be defined by (2.6). Then we have the following
conclusions.

(1) For any α > 0, let xα ∈ Fα. Suppose that xα → x̄ as α → 0. Then x̄ ∈ F .
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(2) For any α > 0, the gradient and Hessian of Φi(x, α) with respect to x are calculated
by

∇xΦi(x, α) = ξi(x, α)∇Gi(x) + ηi(x, α)∇Hi(x),

∇2
xΦi(x, α) = ξi(x, α)∇2Gi(x) + ηi(x, α)∇2Hi(x)

− 1

α
ξi(x, α)ηi(x, α)(∇Gi(x)∇Gi(x)

T −∇Hi(x)∇Gi(x)
T )

+
1

α
ξi(x, α)ηi(x, α)(∇Gi(x)∇Hi(x)

T −∇Hi(x)∇Hi(x)
T ),

where

ξi(x, α) =
e(−

1
α )(Gi(x)−Hi(x))

1 + e(−
1
α )(Gi(x)−Hi(x))

, ηi(x, α) =
1

1 + e(−
1
α )(Gi(x)−Hi(x))

, (2.8)

ξi(x, α) ∈ (0, 1), ηi(x, α) ∈ (0, 1), and ξi(x, α) + ηi(x, α) = 1. And for i = 1, 2, . . . , l,
ξi(x, α) and ηi(x, α) are continuously differentiable with respect to x for any α > 0.

(3) Suppose that {xk} is a sequence in ℜn such that xk → x̄ ∈ F as k → ∞. Then there
exists a sequence {αk} approaching zero in ℜ+ such that

lim
xk→x̄

αk→0

∇xΦi(xk, αk) = ξ̄i(x̄)∇Gi(x̄) + η̄i(x̄)∇Hi(x̄),

where ξ̄i(x̄) = lim xk→x̄

αk→0
ξi(xk, αk) ∈ [0, 1], η̄i(x̄) = lim xk→x̄

αk→0
ηi(xk, αk) ∈ [0, 1], ξ̄i(x̄) +

η̄i(x̄) = 1, ∇Gi(x̄) = limxk→x̄ ∇Gi(xk) and ∇Hi(x̄) = limxk→x̄ ∇Hi(xk). In particu-
lar, if i ∈ I0+(x̄), then ξ̄i(x̄) = 1, and η̄i(x̄) = 0; If i ∈ I+0(x̄), then ξ̄i(x̄) = 0, and
η̄i(x̄) = 1; And if i ∈ I00(x̄), then ξ̄i(x̄) ∈ (0, 1), and η̄i(x̄) ∈ (0, 1).

Proof. (1) By Lemma 2.7, and the definition and continuity of Φ(x, α), the first conclusion
is true.

(2) According to (2.6), it follows that

∇xΦi(x, α) = ∇Hi(x)− α · e−
1
α (Gi(x)−Hi(x))

1 + e−
1
α (Gi(x)−Hi(x))

·
(
− 1

α

)
(∇Gi(x)−∇Hi(x))

=
e−

1
α (Gi(x)−Hi(x))

1 + e−
1
α (Gi(x)−Hi(x))

∇Gi(x) +

(
1− e−

1
α (Gi(x)−Hi(x))

1 + e−
1
α (Gi(x)−Hi(x))

)
∇Hi(x)

= ξi(x, α)∇Gi(x) + ηi(x, α)∇Hi(x),

where ξi(x, α) = e(−
1
α

)(Gi(x)−Hi(x))

1+e(−
1
α

)(Gi(x)−Hi(x))
, ηi(x, α) = 1 − e(−

1
α

)(Gi(x)−Hi(x))

1+e(−
1
α

)(Gi(x)−Hi(x))
, and we have that

ξi(x, α) ∈ (0, 1), ηi(x, α) ∈ (0, 1), and ξi(x, α) + ηi(x, α) = 1.
Moreover, we have that

∇2
xΦi(x, α) = ∇ξi(x, α)∇Gi(x)

T + ξi(x, α)∇2Gi(x)

+∇ηi(x, α)∇Hi(x)
T + ηi(x, α)∇2Hi(x),

where ∇ξi(x, α) = − 1
αξi(x, α)ηi(x, α)(∇Gi(x) − ∇Hi(x)), ∇ηi(x, α) = 1

αξi(x, α)ηi(x, α)
(∇Gi(x)−∇Hi(x)). That is,

∇2
xΦi(x, α) = ξi(x, α)∇2Gi(x) + ηi(x, α)∇2Hi(x)

− 1

α
ξi(x, α)ηi(x, α)(∇Gi(x)∇Gi(x)

T −∇Hi(x)∇Gi(x)
T )

+
1

α
ξi(x, α)ηi(x, α)(∇Gi(x)∇Hi(x)−∇Hi(x)∇Hi(x)

T ).
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(3) It follows from the conclusion (2) that

ξi(xk, α) =
e(−

1
α )(Gi(xk)−Hi(xk))

1 + e(−
1
α )(Gi(xk)−Hi(xk))

=
1

1

e(−
1
α

)(Gi(xk)−Hi(xk))
+ 1

,

ηi(xk, α) = 1− e(−
1
α )(Gi(xk)−Hi(xk))

1 + e(−
1
α )(Gi(xk)−Hi(xk))

=
1

1 + e(−
1
α )(Gi(xk)−Hi(xk))

.

If i ∈ I0+(x̄), that is, Gi(x̄) = 0, Hi(x̄) > 0, we conclude that Gi(xk) < Hi(xk) for
all k sufficiently large. Thus, for any sequence {αk} approaching zero in ℜ+, it holds that
lim xk→x̄

αk→0
ξi(xk, αk) = 1 and lim xk→x̄

αk→0
ηi(xk, αk) = 0. Let ξ̄i(x̄) = lim xk→x̄

αk→0
ξi(xk, αk) and

η̄i(x̄) = lim xk→x̄

αk→0
ηi(xk, αk). Hence the conclusion holds. Similarly, it can be proven that the

conclusion is true for i ∈ I+0(x̄).

Since ξi(xk, α) ∈ (0, 1), ηi(xk, α) ∈ (0, 1) and ξi(xk, α) + ηi(xk, α) = 1 for i ∈ I00(x̄),
there exists a sequence {αk} approaching zero in ℜ+ such that lim xk→x̄

αk→0
ξi(xk, αk) ∈ (0, 1),

lim xk→x̄

αk→0
ηi(xk, αk) ∈ (0, 1) and lim xk→x̄

αk→0
ξi(xk, αk) + lim xk→x̄

αk→0
ηi(xk, αk) = 1. Let ξ̄i(x̄) =

lim xk→x̄

αk→0
ξi(xk, αk) and η̄i(x̄) = lim xk→x̄

αk→0
ηi(xk, αk). The proof is completed.

Remark 2.9. Lemma 2.8 plays a significant role in the subsequent theoretical analysis, and
the the upper level strict complementarity and the asymptotically weakly nondegenerate
condition are not needed in the proof of Lemma 2.8.

3 Convergence Analysis

In this section, we discuss the convergence of the smoothing method, in which it is proven
that the sequence of the KKT solutions to problem (2.7) converges to a C-stationary point
of problem (1.1) as the smooth parameter tends to zero under the mild assumptions. And,
the accumulation point is further proven to be an S-stationary point under the weak second-
order necessary condition.

Theorem 3.1. Let α = αk > 0 in problem (2.7) with αk → 0 (k → ∞). Suppose that {xk}
is a sequence of KKT solutions to problem (2.7). If x̄ ∈ F is an accumulation point of the
sequence {xk} and MPCC-MFCQ holds at x̄, then x̄ is a C-stationary point of problem (1.1)
as αk tends to zero.

Proof. Since it follows from the assumption that the sequence {xk} is a KKT solution to
problem (2.7), there exist Lagrange multipliers of λk, µk, and γk such that

∇f(xk) +

m∑
i=1

λk
i∇gi(xk) +

p∑
i=1

µk
i∇hi(xk) +

l∑
i=1

γk
i ∇xΦi(xk, αk) = 0, (3.1)

λk
i ≥ 0, λk

i gi(xk) = 0, i = 1, 2, . . . ,m, (3.2)

gi(xk) ≤ 0, i = 1, . . . ,m, hi(xk) = 0, i = 1, . . . , p,Φi(xk, αk) = 0, i = 1, . . . , l. (3.3)
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Moreover, (3.1) can be rewritten as

−∇f(xk) =

m∑
i=1

λk
i∇gi(xk) +

p∑
i=1

µk
i∇hi(xk) +

l∑
i=1

γk
i ∇xΦi(xk, αk)

=

m∑
i=1

λk
i∇gi(xk) +

p∑
i=1

µk
i∇hi(xk) +

l∑
i=1

γk
i ξi(xk, αk)∇Gi(xk)

+

l∑
i=1

γk
i ηi(xk, αk)∇Hi(xk).

(3.4)

Define uk
i = −γk

i ξy(xk, αk), v
k
i = −γk

i ηi(xk, αk), then (3.4) is equivalent to

−∇f(xk) =

m∑
i=1

λk
i∇gi(xk) +

p∑
i=1

µk
i∇hi(xk)−

l∑
i=1

uk
i∇Gi(xk)−

l∑
i=1

vki ∇Hi(xk). (3.5)

Next we prove that the sequence {(λk
i , µ

k
i , u

k
i , v

k
i )} associated with (3.5) is bounded.

Suppose that this sequence is unbounded, then there exists a subset K such that for any
k ∈ K, it holds that

(λk, µk, uk, vk)

∥(λk, µk, uk, vk)∥
→ (λ′, µ′, u′, v′) (k → ∞).

If i /∈ Ig(x̄), which implies gi(x̄) < 0, by xk → x̄ as k → ∞ and the continuity of g(x), we
get gi(xk) < 0 as k is sufficiently large. And according to (3.2), we know that λk

i = 0 for
i /∈ Ig(x̄). Thus, λ′

i = 0. And λ′
i ≥ 0 for i ∈ Ig(x̄). Moreover, by the definitions of uk

i and
vki , and conclusion (3) of Lemma 2.8, ui

′ = 0 for i ∈ I+0(x̄), and vi
′ = 0 for i ∈ I0+(x̄). We

divide both sides of (3.5)) by
∥∥(λk, µk, uk, vk)

∥∥, and let k → ∞, then we have

∑
i∈Ig(x)

λi
′∇gi(x̄) +

p∑
i=1

µi
′∇hi(x̄)

−
∑

i∈I00(x̄)∪I0+(x̄)

ui
′∇Gi(x̄)−

∑
i∈I00(x̄)∪I+0(x̄)

vi
′∇Hi(x̄) = 0,

in which (λ′, µ′, u′, v′) ̸= 0, contradicting Lemma 2.6 from the fact that MPCC-MFCQ holds
at x̄. Thus, the sequence of {(λk

i , µ
k
i , u

k
i , v

k
i )} is bounded.

Without loss of generality, we now suppose that the sequence (λk, µk, uk, vk) converges
to (λ̄, µ̄, ū, v̄) as k → ∞. By (3.2), we have λ̄i ≥ 0, λ̄igi(x̄) = 0, i = 1, 2, . . . ,m, which means
that λ̄i = 0 for i /∈ Ig(x̄). As i ∈ I+0(x̄), it follows from the conclusion (3) of Lemma 2.8
that limk→∞ ξi(xk, αk) = 0, which means ūi = 0. Similarly, as i ∈ I0+(x̄), we obtain v̄i = 0.
Since g(x), h(x), G(x), and H(x) are continuously differentiable functions, setting k → ∞
in (3.5), we have

∇f(x̄) +
∑

i∈Ig(x̄)

λ̄i∇gi(x̄) +

p∑
i=1

µ̄i∇hi(x̄)−
∑

i∈I00(x̄)∪I0+(x̄)

ūi∇Gi(x̄)

−
∑

i∈I00(x̄)∪I+0(x̄)

v̄i∇Hi(x̄) = 0.
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Since uk
i v

k
i = (γk

i )
2ξi(xk, αk)ηi(xk, αk), and taking into account the conclusion (3) of Lemma

2.8 that ξ̄i(x̄) ∈ (0, 1) and η̄i(x̄) ∈ (0, 1) for i ∈ I00(x̄), we obtain

ūiv̄i = γ̄2
i ξ̄i(x̄)η̄i(x̄) ≥ 0, i ∈ I00(x̄).

Therefore, x̄ is a C-stationary point of problem (1.1).

We now further explore the property of the accumulation point x̄ in Theorem 3.1. Let
the Lagrange function of problem (2.7) be defined below:

L̄α(x, λ, µ, γ) = f(x) + λT g(x) + µTh(x) + γTΦ(x, α),

where λ ∈ ℜm, µ ∈ ℜp, and γ ∈ ℜl are Lagrange multipliers. By Lemma 2.8, we get

∇xL̄α(x, λ, µ, γ) = ∇f(x) + λT∇g(x) + µT∇h(x)

+

l∑
i=1

γiξi(x, α)∇Gi(x) +

l∑
i=1

γiηi(x, α)∇Hi(x),
(3.6)

∇2
xL̄α(x, λ, µ, γ) = ∇2f(x) +

m∑
i=1

λi∇2gi(x)
T +

p∑
i=1

µi∇2hi(x)

+

l∑
i=1

γiξi(x, α)∇2Gi(x) +

l∑
i=1

γiηi(x, α)∇2Hi(x)

− 1

α

l∑
i=1

γiξi(x, α)ηi(x, α)Mi(x)Mi(x)
T ,

(3.7)

where ξi(x, α) and ηi(x, α) (i = 1, 2, . . . , l) are defined in Lemma 2.8, and Mi(x) = ∇Gi(x)−
∇Hi(x), i = 1, 2, . . . , l.

Definition 3.2. Let x̃ be a local optimal solution of the approximation problem (2.7). The
approximate problem (2.7) is said to satisfy the weak second-order necessary condition at x̃ if
there exist Lagrange multipliers λ ∈ ℜm

+ , µ ∈ ℜp, and γ ∈ ℜl such that ∇xL̄α(x̃, λ, µ, γ) = 0
and dT∇2

xL̄α(x̃, λ, µ, γ)d ≥ 0 for d ∈ Cα(x̂), where Cα(x̃) = {d ∈ ℜn|∇gi(x̃)
T d = 0, i ∈

Ig(x̃),∇hi(x̃)
T d = 0, i = 1, 2, . . . , p,∇xΦi(x̃, α)

T d = 0, i = 1, 2, . . . , l}.

Theorem 3.3. Let α = αk > 0 in problem (2.7) with αk → 0 (k → ∞). Suppose that {xk}
is a sequence of KKT solutions to problem (2.7), and the problem (2.7) satisfies the weak
second-order necessary condition at xk. If x̄ ∈ F is an accumulation point of the sequence
{xk} and MPCC-LICQ holds at x̄, then x̄ is an S-stationary point of problem (1.1) as αk

tends to 0.

Proof. It follows from Theorem 3.1 that x̄ is a C-stationary point of problem (1.1) since
MPCC-LICQ implies MPCC-MFCQ. Assume that x̄ is not an S-stationary point of problem
(1.1), there must exist i0 ∈ I00(x̄) such that

ūi0 = lim
k→∞

(−γk
i0ξi0(xk, αk)) < 0,

v̄i0 = lim
k→∞

(−γk
i0ηi0(xk, αk)) < 0.

Since MPCC-LICQ holds at x̄, it follows from the continuity of ∇gi(x) (i = 1, 2, . . . ,m),
∇hi(x) (i = 1, 2, . . . , p), ∇Gi(x) (i = 1, 2, . . . , l), and ∇Hi(x) (i = 1, 2, . . . , l) that the



A SMOOTHING METHOD FOR MPCC 535

vectors of {∇gi(xk), i ∈ Ig(xk)}, {∇hi(xk), i = 1, 2, . . . , p}, {∇Gi(xk), i ∈ I00(x̄) ∪ I0+(x̄)}
and {∇Hi(xk), i ∈ I00(x̄) ∪ I+0(x̄)} are linear independent for k being large enough, where
Ig(xk) ⊆ Ig(x̄). Thus, there exists a bounded sequence {dk} such that

∇gi(xk)
T dk = 0, i ∈ Ig(xk),

∇hi(xk)
T dk = 0, i = 1, 2, . . . , p,

∇Gi(xk)
T dk = 0, i ∈ I00(x̄) ∪ I0+(x̄)\{i0},

∇Hi(xk)
T dk = 0, i ∈ I00(x̄) ∪ I+0(x̄)\{i0},

∇Gi0(xk)
T dk = ηi0(xk, αk),

∇Hi0(xk)
T dk = −ξi0(xk, αk).

Next we prove that dk ∈ Cαk
(xk), where,

Cαk
(xk) = {dk ∈ ℜn|∇gi(xk)

T dk = 0, i ∈ Ig(xk),∇hi(xk)
T dk = 0, i = 1, 2, . . . , p,

∇xΦi(xk, αk)
T dk = 0, i = 1, 2, . . . , l}.

From Lemma 2.8, we have

∇xΦi(xk, αk)
T dk = ξi(xk, αk)∇Gi(xk)

T dk + ηi(xk, αk)∇Hi(xk)
T dk.

Hence,

∇xΦi0(xk, αk)
T dk = ξi0(xk, αk)ηi0(xk, αk)− ηi0(xk, αk)ξi0(xk, αk)

= 0.

Moreover, we have ∇xΦi(xk, αk)
T dk = 0, i = 1, 2, . . . , l (i ̸= i0), ∇gi(xk)

T dk = 0, i ∈ Ig(xk),
and ∇hi(xk)

T dk = 0, i = 1, 2, . . . , p for k being large enough. Hence dk ∈ Cαk
(xk) for k

being large enough. Then from the weak second-order necessary condition, we obtain

dTk∇2
xL̄αk

(xk, λk, µk, γk)dk ≥ 0. (3.8)

That is,

dTk∇2f(xk)dk +
∑

i∈Ig(xk)

λk
i d

T
k∇2gi(xk)dk +

p∑
i=1

µk
i d

T
k∇2hi(xk)dk

+

l∑
i=1

γk
i d

T
k∇2

xΦi(xk, αk)dk ≥ 0.

From Lemma 2.8, we have

dTk∇2
xΦi(xk, αk)dk =ξi(xk, αk)d

T
k∇2Gi(xk)dk + ηi(xk, αk)d

T
k∇2Hi(x)dk

− 1

αk
ξi(xk, αk)ηi(xk, αk)d

T
kMi(xk)Mi(xk)

T dk.

For i ̸= i0,

dTk∇2
xΦi(xk, αk)dk = ξi(xk, αk)d

T
k∇2Gi(xk)dk + ηi(xk, αk)d

T
k∇2Hi(x)dk.
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For i = i0,

dTk∇2
xΦi(xk, αk)dk =ξi0(xk, αk)d

T
k∇2Gi0(xk)dk + ηi0(xk, αk)d

T
k∇2Hi0(x)dk

− 1

αk
ξi0(xk, αk)ηi0(xk, αk).

Thus,

dTk∇2
xL̄αk

(xk, λk, µk, γk)dk =

dTk∇2f(xk)dk +
∑

i∈Ig(xk)

λk
i d

T
k∇2gi(xk)dk +

p∑
i=1

µk
i d

T
k∇2hi(xk)dk

+

l∑
i=1

γk
i

(
ξi(xk, αk)d

T
k∇2Gi(xk)dk + ηi(xk, αk)d

T
k∇2Hi(xk)dk

)
− 1

αk
γk
i0ξi0(xk, αk)ηi0(xk, αk).

(3.9)

Since dk is bounded, f(x), g(x), h(x), G(x) and H(x) are twice continuously differen-
tiable, and the Lagrange multipliers are bounded (see the proof in Theorem 3.1), the first
five terms of (3.9) are bounded for k being large enough. Since limk→∞ −γk

i0
ξi0(xk, αk) =

limk→∞ uk
i0

= ūi0 < 0, and ξi0(xk, αk) ∈ (0, 1), one has that limk→∞ γk
i0

= γ̄i0 > 0. Accord-
ing to the conclusion (iii) of Lemma 2.8, limk→∞ ξi0(xk, αk) = ξ̄i0(x̄), limk→∞ ηi0(xk, αk) =
η̄i0(x̄), and ξ̄i0(x̄), η̄i0(x̄) ∈ (0, 1), it follows that

− 1

αk
γk
i0ξi0(xk, αk)ηi0(xk, αk) → −∞,

which is a contradiction with (3.8). Then we get ūi0 ≥ 0. Similarly, it follows that v̄i0 ≥ 0.
Therefore x̄ is an S-stationary point of problem (1.1).

Remark 3.4. From Theorem 3.1 and Theorem 3.3, we know that the KKT solution to the
smoothing problem (2.7) is vital in establishing the convergence of the smoothing method.
Hence it is important to analyze the existence of KKT solution to problem (2.7) under some
mild assumptions on the original problem (1.1), on which we will make detailed discussion
in the next section.

4 Discussion of KKT Solutions to Smooth Approximation Problem

Although the convergence analyses of some current smoothing methods are discussed, the
assumption is directly made that the sequence of the KKT solutions to their corresponding
smooth approximation problems is existent. A natural question is that whether or not the
assumption is reasonable. That is, the relationship between the assumption and the original
problem (1.1) should be elaborated. For this consideration, this section mainly focuses on
exploring the existence of KKT solutions to the smooth approximation problem (2.7) under
some given assumptions on problem (1.1). In fact, under these assumptions, we characterize
the linearly independent constraint qualification, the KKT condition and the second-order
sufficient condition of smooth approximation problem, which guarantee the existence of the
KKT solution to the smooth approximation problem (2.7).

Suppose that x̂ ∈ F and the further assumption on problem (1.1) at x̂ is stated as follows.
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(A1) For any z ∈ C(x̂), it holds that

zT∇2
xL(x̂, λ̂, µ̂, û, v̂)z > 0,

where C(x̂) = {z ∈ Rn|∇gi(x̂)
T z = 0, i ∈ Ig(x̂),∇hi(x̂)

T z = 0, i = 1, 2, . . . , p,
∇Gi(x̂)

T z = 0, i ∈ I0+(x̂) ∪ I00(x̂),∇Hi(x̂)
T z = 0, i ∈ I+0(x̂) ∪ I00(x̂)}.

Next, we will investigate the LICQ, the KKT condition and the second-order sufficient
condition of the smooth approximation problem (2.7).

Theorem 4.1. Suppose that problem (1.1) satisfies MPCC-LICQ and assumption (A1) at
x̂, and x̂ is a W-stationary point of problem (1.1) associated with Lagrange multipliers of

λ̂, µ̂, û, and v̂. Let xα ∈ Fα and xα → x̂ as α → 0. Then there exists a sufficiently small
constant α̂ > 0 such that for any xα ∈ Fα whenever α ∈ (0, α̂), the following conclusions
are true.

(i) The vectors of {∇gi(x
α), i ∈ Ig(x

α)}, {∇hi(x
α), i = 1, 2, . . . , p)}, and

{∇xΦi(x
α, α), i = 1, 2, . . . , l} are linearly independent vectors;

(ii) There exist λα ∈ ℜm, µα ∈ ℜp and γα ∈ ℜl such that ∇xL̄α(x
α, λα, µα, γα) = 0;

(iii) Furthermore, suppose that for any i ∈ I00(x̂), ûi ≥ 0 or v̂i ≥ 0, and there exists an
index i ∈ I00(x̂) such that ûi > 0 or v̂i > 0. Then for any 0 ̸= zα ∈ Ĉα(x

α), the
following inequality holds

(zα)T∇2
xL̄α(x

α, λα, µα, γα)zα > 0,

where Ĉα(x
α) = {z ∈ ℜn|∇gi(x

α)T z = 0, i ∈ Ig(x
α), ∇hi(x

α)T z = 0, i = 1, 2, . . . , p,
∇xΦi(x

α, α)T z = 0, i = 1, 2, . . . , l}.

Proof. We now prove conclusion (i). Firstly, we prove that there exists a constant α̂ > 0 such
that for any xα ∈ Fα whenever α ∈ (0, α̂), the vectors of {∇gi(x

α), i ∈ Ig(x̂)}, {∇hi(x
α),

i = 1, 2, . . . , p}, and {∇xΦi(x
α, α), i = 1, 2, . . . , l} are linearly independent. Suppose that

such a constant α̂ > 0 does not exist, then there is a sequence xαk ∈ Fαk
with αk → 0 and

xαk → x̂ as k → ∞ and ∥(ak, bk, ck)∥ ≡ 1 such that

∑
i∈Ig(x̂)

aki∇gi(x
αk) +

p∑
i=1

bki∇hi(x
αk) +

l∑
i=1

cki∇xΦi(x
αk , αk) = 0.

That is,

∑
i∈Ig(x̂)

aki∇gi(x
αk) +

p∑
i=1

bki∇hi(x
αk) +

l∑
i=1

cki ξi(x
αk , αk)∇Gi(x

αk)

+

l∑
i=1

cki ηi(x
αk , αk)∇Hi(x

αk) = 0.

From the definitions and properties of ξi(x, α) and ηi(x, α) in Lemma 2.8, we obtain
limk→∞ ξi(x

αk , αk) = 0 and limk→∞ ηi(x
αk , αk) = 1 for i ∈ I+0(x̂);

limk→∞ ηi(x
αk , αk) = 0 and limk→∞ ξi(x

αk , αk) = 1 for i ∈ I0+(x̂); and for i ∈ I00(x̂),
limk→∞ ξi(x

αk , αk) + limk→∞ ηi(x
αk , αk) = 1.
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Without loss of generality, we may assume that ak → a∗, bk → b∗, and ck → c∗ as
k → ∞. Thus, we get∑

i∈Ig(x̂)

a∗i∇gi(x̂) +

p∑
i=1

b∗i∇hi(x̂) +
∑

i∈I0+(x̂)

c∗i∇Gi(x̂) +
∑

i∈I00(x̂)

c∗i ξ̄i(x̂)∇Gi(x̂)

+
∑

i∈I+0(x̂)

c∗i∇Hi(x̂) +
∑

i∈I00(x̂)

c∗i η̄i(x̂)∇Hi(x̂) = 0,

and ∥(a∗, b∗, c∗)∥ ≡ 1, where ξ̄i(x̂) = limk→∞ ξi(x
αk , αk) and η̄i(x̂) = limk→∞ ηi(x

αk , αk)
for i ∈ I00(x̂).

It follows from MPCC-LICQ that a∗i = 0 for i ∈ Ig(x̂), b
∗
i = 0 for i = 1, 2, . . . , p, c∗i = 0

for i ∈ I0+(x̂), c
∗
i = 0 for i ∈ I+0(x̂), and c∗i ξ̄i(x) = 0 and c∗i η̄i(x) = 0 for i ∈ I00(x̂).

Since for i ∈ I00(x̂), ξ̄i(x̂) + η̄i(x̂) = 1, it is true that c∗i = c∗i ξ̄i(x) + c∗i η̄i(x) = 0. That
is, a∗ = 0, b∗ = 0, and c∗ = 0, which contradicts with ∥(a∗, b∗, c∗)∥ ≡ 1. Hence, there
exists a constant α̂ > 0 such that for any xα ∈ Fα whenever α ∈ (0, α̂), the vectors of
{∇gi(x

α), i ∈ Ig(x̂)}, {∇hi(x
α), i = 1, 2, . . . , p}, and {∇xΦi(x

α, α), i = 1, 2, . . . , l} are
linearly independent. Moreover, since Ig(x

α) ⊆ Ig(x̂), the conclusion (i) holds.
Next we prove conclusion (ii). We now prove that there exist λ̄ ∈ ℜm, µ̄ ∈ ℜp, and

γ̄ ∈ ℜl such that limα→0 ∇xL̄α(x
α, λ̄, µ̄, γ̄) = 0 for any xα ∈ Fα. According to (3.6) and

Lemma 2.8, for any (λ̄, µ̄, γ̄) ∈ ℜm ×ℜp ×ℜl, we obtain

lim
α→0

∇xL̄α(x
α, λ̄, µ̄, γ̄) = ∇f(x̂) +

m∑
i=1

λ̄i∇gi(x̂) +

p∑
i=1

µ̄i∇hi(x̂)

+
∑

i∈I+0(x̂)

γ̄iξ̄i(x̂)∇Gi(x̂) +
∑

i∈I0+(x̂)

γ̄iξ̄i(x̂)∇Gi(x̂)

+
∑

i∈I00(x̂)

γ̄iξ̄i(x̂)∇Gi(x̂) +
∑

i∈I+0(x̂)

γ̄iη̄i(x̂)∇Hi(x̂)

+
∑

i∈I0+(x̂)

γ̄iη̄i(x̂)∇Hi(x̂) +
∑

i∈I00(x̂)

γ̄iη̄i(x̂)∇Hi(x̂),

(4.1)

where ξ̄i(.) and η̄i(.) are defined in Lemma 2.8. By the assumption that x̂ is a W-stationary

point in which λ̂, µ̂, û and v̂ are corresponding Lagrange multipliers , set λ̄i = λ̂i for
i = 1, 2, . . . ,m, which implies that λ̄igi(x̂) = 0 and λ̄i ≥ 0. Similarly, set µ̄i = µ̂i for
i = 1, 2, . . . , p.

For i ∈ I+0(x̂), set γ̄i = −v̂i, which means that γ̄iξ̄i(x̂) = 0 and γ̄iη̄i(x̂) = −v̂i, since
ξ̄i(x̂) = 0 and η̄i(x̂) = 1 for i ∈ I+0(x̂). For i ∈ I0+(x̂), set γ̄i = −ûi, which means that
γ̄iξ̄i(x̂) = −ûi and γ̄iη̄i(x̂) = 0, since ξ̄i(x̂) = 1 and η̄i(x̂) = 0 for i ∈ I0+(x̂). For i ∈ I00(x̂),
set γ̄i = −ûi − v̂i, which means that γ̄iξ̄i(x̂) = −ûi and γ̄iη̄i(x̂) = −v̂i if ûiη̄i(x̂) = v̂iξ̄i(x̂),
since ξ̄i(x̂) + η̄i(x̂) = 1, ξ̄i(x̂) ∈ (0, 1), and η̄i(x̂) ∈ (0, 1) for i ∈ I00(x̂). Thus, by the
assumption that x̂ is a W-stationary point of problem (1.1)and (4.1), there exist λ̄ ∈ ℜm,
µ̄ ∈ ℜp, and γ̄ ∈ ℜl such that the following holds

lim
α→0

∇xL̄α(x
α, λ̄, µ̄, γ̄) = ∇f(x̂) +

∑
i∈Ig(x̂)

λ̂i∇gi(x̂) +

p∑
i=1

µ̂i∇hi(x̂)

−
∑

i∈I0+(x̂)∪I00(x̂)

ûi∇Gi(x̂)−
∑

i∈I+0(x̂)∪I00(x̂)

v̂i∇Hi(x̂)

= ∇xL(x̂, λ̂, µ̂, û, v̂) = 0.

(4.2)
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According to (4.2) and MPCC-LICQ, it can be proven that there exists (λα, µα, γα) ∈
ℜm ×ℜp ×ℜl with (λα, µα, γα) → (λ̄, µ̄, γ̄) as α → 0 such that the conclusion (ii) holds for
xα whenever α ∈ (0, α̂) if α̂ is chosen to be small enough.

At last, we prove (iii). From (3.7) and the definition of Lagrange function of problem
(1.1), notice that

∇2
xL̄α(x, λ, µ, γ) = ∇2

xL(x, λ, µ,−γξ(x, α),−γη(x, α))

+
1

α

l∑
i=1

(−γi)ξi(x, α)ηi(x, α)Mi(x)Mi(x)
T ,

(4.3)

where

γξ(x, α) = (γ1ξ1(x, α), . . . , γlξl(x, α))
T ,

γη(x, α) = (γ1η1(x, α), . . . , γlηl(x, α))
T .

By the proof of conclusion (ii), taking into account Lemma 2.8, we have

lim
α→0

∇2
xL(x

α, λα, µα,−γαξ(x, α),−γαη(x, α)) = ∇2
xL(x̂, λ̂, µ̂, û, v̂), (4.4)

and

lim
α→0

l∑
i=1

(−γα
i )ξi(x, α)ηi(x, α)Mi(x)Mi(x)

T

=
∑

i∈I00(x̂)

(−γ̄i)ξ̄i(x̂)η̄i(x̂)Mi(x̂)Mi(x̂)
T

=
∑

i∈I00(x̂)

ûiη̄i(x̂)Mi(x̂)Mi(x̂)
T (or

∑
i∈I00(x̂)

v̂iξ̄i(x̂)Mi(x̂)Mi(x̂)
T ). (4.5)

By Lemma 2.8, limα→0 ∇xΦi(x
α, α) = ξ̄i(x̂)∇Gi(x̂) + η̄i(x̂)∇Hi(x̂), where ξ̄i(x̂), and

η̄i(x̂) are defined by Lemma 2.8. And let ∇xΦ̂i(x̂) = limα→0 ∇xΦi(x
α, α) for i = 1, 2, . . . , l.

Then it follows from the properties of ξ̄i(x̂) and η̄i(x̂) that

∇xΦ̂i(x̂) = ∇Gi(x̂), for i ∈ I0+(x̂), (4.6)

∇xΦ̂i(x̂) = ∇Hi(x̂), for i ∈ I+0(x̂), (4.7)

∇xΦ̂i(x̂) = ξ̄i(x̂)∇Gi(x̂) + η̄i(x̂)∇Hi(x̂), for i ∈ I00(x̂). (4.8)

By conclusion (i), there exists a bounded vector zα ∈ Ĉα(x
α), whose components are not

all zeros. And let zα → ẑ as α → 0. For ∇xΦi(x
α, α)T zα = 0 (i = 1, 2, . . . , l), we conclude

from (4.6)-(4.8) that

lim
α→0

∇xΦi(x
α, α)T zα = ∇Gi(x̂)

T ẑ = 0, for i ∈ I0+(x̂),

lim
α→0

∇xΦi(x
α, α)T zα = ∇Hi(x̂)

T ẑ = 0, for i ∈ I+0(x̂),

lim
α→0

∇xΦi(x
α, α)T zα = ξ̄i(x̂)∇Gi(x̂)

T ẑ + η̄i(x̂)∇Hi(x̂)
T ẑ = 0, for i ∈ I00(x̂). (4.9)

By (4.9) and ξ̄i(x̂) + η̄i(x̂) = 1, it yields ∇Gi(x̂)
T ẑ = η̄i(x̂)Mi(x̂)

T ẑ or ∇Hi(x̂)
T ẑ =

−ξ̄i(x̂)Mi(x̂)
T ẑ for i ∈ I00(x̂).
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If ∇Gi(x̂)
T ẑ = 0 for i ∈ I00(x̂), combining with η̄i(x̂) ∈ (0, 1), we obtain Mi(x̂)

T ẑ = 0.
Thus, ∇Hi(x̂)

T ẑ = 0. Hence it follows from (4.4), (4.5) and assumption (A1) that for any
zα ∈ Ĉα(x

α) with ∇Gi(x̂)
T ẑ = 0, it holds that

lim
α→0

(zα)T∇2
xL̄α(x

α, λα, µα, γα)zα = ẑT∇2
xL(x̂, λ̂, µ̂, û, v̂)ẑ > 0.

If ∇Gi(x̂)
T ẑ ̸= 0 for i ∈ I00(x̂), then η̄i(x̂)Mi(x̂)

T ẑ ̸= 0, which implies Mi(x̂)
T ẑ ̸= 0,

∇Hi(x̂)
T ẑ = −ξ̄i(x̂)Mi(x̂)

T ẑ ̸= 0 for i ∈ I00(x̂). Then by (4.4), and assumption of ûi ≥
0, i ∈ I00(x̂) and for some i ∈ I00(x̂) such that ûi > 0, as α → 0, for any zα ∈ Ĉα(x

α), one
has that ∑

i∈I00(x̂)

ûiη̂iz
TMi(x̂)Mi(x̂)

T ẑ > 0. (4.10)

And by (4.4) and the boundedness of zα ∈ Ĉα(x
α), ẑT∇2

xL(x̂, λ̂, µ̂, û, v̂)ẑ is bounded. Ac-
cording to (4.3) and (4.10), we have

lim
α→0

(zα)T∇2
xL̄α(x

α, λα, µα, γα)zα → +∞.

Based on the above discussion, we can choose α̂ to be small enough such that
(zα)T∇2

xL̄α(x
α, λα, µα, γα)zα > 0 for 0 ̸= zα ∈ Ĉα(x

α) whenever α ∈ (0, α̂). That is,
the conclusion (iii) is true. The proof is completed.

5 Numerical Results

We develop an implementable algorithm to obtain the approximate solution of problem (1.1)
by solving problem (2.7) based on the aforementioned theoretical analysis in this section and
test the computational efficiency of the discussed smoothing method by solving some typical
problems in MacMPEC database (see [12]).

We now present the following algorithm for solving problem (2.7).

Algorithm 5.1.

Step 1 Given an initial point x1 ∈ Rn. Choose α1 > 0, εstop, β ∈ (0, 1). And set k := 1.

Step 2 Solve problem (2.7) with αk being the current smooth parameter, and obtain its
optimum solution xk.

Step 3 Compute lk. If lk < εstop, then the algorithm terminates. Otherwise, set αk+1 :=
βαk, xk+1 := xk, k := k + 1, and return to Step 2.

Note. In Step 3, lk = max{∥max{g(xk), 0}∥ , ∥h(xk)∥ , ∥min{G(xk),H(xk)}∥}. In Algo-
rithm 5.1, lk is regarded as the termination condition to measure the accuracy of solution
(see [6]). If lk = 0, then xk is a feasible point of problem (1.1), which is also a stationary
point of problem (2.7) under some assumption conditions. Furthermore, by Theorem 3.1,
xk must be an approximate optimal solution of problem (1.1), and the closer lk approaches
zero, the higher the accuracy of the solution becomes.

Next, we test the numerical performance of the smoothing method by solving some test
problems including the high dimension problems in MacMPEC database [12]. For the sake
of comparison, we implement Algorithm 5.1 (named by Algorithm 1), the typical algorithm
developed in [7] (named by Algorithm 2) and the typical algorithm developed in [5] (named
by Algorithm 3) to solve the same test problems under the same initial conditions. The
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corresponding computer procedures run in Matlab R2014a with the computer environment
of 2.13GHz CPU and 2.00GB memory based operation system of Windows 7. We use the
built-in function fmincon to solve the smooth subproblem.

The initial smooth parameter is set as α1 = 1, and β = 0.1 for the reduction of the
smooth parameter. We set the initial parameter α1 = 0.001 for problem bilevel1 in order
to get the desired values efficiently. For all the test problems, the initial values of the same
kind of problems are the same. The obtained numerical results for low dimensional problems
are reported in Table 5.1, in which the name of test problem, the dimension (n,m, l) of test
problem, the initial value x1, the algorithm that is adopted, the optimal value f∗ of objective
function, the optimal solution x∗, the number k1 of inner iteration and the number k2 of
outer iterations, and the termination condition lk1 are listed.

Remark 5.2. From Table 5.1, the same optimal values and optimal solutions are obtained
by using Algorithm 1, Algorithm 2 and Algorithm 3. But Algorithm 1 requires a less number
of iterations for all the test problems than Algorithm 2, and it also requires a less number
of iterations for the test problems than Algorithm 3 except for problem desilva. In addition,
the values of the termination condition lk obtained by Algorithm 1 for these test problems
are closer to zero than those by Algorithm 3, and the values are also closer to zero than
those by Algorithm 2 except for problem bilevel1 and problem gnash16. Hence the numerical
results show that the smoothing method explored in this paper is reliable.

Considering that the dimensions of all the solved test problems in Table 5.1 are not
more than 20, we attempt to test problems with more than 80 dimensions from MacMPEC
database. The numerical results of nine test problems are reported in Table 5.2, which are
compared with those by Algorithm 2 and Algorithm 3.
Note. In Table 5.2, repmat(1/12,12,1) in (repmat(1/12,12,1); zeros(75,1)) means that each
of the first 12 elements of x1 is 1/12.

Remark 5.3. Table 5.2 shows that Algorithm 1, Algorithm 2 and Algorithm 3 can obtain
the optimal solutions of these test problems. And Algorithm 1 requires a less number of
iterations than Algorithm 2 and Algorithm 3 except for problem portf1-i-1 and problem
flp4-3. Moreover, the optimal values f∗ of these test problems by Algorithm 1 approach
zeros well than those by Algorithm 2 and Algorithm 3 except for problem portfl-i-3. Hence
the numerical results show that the smoothing method explored in this paper is feasible and
promising.

6 Conclusions

In this paper, the original problem (1.1) is reformulated as a standard smooth approximation
optimization model based on the smooth integral of the Sigmoid function discussed in [3],
in which the complementarity constraints in problem (1.1) are transformed into the equality
constraints with a smooth parameter by means of the smooth integral. Then we show that
the accumulation point of the sequence of KKT solutions to the smooth approximation
problem is a C-stationary point of the original problem as the smooth parameter tends
to zero under the weaker condition of MPCC-MFCQ. Furthermore, it is proven that the
accumulation point is an S-stationary point under some mild assumptions. That whether the
sequence of KKT solutions to the smooth approximation problem exists is further studied,
in which we explore the linear independence constraints qualification, the KKT solutions
condition and the second order sufficient condition for the smooth approximation problem
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Table 5.1: The comparison of numerical results for problems with low dimension.

Prob (n,m, l) x1 Al f∗ x∗ k1 k2 lk1
bilevel1 (2,2,6) (50,50) 1 -4.9994 (25.0013,30.0000) 4 78 6.2398e-07
bilevel1 (2,2,6) (50,50) 2 -4.9994 (25.0013,30.0000) 7 122 3.5300e-07
bilevel1 (2,2,6) (50,50) 3 -4.9994 (25.0013,30.0000) 5 93 6.6632e-07
bilevel2 (4,4,12) (5,5, 1 -6.6000e+03 (7.1421,3.2132, 3 23 2.6370e-11

15,15) 11.8579,17.7868)
bilevel2 (4,4,12) (5,5, 2 -6.6000e+03 (7.3019,3.4529, 5 42 1.4552e-8

15,15) 11.6981,17.5471)
bilevel2 (4,4,12) (5,5, 3 -6.6000e+03 (7.1867,3.2030, 4 29 4.8678e-10

15,15) 11.8734,17.3622)
bilevel3 (2,6,4) (0,2) 1 -12.6787 (0,2.0000) 3 18 1.3270e-15
bilevel3 (2,6,4) (0,2) 2 -12.6787 (0,2.0000) 5 25 1.4832e-08
bilevel3 (2,6,4) (0,2) 3 -12.6787 (0,2.0000) 4 29 3.8627e-09
desilva (2,2,2) (0,0) 1 -1 (0.5005,0.5005) 5 74 6.1610e-07
desilva (2,2,2) (0,0) 2 -1 (0.5002,0.5002) 5 79 6.2953e-07
desilva (2,2,2) (0,0) 3 -1 (0.5005,0.5005) 5 70 6.1825e-07
gnashl0 (1,4,8) 75 1 -343.3453 55.5513 1 9 5.8785e-11
gnashl0 (1,4,8) 75 2 -343.3453 55.5513 4 19 4.6387e-08
gnashl0 (1,4,8) 75 3 -343.3453 55.5513 3 15 2.3865e-09
gnash11 (1,4,8) 75 1 -203.1551 42.5382 1 9 1.1472e-11
gnash11 (1,4,8) 75 2 -203.1551 42.5382 4 21 5.1908e-07
gnash11 (1,4,8) 75 3 -203.1551 42.5382 5 12 2.8142e-08
gnash12 (1,4,8) 75 1 -68.1357 24.1451 1 9 9.5024e-13
gnash12 (1,4,8) 75 2 -68.1357 24.1451 4 20 6.6333e-08
gnash12 (1,4,8) 75 3 -68.1357 24.1451 6 18 4.3019e-09
gnash13 (1,4,8) 75 1 -19.1541 12.3727 1 9 9.1090e-09
gnash13 (1,4,8) 75 2 -19.1541 12.3727 4 19 8.6584e-08
gnash13 (1,4,8) 75 3 -19.1541 12.3727 2 16 5.7542e-08
gnash14 (1,4,8) 75 1 -3.1612 4.7535 1 11 1.4344e-14
gnash14 (1,4,8) 75 2 -3.1612 4.7535 4 19 1.1683e-07
gnash14 (1,4,8) 75 3 -3.1612 4.7535 3 13 2.5867e-08
gnashl5 (1,4,8) 25 1 -346.8932 50.0000 2 20 1.1781e-14
gnashl5 (1,4,8) 25 2 -346.8932 50.0000 5 21 4.4957e-08
gnashl5 (1,4,8) 25 3 -346.8932 50.0000 6 25 6.7326e-07
gnash16 (1,4,8) 20 1 -224.0372 39.7914 3 20 1.4225e-07
gnash16 (1,4,8) 20 2 -224.0372 39.7914 5 28 3.6478e-08
gnash16 (1,4,8) 20 3 -224.0372 39.7914 4 23 2.3386e-07
gnash17 (1,4,8) 15 1 -80.7860 24.2571 3 21 4.6002e-12
gnash17 (1,4,8) 15 2 -80.7860 24.2571 5 29 1.8518e-08
gnash17 (1,4,8) 15 3 -80.7860 24.2571 4 26 3.8645e-08
gnash18 (1,4,8) 12.5 1 -22.8371 13.0197 3 21 7.5351e-11
gnash18 (1,4,8) 12.5 2 -22.8371 13.0197 5 26 5.4911e-08
gnash18 (1,4,8) 12.5 3 -22.8371 13.0197 4 24 3.8654e-08
gnash19 (1,4,8) 10 1 -5.3491 6.0023 3 19 5.1876e-12
gnash19 (1,4,8) 10 2 -5.3491 6.0023 5 25 1.7337e-08
gnash19 (1,4,8) 10 3 -5.3491 6.0023 4 23 2.3421e-09

outrata31(a) (1,6,4) 0 1 3.2077 4.0604 3 36 3.2817e-07
outrata31(a) (1,6,4) 0 2 3.2077 4.0604 7 81 4.5672e-07
outrata31(a) (1,6,4) 0 3 3.2077 4.0604 7 86 5.3729e-07
outrata31(b) (1,6,4) 10 1 3.2077 4.0604 3 34 3.5208e-07
outrata31(b) (1,6,4) 10 2 3.2077 4.0604 7 79 6.7321e-07
outrata31(b) (1,6,4) 10 3 3.2077 4.0604 7 89 5.0325e-07
outrata32(a) (1,6,4) 0 1 3.4494 5.1536 3 24 1.6914e-09
outrata32(a) (1,6,4) 0 2 3.4494 5.1536 5 30 2.0042e-08
outrata32(a) (1,6,4) 0 3 3.4494 5.1536 6 37 3.6451e-08
outrata32(b) (1,6,4) 10 1 3.4494 5.1536 3 19 1.6892e-09
outrata32(b) (1,6,4) 10 2 3.4494 5.1536 5 38 2.0143e-08
outrata32(b) (1,6,4) 10 3 3.4494 5.1536 6 39 2.7963e-08
outrata33(a) (1,6,4) 0 1 4.6043 2.3894 3 21 2.8738e-08
outrata33(a) (1,6,4) 0 2 4.6043 2.3894 5 33 3.5255e-08
outrata33(a) (1,6,4) 0 3 4.6043 2.3894 8 36 2.9673e-08
outrata33(b) (1,6,4) 10 1 4.6043 2.3894 3 23 2.8740e-08
outrata33(b) (1,6,4) 10 2 4.6043 2.3894 5 33 3.1782e-08
outrata33(b) (1,6,4) 10 3 4.6043 2.3894 6 29 3.0654e-08
outrata34(a) (1,6,4) 0 1 6.5927 1.3731 3 21 1.5233e-09
outrata34(a) (1,6,4) 0 2 6.5927 1.3731 3 24 5.2677e-08
outrata34(a) (1,6,4) 0 3 6.5927 1.3731 5 28 4.5671e-08
outrata34(b) (1,6,4) 10 1 6.5927 1.3731 3 20 1.5217e-09
outrata34(b) (1,6,4) 10 2 6.5927 1.3731 3 25 5.2677e-08
outrata34(b) (1,6,4) 10 3 6.5927 1.3731 6 30 4.1729e-08
stackelberg1 (1,1,1) 0 1 -3.2667e+03 93.3333 1 4 3.1875e-12
stackelberg1 (1,1,1) 0 2 -3.2667e+03 93.3333 4 12 3.7500e-08
stackelberg1 (1,1,1) 0 3 -3.2667e+03 93.3333 2 5 5.7829e-11

under several assumptions on problem (1.1). The reported numerical results indicate that
the proposed smoothing method is promising. However, many works still deserve us to
investigate. For example, whether we can obtain the same convergence results under the
weaker conditions such as MPCC-ACQ. And it is also needed to test the much more higher
dimensional problems by using the smoothing method.
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Table 5.2: The comparison of numerical results for problems with high dimension.

Prob Dim x1 Al f∗ k1 k2 lk1
flp4-1 80 (ones(1,50),zeros(1,30)) 1 5.3012e-14 4 46 2.3845e-07
flp4-1 80 (ones(1,50),zeros(1,30)) 2 3.1080e-12 5 50 3.8910e-07
flp4-1 80 (ones(1,50),zeros(1,30)) 3 1.4521e-13 6 57 1.2378e-07

portfl-i-1 87 (repmat(1/12,12,1);zeros(75,1)) 1 2.3418e-07 6 128 3.12950e-13
portfl-i-1 87 (repmat(1/12,12,1);zeros(75,1)) 2 6.0419e-06 6 113 1.0010e-07
portfl-i-1 87 (repmat(1/12,12,1);zeros(75,1)) 3 3.3081e-07 6 120 8.3325e-09
portfl-i-2 87 (repmat(1/12,12,1);zeros(75,1)) 1 7.0563e-06 5 62 3.3749e-12
portfl-i-2 87 (repmat(1/12,12,1);zeros(75,1)) 2 8.3172e-06 6 67 1.0209e-07
portfl-i-2 87 (repmat(1/12,12,1);zeros(75,1)) 3 7.3418e-06 7 87 5.6217e-13
portfl-i-3 87 (repmat(1/12,12,1);zeros(75,1)) 1 3.4030e-06 5 59 9.6247e-16
portfl-i-3 87 (repmat(1/12,12,1);zeros(75,1)) 2 3.4029e-06 6 120 4.4092e-08
portfl-i-3 87 (repmat(1/12,12,1);zeros(75,1)) 3 1.4315e-08 8 190 1.7852e-07
portfl-i-4 87 zeros(87,1) 1 9.6926e-07 5 92 5.5133e-08
portfl-i-4 87 zeros(87,1) 2 9.6925e-07 6 110 1.4374e-07
portfl-i-4 87 zeros(87,1) 3 2.1671e-06 8 201 6.7038e-08
portfl-i-5 87 (repmat(1/12,12,1);zeros(75,1)) 1 1.1759e-06 5 80 4.9659e-12
portfl-i-5 87 (repmat(1/12,12,1);zeros(75,1)) 2 1.1759e-06 6 119 1.0343e-07
portfl-i-5 87 (repmat(1/12,12,1);zeros(75,1)) 3 3.0683e-06 8 197 7.9031e-08
flp4-2 110 (ones(1,50),zeros(1,60)) 1 6.3379e-13 4 30 1.5456e-06
flp4-2 110 (ones(1,50),zeros(1,60)) 2 4.3520e-09 5 32 1.9267e-07
flp4-2 110 (ones(1,50),zeros(1,60)) 3 5.3012e-11 4 29 1.1029e-07
flp4-3 140 (ones(1,70),zeros(1,70)) 1 3.2171e-13 4 38 1.1939e-07
flp4-3 140 (ones(1,70),zeros(1,70)) 2 4.3801e-11 6 40 1.8641e-08
flp4-3 140 (ones(1,70),zeros(1,70)) 3 3.6953e-12 3 28 9.5137e-15
flp4-4 200 (ones(1,100),zeros(1,100)) 1 6.8162e-13 4 43 3.7037e-08
flp4-4 200 (ones(1,100),zeros(1,100)) 2 1.3405e-08 5 36 2.9584e-07
flp4-4 200 (ones(1,100),zeros(1,100)) 3 5.3165e-12 4 46 6.0962e-08
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