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where Q ∈ IRn×n is a real-valued nonsingular symmetric matrix with a single negative
eigenvalue λn ∈ IR, and un ∈ IRn is a unit eigenvector of λn. By natural feature, it belongs
to the category of nonsymmetric cones because it is non-self-dual under standard inner
product. Nonetheless, it can be converted to a second-order cone, which is symmetric, by
a transformation and vice versa, please refer to [15] for more details. As shown in [15], the
ellipsoidal cone KE is a closed convex cone and its dual cone is given by

K∗
E = {y ∈ IRn | yTQ−1y ≤ 0, uT

ny ≥ 0}.

Clearly, from the expression of K∗
E , we know that the dual cone K∗

E is also a closed convex
cone.

The ellipsoidal cone complementarity problem (ECCP) indeed fits in the general conic
complementarity problem, which is to find an element x ∈ IRn such that

x ∈ K, F (x) ∈ K∗ and ⟨x, F (x)⟩ = 0, (1.2)

where ⟨·, ·⟩ denotes the Euclidean inner product, F : IRn → IRn is a continuously differen-
tiable mapping, K represents a closed convex cone, and K∗ is the dual cone of K given by
K∗ := {v ∈ IRn | ⟨v, x⟩ ≥ 0, ∀x ∈ K}. In other words, when K represents the ellipsoidal
cone, the problem (1.2) reduces to the ellipsoidal cone complementarity problem (ECCP). In

particular, as remarked in [15, 16], when Q =

[
In−1 0
0 −1

]
with In−1 being the unit matrix

and un = (0, 0, . . . , 1)T , the ellipsoidal cone is exactly the well known second-order cone
Kn [2, 5, 7, 8], described by

Kn := {(x1, x̄) ∈ IR× IRn−1 | ∥x̄∥ ≤ x1},

or another form
Kn := {(x̄, xn) ∈ IRn−1 × IR | ∥x̄∥ ≤ xn}.

Hence, the ellipsoidal cone can be viewed as a generalization of the second-order cone Kn

in IRn. When Q =

[
In−1 0
0 − tan2 θ

]
and un = (0, 0, . . . , 1)T , the ellipsoidal cone reduces to

the circular cone [19,31], which is also a special nonsymmetric cone:

Lθ := {(x̄, xn) ∈ IRn−1 × IR | ∥x̄∥ ≤ tan θ xn}.

Moreover, when Q =

[
MTM 0

0 −1

]
with M being any nonsingular matrix of order n − 1

and un = (0, 0, . . . , 1)T , the ellipsoidal cone reduces to the elliptic cone [1]:

Kn
M := {x = (x̄, xn) ∈ IRn−1 × IR |xn ≥ ∥Mx̄∥}.

Here ∥ · ∥ denotes the standard Euclidean norm. In summary, the ellipsoidal cone comple-
mentarity problem (ECCP) covers a range of nonsymmetric cone complementarity problems.

When K is a symmetric cone, the complementarity problem (1.2) is called the symmetric
cone complementarity problem, which has been extensively studied from different views
[12–14,25,27], including the second-order cone complementarity problem [2–9,11]. Recently,
more and more nonsymmetric cones appears in plenty of real applications. In contrast
to symmetric cone programming and symmetric cone complementarity problem, we are
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not quite familiar with their nonsymmetric counterparts. Referring the reader to [20–22,
24, 26, 30] and the bibliographies therein, we observe that there is no any unified way to
handle nonsymmetric cone constraints, and the study of such problems usually uses certain
specific features of the nonsymmetric cones under consideration. This is one motivation
that we continuously pay attention to the series of investigation on nonsymmetric cone
complementarity problem in this paper and [20,21].

There exist many popular ways for dealing with various complementarity problems, which
include the interior-point methods, the smoothing Newton methods, the semismooth Newton
methods, and the merit function methods, see [2–4, 6–9, 11–14, 17, 24, 29] and references
therein. As seen in the literature, almost all the attention was paid to symmetric cone
complementarity problems, including nonlinear complementarity problem (NCP), positive
semi-definite complementarity problem (SDCP), and second-order cone complementarity
problem (SOCCP). However, the study about nonsymmetric cone complementarity problem
is very limited. The main difficulty is that there is no unified framework to deal with
general nonsymmetric cone complementarity problems. Nonetheless, we believe that the
merit function approach, in which the complementarity problem is recast as an unconstrained
minimization via merit function or complementarity function, may be appropriately viewed
as a unified way to deal with nonsymmetric cone complementarity problem.

More specifically, a merit function is used to recast the problem (1.2) as an unconstrained
smooth minimization problem or a system of nonsmooth equations. In other words, through
a merit function h : IRn → IR+ for the ECCP, there usually holds

h(x) = 0 ⇐⇒ x solves the ECCP (1.2).

Hence, solving the problem (1.2) is also equivalent to handling the unconstrained minimiza-
tion problem

min
x∈IRn

h(x)

with the optimal value zero. Until now, for solving symmetric cone complementarity prob-
lem, a large number of merit functions have been proposed. Among them, one of the most
popular merit functions is the natural residual (NR) merit function ΨNR : IRn → IR+, which
is defined as

Ψ
NR

(x) :=
1

2
∥ϕ

NR
(x, F (x))∥2 =

1

2

∥∥x− (x− F (x))K+
∥∥2 ,

where (·)K+ denotes the projection onto the symmetric cone K. Then, we know that Ψ
NR

(x) =
0 if and only if x is a solution to the symmetric cone complementarity problem. As remarked
in [21], this function ΨNR (or ϕNR) can also serve as merit function (or complementarity func-
tion) for general conic complementarity problem. Hence, it is also applicable to ellipsoidal
cone complementarity problem. Under this setting, for any x ∈ IRn, we denote x+ be the
projection of x onto the ellipsoidal cone KE , and x− be the projection of −x onto the dual
cone K∗

E of KE . By properties of projection onto the closed convex cone, it can be verified
that x = x+ − x−. Besides the NR merit function ΨNR , are there any other types of merit
functions for the ECCP? The answer is yes. In this paper, we will present other types of
merit functions for the ECCP. Moreover, we investigate the properties of these proposed
merit functions, and study conditions under which these merit functions provide bounded
level sets. Note that such properties will guarantee that the sequence generated by descent
methods has at least one accumulation point, and build up a theoretical basis for designing
the merit function method for solving ellipsoidal cone complementarity problem.
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2 Preliminaries

In this section, for subsequent needs, we briefly review some basic concepts and background
materials about the ellipsoidal cone, and define one type of product associated with the
ellipsoidal cone, which will be extensively used in subsequent analysis.

As mentioned in Section 1, we know that the ellipsoidal cone KE given as in (1.1), i.e.,

KE := {x ∈ IRn |xTQx ≤ 0, uT
nx ≥ 0},

is a pointed closed convex cone. Besides, the dual cone K∗
E is given as

K∗
E = {y ∈ IRn | yTQ−1y ≤ 0, uT

ny ≥ 0},

and it is also a closed convex cone. It is obvious that the ellipsoidal cone KE is not a
symmetric cone. Since the matrix Q is real-valued nonsingular symmetric matrix, there
exist an orthogonal matrix U ∈ IRn×n such that

UTQU =

 λ1

. . .

λn

 := Λ,

where U := [u1 u2 . . . un] with eigen-pairs (λi, ui) (i = 1, . . . , n) satisfying the following
conditions:

λ1 ≥ λ2 ≥ · · · ≥ λn−1 > 0 > λn and uT
i uj =

{
1, if i = j,
0, if i ̸= j.

Then, we have Q = UΛUT . Let α := [α1, α2, . . . , αn]
T = UTx, i.e., αi = uT

i x for i =
1, 2, . . . , n, it follows that

xTQx = αTΛα =

n∑
i=1

λiα
2
i and αn = uT

nx,

which indicates the ellipsoidal cone KE can be expressed as follows:

KE =

{
Uα ∈ IRn

∣∣∣ n∑
i=1

λiα
2
i ≤ 0, αn ≥ 0

}
.

On the other hand, by letting β := [β1, β2, . . . , βn]
T = UT y, i.e., βi = uT

i y for i = 1, 2, . . . , n,
the dual cone K∗

E can be expressed as

K∗
E =

{
Uβ ∈ IRn

∣∣∣ n∑
i=1

λ−1
i β2

i ≤ 0, βn ≥ 0

}
.

The following lemma explains the relationship between ellipsoidal cone KE and second-
order cone Kn.

Lemma 2.1. For the ellipsoidal cone KE and second-order cone Kn, the following relations
hold.
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(a) KE = UDKn and Kn = D−1UTKE with D := diag
[
λ
− 1

2
1 , λ

− 1
2

2 , . . . , (−λn)
− 1

2

]
.

(b) K∗
E = UD−1 Kn and Kn = DUTK∗

E.

(c) (K∗
E)

∗ = KE.

Proof. Please see [15, Theorem2.1, Theorem 3.1].

It is well known that Jordan product plays a critical role in the study of symmetric
cone programming or symmetric cone complementarity problems. More specifically, for any
x = (x0, x̄), y = (y0, ȳ) ∈ IR× IRn−1 (or x = (x̄, xn), y = (ȳ, yn) ∈ IRn−1 × IR), in the setting
of the SOC, the so-called Jordan product of x and y is defined as

x ◦ y :=

[
⟨x, y⟩

y0x̄+ x0ȳ

]
( or x ◦ y :=

[
ynx̄+ xnȳ

⟨x, y⟩

]
).

The Jordan product “◦”, unlike scalar or matrix multiplication, is not associative. The
identity element under Jordan product is e = (1, 0, . . . , 0)T ∈ IRn (or e = (0, 0, . . . , 1)T ).
With the Jordan product associated with SOC, we have the following conclusion.

Lemma 2.2. For any x, y ∈ IRn, the following holds:

x ∈ Kn, y ∈ Kn and ⟨x, y⟩ = 0 ⇐⇒ x ∈ Kn, y ∈ Kn and x ◦ y = 0.

Proof. Please see [11, Proposition 2.1].

Applying Lemma 2.1 and Lemma 2.2 yields the following theorem, which indicates the
relationship between the SOCCP and the ECCP.

Theorem 2.3. For any x, y ∈ IRn, the following are equivalent:

(a) x ∈ KE , y ∈ K∗
E and ⟨x, y⟩ = 0.

(b) D−1UTx ∈ Kn, DUT y ∈ Kn and ⟨D−1UTx,DUT y⟩ = ⟨x, y⟩ = 0.

(c) D−1UTx ∈ Kn, DUT y ∈ Kn and (D−1UTx) ◦ (DUT y) = 0.

In the literature, there are two popular and well-known merit functions for the SOCCP,
which are Fischer-Burmeister (FB) merit function and natural residual (NR) merit function:

Ψ
FB

(x) =
1

2
∥ϕ

FB
(x, F (x))∥2 =

1

2

∥∥∥(x2 + (F (x))2)1/2 − (x+ F (x))
∥∥∥2 ,

ΨNR(x) =
1

2
∥ϕNR(x, F (x))∥2 =

1

2

∥∥∥x− (x− F (x))K
n

+

∥∥∥2 .
In view of this and Theorem 2.3, we can modify the above two kinds of merit functions
for the SOCCP to formulate merit functions for the ECCP. Consequently, we obtain the
following merit functions for the ECCP.

Ψ̃
FB
(x) :=

1

2

∥∥∥[(D−1UTx)2 + [DUTF (x)]2
] 1

2 − (D−1UTx+DUTF (x))
∥∥∥2 ,
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Ψ̃NR(x) :=
1

2

∥∥∥D−1UTx− [D−1UTx−DUTF (x)]K
n

+

∥∥∥2 ,
where z2 and z

1
2 means z2 := z ◦ z and z = z

1
2 ◦ z

1
2 , respectively, which are computed

by the Jordan product associated with SOC. By this, we can solve the ECCP by solving
the SOCCP. In fact, the NR function ϕ

NR
: IRn × IRn → IRn given by ϕ

NR
(x, y) := x −

(x − y)K+ always serves as a complementarity function for general conic complementarity
problem, see [9, Proposition 1.5.8], i.e., the function Ψ

NR
is a merit function for general

conic complementarity problem. In other words, the function

Ψ
NR

(x) =
1

2
∥ϕ

NR
(x, F (x))∥2 =

1

2

∥∥∥x− (x− F (x))KE
+

∥∥∥2
can also be a merit function for the ECCP. Besides, the function Ψ

NR
possesses the following

property.

Lemma 2.4 ([20, Lemma 3.1]). Let x, y ∈ IRn and ϕ
NR

(x, y) = x− (x−y)K+. For any closed
convex cone K, we have

∥ϕNR(x, y)∥ ≥ max
{
∥xK∗

− ∥, ∥(−y)K+∥
}
,

where zK+ denotes the projection of z onto the closed convex cone K, and zK
∗

− means the
projection of −z onto its dual cone K∗.

To the contrast, it is unfortunately that Ψ
FB
(x) cannot serve as a merit function for the

ECCP because x2 is not well-defined associated with the ellipsoidal cone KE for any x ∈ IRn.
Indeed, there is no product corresponding to the standard inner product for the setting of
the ellipsoidal cone so far. This inspires us to define an appropriate product associated with
ellipsoidal cone KE , and find more merit functions for the ECCP.

Based on the experience in [20, 21] and looking the structure of the ellipsoidal cone,
we present the new product directly as below. For any x = (x1, . . . , xn) ∈ IRn and y =
(y1, . . . , yn) ∈ IRn, let

α := [α1, . . . , αn]
T = UTx

β := [β1, . . . , βn]
T = UT y,

i.e., αi = uT
i x and βi = uT

i y for i = 1, 2, . . . , n. The product of x and y associated with the
ellipsoidal cone KE is defined by

x • y =

[
w

⟨x, y⟩

]
where w := (w1, . . . , wn−1)

T with wi = βnλ
1
2
i αi − λnαnλ

− 1
2

i βi. (2.1)

According to the definition of the product “•” defined as in (2.1), it is easy to see that the
product “•” is not commutative. Nonetheless, there have the following results.

Theorem 2.5. For any x, y ∈ IRn, the following statements are equivalent:

(a) x ∈ KE, y ∈ K∗
E and ⟨x, y⟩ = 0.

(b) x ∈ KE, y ∈ K∗
E and x • y = 0.
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In each case, x and y satisfy the condition that there is c ≤ 0 such that βi = c · λiαi or
αi = c · λ−1

i βi for any i = 1, . . . , n.

Proof. “(b) ⇒ (a)” The implication is obvious from the definition of product x • y.
“(a) ⇒ (b)” Because x ∈ KE , it follows that

x ∈ KE ⇐⇒ xTQx ≤ 0 and uT
nx ≥ 0

⇐⇒ xTUΛUTx ≤ 0 and uT
nx ≥ 0

⇐⇒
n∑

i=1

λi(u
T
i x)

2 ≤ 0 and uT
nx ≥ 0

⇐⇒
n−1∑
i=1

λiα
2
i ≤ (−λn)α

2
n and αn ≥ 0

⇐⇒

(
n−1∑
i=1

(λ
1
2
i αi)

2

) 1
2

≤ (−λn)
1
2αn. (2.2)

Similarly, we have

y ∈ K∗
E ⇐⇒

(
n−1∑
i=1

(λ
− 1

2
i βi)

2

) 1
2

≤ (−λn)
− 1

2 βn. (2.3)

Hence, by using ⟨x, y⟩ = 0, we further obtain

0 = ⟨x, y⟩ = yTUUTx =

n∑
i=1

yTuiu
T
i x

=

n−1∑
i=1

yTuiu
T
i x+ yTunu

T
nx

=

n−1∑
i=1

yTuiλ
− 1

2
i λ

1
2
i u

T
i x+ yTun(−λn)

− 1
2 (−λn)

1
2uT

nx

=

n−1∑
i=1

λ
− 1

2
i βiλ

1
2
i αi + (−λn)

− 1
2 βn(−λn)

1
2αn

≥ −

(
n−1∑
i=1

(λ
1
2
i αi)

2

) 1
2

·

(
n−1∑
i=1

(λ
− 1

2
i βi)

2

) 1
2

+ (−λn)
− 1

2 βn(−λn)
1
2αn

≥ 0,

where the first inequality holds by Cauchy-inequality, and the second inequality holds due
to (2.2) and (2.3). This implies

(−λn)
1
2αn =

(
n−1∑
i=1

(λ
1
2
i αi)

2

) 1
2

, (−λn)
− 1

2 βn =

(
n−1∑
i=1

(λ
− 1

2
i βi)

2

) 1
2

and λ
− 1

2
i βi = c · λ

1
2
i αi or λ

1
2
i αi = c · λ− 1

2
i βi with some c ≤ 0 for any i = 1, . . . , n − 1, i.e.,

βi = c · λiαi or αi = c · λ−1
i βi with some c ≤ 0 for any i = 1, . . . , n − 1. In summary,

βn = c · λnαn or αn = c · λ−1
n βn.
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Next, we only consider the case βi = c ·λiαi for any i = 1, . . . , n−1, and the same arguments
apply for the case αi = c · λ−1

i βi. For any k = 1, . . . , n− 1, by βk = c · λkαk, it follows that

wk = βnλ
1
2

k αk − λnαnλ
− 1

2

k βk

= (−λn)
1
2

[
(−λn)

− 1
2 βnλ

1
2

k αk + (−λn)
1
2αnλ

− 1
2

k βk

]
= (−λn)

1
2

(n−1∑
i=1

(λ
− 1

2
i βi)

2

) 1
2

λ
1
2

k αk +

(
n−1∑
i=1

(λ
1
2
i αi)

2

) 1
2

λ
− 1

2

k βk


= (−λn)

1
2

−c ·

(
n−1∑
i=1

(λ
1
2
i αi)

2

) 1
2

λ
1
2

k αk + c ·

(
n−1∑
i=1

(λ
1
2
i αi)

2

) 1
2

λ
1
2

k αk


= 0.

Hence, we have w = 0. Clearly, it leads to x • y = 0 and the proof is complete.

In the next part, we introduce some concepts on the monotonicity of F , which will be
needed in subsequent analysis. A function F : IRn → IRn is said to be monotone if, for any
x, y ∈ IRn, there holds

⟨x− y, F (x)− F (y)⟩ ≥ 0;

and strictly monotone if, for any x ̸= y, the above inequality holds strictly; and strongly
monotone with modulus ρ > 0 if, for any x, y ∈ IRn, the following inequality holds

⟨x− y, F (x)− F (y)⟩ ≥ ρ∥x− y∥2.

Using the monotonicity of the function F , we may achieve the following technical result
for the general conic complementarity problem, which is crucial for establishing the property
of bounded level sets.

Theorem 2.6. Suppose that the general conic complementarity problem has a strictly fea-
sible point z, i.e., z ∈ int(K) and F (z) ∈ int(K∗) and that F is a monotone function. Then,
for any sequence {xk} satisfying∥∥xk

∥∥→ ∞, lim sup
k→∞

∥∥∥(xk)K
∗

−

∥∥∥ < ∞ and lim sup
k→∞

∥∥(−F (xk))K+
∥∥ < ∞,

we have
⟨
xk, F (xk)

⟩
→ ∞.

Proof. Since F is monotone, for any xk ∈ IRn, we have⟨
xk − z, F (xk)− F (z)

⟩
≥ 0,

which leads to ⟨
xk, F (xk)

⟩
+ ⟨z, F (z)⟩ ≥

⟨
xk, F (z)

⟩
+
⟨
z, F (xk)

⟩
. (2.4)

Using properties of projection, we write xk = (xk)K+ − (xk)K
∗

− and F (xk) = (−F (xk))K
∗

− −
(−F (xk))K+. In light of this and (2.4), we obtain⟨

xk, F (xk)
⟩
+ ⟨z, F (z)⟩
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≥
⟨
(xk)K+, F (z)

⟩
−
⟨
(xk)K

∗

− , F (z)
⟩
+
⟨
z, (−F (xk))K

∗

−

⟩
−
⟨
z, (−F (xk))K+

⟩
. (2.5)

By the properties of projection onto the closed convex cone, we know xk = (xk)K+ −
(xk)K

∗

− . This leads to ∥(xk)K+∥ ≥ ∥xk∥ − ∥(xk)K
∗

− ∥. From the assumptions ∥xk∥ → ∞
and lim supk→∞ ∥(xk)K

∗

− ∥ < ∞, it follows that ∥(xk)K+∥ → ∞. Since (xk)K+ ∈ K and
F (z) ∈ int(K∗), by the properties of the closed convex cone and its dual cone again, we
have ⟨(xk)K+, F (z)⟩ > 0. On the other hand, from the condition F (z) ∈ int(K∗), there is
r > 0 such that for any h ∈ IRn, H = F (z) + rh ∈ int(K∗). This yields that

0 <
⟨
(xk)K+,H

⟩
=
⟨
(xk)K+, F (z)

⟩
+ r

⟨
(xk)K+, h

⟩
.

Choosing h = − (xk)K+
∥(xk)K+∥ gives

⟨
(xk)K+, F (z)

⟩
≥ r

⟨
(xk)K+,

(xk)K+
∥(xk)K+∥

⟩
= r

∥∥(xk)K+
∥∥→ ∞.

Thus, we conclude that
⟨(xk)K+, F (z)⟩ → ∞ as k → ∞. (2.6)

With similar arguments, we also obtain ⟨z, (−F (xk))K
∗

− ⟩ ≥ 0. Besides, we see that

lim sup
k→∞

⟨(xk)K
∗

− , F (z)⟩ ≤ lim sup
k→∞

∥(xk)K
∗

− ∥∥F (z)∥ < ∞,

lim sup
k→∞

⟨z, (−F (xk))K+⟩ ≤ lim sup
k→∞

∥z∥∥(−F (xk))K+∥ < ∞.

All of these results together with (2.5) and (2.6) yield⟨
xk, F (xk)

⟩
→ ∞.

Then, the proof is complete.

Remark 2.7. We point out that Theorem 2.6 is a stronger version of [20, Proposition 2.2]
and [21, Lemma 4.1], which also covers the ECCP setting.

3 Merit functions for ECCP

In this section, based on the product (2.1) of x and y associated with ellipsoidal cone KE , we
propose several classes of merit functions for the ellipsoidal cone complementarity problem
(ECCP) and investigate their favorable properties, respectively.

3.1 The first class of merit functions

In this subsection, we focus on a more general NR merit function, whose format is as bellow:

Ψα(x) =
1

2
∥x− (x− αF (x))+∥2 , (α > 0).

where (·)+ denotes the projection function on the ellipsoidal cone KE . As mentioned in
Section 2, the NR merit function

Ψ
NR

(x) =
1

2
∥ϕ

NR
(x, F (x))∥2 =

1

2
∥x− (x− F (x))+∥2
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serves a merit function for the ECCP. In fact, the function Ψα is also a merit function for the
ECCP. For the general NR merit function Ψα, Lu and Huang have showed the property of
error bound under the strong monotonicity and the global Lipschitz continuity of F in [17].

Theorem 3.1 ([17, Theorem 3.3]). Suppose that F is strongly monotone with modulus ρ > 0
and is Lipschitz continuous with constant L > 0, Then for any fixed α > 0, the following
inequality holds

1

2 + αL

√
Ψα(x) ≤ ∥x− x∗∥ ≤ 1 + αL

αρ

√
Ψα(x),

where x∗ is the unique solution of the general conic complementarity problems.

As mentioned in [20], for the NR merit function Ψ
NR

, we cannot guarantee the bounded-
ness of the level set for the function ϕ

NR
under the same conditions used in Theorem 2.6. In

order to establish the boundedness of the level set for the function ϕ
NR

or the merit function
Ψα, we need the definition of strongly coercive property.

Definition 3.2. A mapping F : IRn → IRn is said to be strongly coercive if

lim
∥x∥→∞

⟨F (x), x− y⟩
∥x− y∥

= ∞

holds for all y ∈ IRn.

Based on the strongly coercive property of F , with the same skills as in [21, Theorem
4.2], we have the boundedness property of the level set.

Theorem 3.3. Suppose that F is strongly coercive. Then, the level set

L
NR

(γ) = {x ∈ IRn | ∥ϕ
NR

(x, F (x))∥ ≤ γ}

or
LΨα(γ) = {x ∈ IRn |Ψα(x) ≤ γ}

is bounded for all γ ≥ 0.

Proof. The proof is similar to [21, Theorem 4.2]. Hence, we omit it here.

3.2 The second class of merit functions

In this subsection, for any x ∈ IRn, we consider the LT (standing for Luo-Tseng) merit func-
tion fLT associated with the ellipsoidal cone complementarity problem, whose mathematical
formula is given as follows:

fLT (x) := φ(⟨x, F (x)⟩) + 1

2

[
∥x−∥2 + ∥(−F (x))+∥2

]
, (3.1)

where φ : IR → IR+ is an arbitrary smooth function satisfying

φ(t) = 0, ∀t ≤ 0 and φ′(t) > 0, ∀t > 0.
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The merit function was proposed by Luo and Tseng [18]. It is easy to see that φ(t) ≥ 0
for all t ∈ IR from the above condition. This class of functions has been considered by
Tseng for the positive semidefinite complementarity problem in [29], for the second-order
cone complementarity problem by Chen in [3], for the general SCCP case by Pan and Chen
in [25], and for the p-order cone complementarity problem by Miao, Chang and Chen in [20],
respectively. For the setting of general closed convex cone complementarity problems, the
LT merit function has also been studied by Lu and Huang in [17], with some favorable
properties shown as below.

Property 3.1 ([17, Lemma 3.1 and Theorem 3.4]). Let fLT : IRn → IR be given as in (3.1).
Then, the following results hold.

(a) For all x ∈ IRn, we have fLT (x) ≥ 0; and fLT (x) = 0 if and only if x solves the
ellipsoidal cone complementarity problem.

(b) If F (·) is differentiable, then so is fLT (·). Moreover,

∇fLT (x) = ∇φ(⟨x, F (x)⟩)[F (x) + x∇F (x)]− x− −∇F (x)(−F (x))+

for all x ∈ IRn.

Theorem 3.4 ([17, Theorem 3.6]). Let fLT be given as in (3.1). Suppose that F : IRn → IRn

is a strongly monotone mapping and that the ellipsoidal cone complementarity problem has
a solution x∗. Then, there exists a constant τ > 0 such that

τ∥x− x∗∥2 ≤ max{0, ⟨x, F (x)⟩}+ ∥x−∥+ ∥(−F (x))+∥, ∀x ∈ IRn.

Moreover,
τ∥x− x∗∥2 ≤ φ−1(fLT (x)) + 2[fLT (x)]

1
2 , ∀x ∈ IRn.

The following theorem present the condition which ensures the boundedness of level sets
for the LT merit function fLT to solve the ellipsoidal cone complementarity problem.

Theorem 3.5. Suppose that the ellipsoidal cone complementarity problem has a strictly
feasible point and that F is monotone. Then, the level set

LfLT
(γ) := {x ∈ IRn | fLT (x) ≤ γ}

is bounded for all γ ≥ 0.

Proof. The proof is similar to [20, Theorem 3.3]. Hence, we omit it here.

3.3 The third class of merit functions

Based on the merit function fLT and the closed convex cone Ω, we make a slight modification
on the LT merit function fLT associated with the ellipsoidal cone complementarity problem,
which leads to the third class of merit functions as follows:

f̂LT (x) :=
1

2
∥x • F (x)∥2 + 1

2

[
∥x−∥2 + ∥(−F (x))+∥2

]
, (3.2)
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where x • y is defined as in (2.1), x− denotes the projection of −x onto K∗
E , and (−F (x))+

is the projection of −F (x) onto KE . As shown in the following theorem, we see that

the function f̂LT is also a type of merit functions for the ellipsoidal cone complementarity
problem.

Theorem 3.6. Let the function f̂LT be given as in (3.2). Then, for all x ∈ IRn, we have

f̂LT (x) = 0 ⇐⇒ x ∈ KE , F (x) ∈ K∗
E and ⟨x, F (x)⟩ = 0.

Proof. Combining with Theorem 2.5, the proof is similar to [20, Theorem 3.4]. Hence, we
omit it here.

The following conclusions show the error bound property and the boundedness property

of level sets of the merit function f̂LT for the ellipsoidal cone complementarity problem.

Theorem 3.7. Let the function f̂LT be given as in (3.2). Suppose that F : IRn → IRn is
strongly monotone mapping and that x∗ is a solution to the ECCP. Then, there exists a
scalar τ > 0 such that

τ∥x− x∗∥2 ≤
(
2 +

√
2
) [

f̂LT (x)
] 1

2

.

Proof. Combining with the expression of the product x • F (x), the proof is similar to [20,
Theorem 3.5]. Hence, we omit it here.

Theorem 3.8. Let the merit function f̂LT be given as in (3.2). Suppose that the ellipsoidal
cone complementarity problem has a strictly feasible point and that F is monotone. Then,
the level set

L
f̂LT

(γ) =

{
x ∈ IRn

∣∣∣∣ f̂LT (x) ≤ γ

}
is bounded for all γ ≥ 0.

Proof. The proof is similar to [20, Theorem 3.6]. Hence, we omit it here.

Remark 3.9. If the term xk •F (xk) in the expression of f̂LT is replaced by (xk •F (xk))Lθ
+ ,

where (xk •F (xk))Lθ
+ denotes the projection of xk •F (xk) onto the circular cone Lθ. Similar

to the proof of Theorem 3.4, Theorem 3.5 and Theorem 3.6 in [20], all Theorem 3.6, Theorem
3.7 and Theorem 3.8 still hold in this paper.

3.4 The fourth class of merit function

In this subsection, in light of the product x • y and the NR merit function Ψ
NR

, we consider
another merit function as below:

fr(x) :=
1

2
∥ϕ

NR
(x, F (x))∥2 + 1

2
∥x • F (x)∥2 . (3.3)

The following result will show that the function fr(x) is also a merit function for the ellip-
soidal cone complementarity problem.
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Theorem 3.10. Let the function fr be given as in (3.3). Then, for all x ∈ IRn, we have

fr(x) = 0 ⇐⇒ x ∈ KE , F (x) ∈ K∗
E and ⟨x, F (x)⟩ = 0.

Proof. By the definition of fr given as in (3.3), we have

fr(x) = 0 ⇐⇒ ∥x • F (x)∥2 = 0 and Ψ
NR

(x) =
1

2
∥ϕ

NR
(x, F (x))∥2 = 0,

⇐⇒ x ∈ KE , F (x) ∈ K∗
E and ⟨x, F (x)⟩ = 0,

where the second equivalence holds because the NR function ΨNR is a merit function for the
ECCP. Thus, the proof is complete.

From Theorem 3.10, it is easy to verify that if the squared exponent in the expression of
fr is deleted, i.e.,

f̃r(x) := ∥ϕNR(x, F (x))∥+ ∥x • F (x)∥ , (3.4)

the function f̃r is also a merit function for the ECCP. In fact, there has no big differences
between the merit functions fr and f̃r except the nature of fr is better than f̃r. Next, we
will establish the error bound properties for fr and f̃r.

Theorem 3.11. Let fr and f̃r be given as in (3.3) and (3.4), respectively. Suppose that
F : IRn → IRn is strongly monotone mapping and that x∗ is a solution to the ellipsoidal cone
complementarity problem. Then, there exists a scalar τ > 0 such that

τ∥x− x∗∥2 ≤ 3
√
2
[
fr(x)

] 1
2 and τ∥x− x∗∥2 ≤ 2f̃r(x).

Proof. Since the product “•” defined in (2.1) plays the same role, the proof is totally the
same as the one for [20, Theorem 3.8]. Hence, we omit it here.

Likewise, we can easily achieve the boundedness of the level sets of the functions f̃r and
fr.

Theorem 3.12. Let fr and f̃r be given as in (3.3) and (3.4), respectively. Suppose that
that the ellipsoidal cone complementarity problem has a strictly feasible point and that F is
monotone. Then, the level sets

Lfr (γ) = {x ∈ IRn | fr(x) ≤ γ}

and

Lf̃r
(γ) =

{
x ∈ IRn

∣∣ f̃r(x) ≤ γ
}

are both bounded for all γ ≥ 0.

Proof. The proof is similar to [20, Theorem 3.9]. Hence, we omit it here.
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3.5 The fifth class of merit functions

In this subsection, we introduce the implicit Lagrangian merit associated with the ECCP.
For any x ∈ IRn and α > 0, the implicit Lagrangian merit function is given by

Mα(x) := ⟨x, F (x)⟩+ 1

2α

{
∥(x− αF (x))+∥2 − ∥x∥2 + ∥(αx− F (x))−∥2 − ∥F (x)∥2

}
. (3.5)

This class of functions was first introduced by Mangasarian and Solodov [23] for solving
nonlinear complementarity problems, and was extended by Kong, Tuncel and Xiu [14] to the
setting of symmetric cone complementarity problems. Moreover, for the setting of general
closed convex cone complementarity problems in Hilbert space, Lu and Huang [17] further
investigated this merit function. Hence, the corresponding results in [17] can be applied to
the the setting of the ECCP. For completeness, as below, the error bound property of the
merit function Mα for the ECCP is also presented.

Property 3.2 ([17, Theorem 3.9]). Let Mα be given as in (3.5). Suppose that F : IRn → IRn

is a strongly monotone mapping with modulus ρ > 0 and is Lipschitz continuous with L > 0.
Assume that the ellipsoidal cone complementarity problem has a solution x∗. Then, for any
fixed α > 0, the following inequality holds

1

(α− 1)(2 + L)2
Mα(x) ≤ ∥x− x∗∥ ≤ α(1 + L)2

(α− 1)ρ2
Mα(x).

The following theorem will present the boundedness property of the level sets on the
merit function Mα for solving the ECCP.

Theorem 3.13. Suppose that the ellipsoidal cone complementarity problem has a strictly
feasible point and that F is monotone. Then, the level set

LMα
(γ) := {x ∈ IRn |Mα(x) ≤ γ}

is bounded for all γ ≥ 0.

Proof. Since the merit function Mα(x) given as in (3.5) does not involve the product “•”
defined in (2.1), the proof is totally the same as the one for [20, Theorem 3.10]. Hence, we
omit it here.

4 Concluding Remarks

We point out that the product “•” defined as in (2.1) and its corresponding property in
Theorem 2.5 play the key in the whole paper. With them, all analysis for merit functions
investigated in Section 3 is routine work. Compared to [20, 21], one may ask whether there
exist unified rules for defining a “product” for general nonsymmetric cone complementar-
ity problem. For symmetric cone complementarity problem, the so-called Jordan product
“◦” (see [10]) contributes to the construction of merit functions associated with symmetric
cones, see [2–4, 6–8] for more details. To the contrast, there seem no such unified role for
nonsymmetric cone complementarity problems, to the best of our knowledge. To see this, we
provide some “observations” as below to elaborate why we think the product “•” is related
to the structure of nonsymmetric cone. This indicates that there is no unified way to define
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a suitable product “•” associated with general nonsymmetric cone.

For circular cone complementarity problem, we define two types of “•” in [21]:

x • y =

[
x1

x2

]
•
[

y1
y2

]
=

[
⟨x, y⟩

max{tan2 θ, 1} x1y2 +max{cot2 θ, 1} y1x2

]
,

or

x • y =

[
x1

x2

]
•
[

y1
y2

]
=

[
⟨x, y⟩

min{tan2 θ, 1} x1y2 +min{cot2 θ, 1} y1x2

]
,

where x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1. It is well known that
the feature of circular cone depends on the angle θ. The above two products are clearly
defined in light of the angle and possess special property [21, Lemma 3.1] up to the angle
θ greater than π

4 or less than π
4 . That is why the proposed product enables Theorem 2.5

(respectively [21, Theorem 3.1]) valid and the merit functions can be constructed successfully.

For p-order cone complementarity problem, we define “•” in [20] as follows:

x • y =

[
⟨x, y⟩
w

]
where w := (w2, . . . , wn)

T with wi = |x1|
p
q |yi| − |y1||xi|

p
q ,

where x = (x1, . . . , xn)
T ∈ IRn and y = (y1, . . . , yn)

T ∈ IRn. Apparently, the feature of
p-order cone depends on ∥ · ∥p-norm. The product in this setting is defined by exploiting
the structures of p-order cone and its dual cone (an q-order cone with 1

p + 1
q = 1), which

enables Theorem 2.5 (respectively [20, Proposition2.1]) valid and the merit functions can be
constructed successfully.

For ellipsoidal cone complementarity problem, we define “•” as in (2.1)

x • y =

[
w

⟨x, y⟩

]
where w := (w1, . . . , wn−1)

T with wi = βnλ
1
2
i αi + λnαnλ

− 1
2

i βi.

As mentioned, the class of ellipsoidal cones include second-order cone, circular cone, and
elliptic cone as special cases. The feature of ellipsoidal cone depends on the representation
of matrix Q and its eigenvalues. In light of these, the product in this setting is defined
accordingly to enable Theorem 2.5 valid. Hence, the merit functions can be constructed
successfully. Moreover, looking into the above product associated with the p-order cone
and the ellipsoidal cone, respectively, we observe that they have similar format. However,
there exists a big difference in nature between these two products. The wi only involves
the components xi and yi in the product associated with p-order cone, whereas the wi

combines the whole vectors x and y in the product associated with the ellipsoidal cone
because αn := uT

nx and βn := uT
ny. This makes the proof of Theorem 2.5 a bit harder than

the other cases.

Another observation is described as follows. When Q =

[
In−1 0
0 − tan2 θ

]
and un =

(0, 0, . . . , 1)T , the product x • y of x and y associated with ellipsoidal cone in (2.1) reduces

to the product x • y in the setting of the circular cone. When Q =

[
In−1 0
0 −1

]
with In−1
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being the unit matrix and un = (0, 0, . . . , 1)T , the product x • y of x and y associated with
ellipsoidal cone in (2.1) reduces to the product x ◦ y in the setting of second-order cone.
Thus, this product x • y is a generalization of the product x ◦ y associated with the circular
cone or second-order cone in IRn. Nonetheless, in dealing with problems using the product
x • y, it is much more difficult than the setting of second-order cone. Again, this is because
αn := uT

nx and βn := uT
ny involve the whole vector x and y in the product x • y, while

xn is only the n-th component of x in the setting of second-order cone or circular cone or
p-order cone. More specifically, for x := (x̄, xn) ∈ IRn−1 × IR, if x ∈ Kn (or circular cone
Lθ or p-order cone Kp ), the n-th component xn satisfies ∥x̄∥ ≤ xn (or ∥x̄∥ ≤ tan θ xn or
∥x̄∥p ≤ xn). Such are not the cases for the ellipsoidal cone, no component information of x is
employed. This may lead to harder analysis when designing solution methods for ellipsoidal
cone complementarity problem.

In summary, for each nonsymmetric cone complementarity problem, one needs to exploit
the structure of its nonsymmetric cone to define a suitable product “•” which makes Theorem
2.5 valid under the proposed product. Indeed, we also believe that a suitable product “•”
can be defined whenever the general cone and its dual cone share the same shape (needs more
specific definitions and enumerates). Therefore, some merit functions can be constructed
accordingly to deal with its corresponding complementarity problem. We leave this as our
future direction.

Another direction is about the comparison of these five classes of merit functions. In
general, these five classes of merit functions are based on the NR merit function or the
projection function on ellipsoidal cone or its dual cone. We can guarantee the boundedness
of the level set for all five merit functions under different conditions. Especially, the merit
function fr(·) needs weaker condition to this end. Combining with the product x • y of x
and y, the construction of the third class of merit function follows from the second class of
merit function FLT and obtain a simpler expression about the error bound property for the
ECCP. How about comparison in numerical side? We tried very hard to find a way to do
some numerical implementations as suggested by one reviewer. It seems that there are a few
suitable algorithms based on on our constructed merit functions, which we can employ to
do numerical simulations. This viewpoint is true, however, there is a big hurdle in practice
so far. The main difficulty lies on the expressions of spectral decomposition associated with
ellipsoidal cone. Although two types of spectral decomposition associated with ellipsoidal
cone are studied and provided in [16], there exist implicit expressions in some parts. There-
fore, it is not possible to clearly and explicitly write out subdifferential, gradients, Jacobian,
projections, etc, which are the main ingredients in coding. It definitely needs further inves-
tigation for building up the aforementioned items for practical implementations.
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