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e-STRONG EFFICIENCY OF A SET AND ITS APPLICATIONS
IN ORDERED LINEAR SPACES
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Abstract: In this paper, we investigate e-strong efficiency of a set in ordered linear spaces. Firstly, a new
conception of e-strongly efficient point of a set is introduced. Secondly, some properties and the existence of
e-strongly efficient points of a set are studied. Finally, as the applications, the linear scalarization theorems
of the set-valued optimization problem with generalized cone subconvexlikeness are obtained in the sense of
e-strong efficiency. Some examples are given to illustrate the results obtained in this paper.
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Introduction

Recently, many scholars have paid attention to set-valued optimization in the study of opti-
mization theory and applications. Under different kinds of generalized convexity, optimiza-
tion conditions of set-valued optimization problems are established in the sense of different
kinds of efficiency of solutions (see [11,12,14,19,20] and the references therein). However,
from computational point of view, the algorithms used to solve optimization problems of-
ten give rise to approximate solutions. Rong and Wu [13] introduced e-weakly efficient
solution of the set-valued optimization problem and established a series of optimality con-
ditions. Based on [13], many scholars investigated different classes of approximate proper
efficiency and obtained some interesting results such as scalarization theorems, Lagrangian
multiplier theorems, saddle point theorems and duality theorems (see [9,16,18] and the ref-
erences therein). In the above references mentioned, the proper efficiency of the set-valued
optimization problem was mainly studied in the topological vector spaces. It is possible
that the properly efficient element of a set in real ordered linear spaces exist, but it does
not exist in topological vector spaces (see Example 4.1 in [23]). Therefore, how to extend
some results from topological vector spaces to the ordered linear spaces is interesting. In
the ordered linear spaces, Li [10] established an alternative theorem of the subconvexlike
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set-valued map and obtained Kuhn-Tucker conditions in the sense of weak efficiency. Fol-
lowing the line of Li [10], some scholars [4,21-23] explored some (approximate) efficiency
of set-valued optimization problems in ordered linear spaces. Especially, Gutiérrez et al. [7]
studied the nonconvex separation functional in ordered linear spaces with applications to
vector equilibria. However, to the best of our knowledge, there are only a few scholars to
study approximate properly efficient solutions of set-valued optimization problems in ordered
linear spaces. Hence, investigating approximate proper efficiency of set-valued optimization
problems in ordered linear spaces is interesting. Motivated by references [4,7,10,21-23], we
will research e-strong efficiency of set-valued optimization problems in ordered linear spaces
in this paper.

This paper is organized as follows. In Section 2, we give some preliminaries including
basic concepts and lemmas. In Section 3, we investigate some properties and existence condi-
tions of e-strongly efficient points of the set. In Section 4, we establish scalarization theorems
of an unconstrained set-valued optimization problem in the sense of e-strong efficiency.

Preliminaries

In this paper, we suppose that X and Y are two real linear spaces. 0 stands for the zero
element of every space. Let C' be a nonempty subset in Y. The generated cone of C is
denoted by cone(C) := {Ac|c € C,\ > 0}. C is called a convex cone iff C' + C C C and
AC C C for any A > 0. A cone C is said to be pointed iff C' N (—C) = {0}. C is said to be
nontrivial iff C' # {0} and C' # Y. The ordering of Y associated with a convex cone C' is the
relation defined by:

rysy—zel.

From now on, we suppose that Y is a real ordered linear spaces with nontrivial, pointed
and convex cone C. The algebraic dual of Y is denoted by Y*. The algebraic dual cone C*
of C is defined as CT := {y* € Y*|{y,y*) = 0,Vy € C}, where (y,y*) denotes the value of
the linear functional y* at the point y. Let a,b € Y with a < b. The set [a,b] := {y € Y]a <
y=xbl={yeYly—aecCandb—y e C} is called an order-interval with respect to C.
The ordered algebraic dual space Y of Y is defined as

Yt .= {y* € Y*|y* is bounded on any order-interval [a,b] C Y}.
IfY :=R? and C := {x1,22) € R?|z; > 0 and 22 > 0}. It is easy to verify that (1,1) € Y.

Definition 2.1 ([8]). Let K C Y. K is called ordering-bounded iff there exist a,b € Y with
b—a € C such that K C [a,b)].

Definition 2.2 ([17]). Let K be a nonempty subset in Y. The algebaic interior of K is the

. cor(K) := {k € K|VK € Y,3N > 0,Y\ € [0, ],k + Mk’ € K.

Definition 2.3 ([1]). Let K be a nonempty subset in Y. The vector closure of K is the set
vel(K) = {k € Y|3K' € YV,VXN > 0,3A €]0, V], k + Ak € K}.

Remark 2.4. It is easy to show that, if K; and K5 are two nonempty subsets in Y, then
VCl(Kl N KQ) = VCl(Kl) N VCI(KQ).

Definition 2.5 ([15]). Let K be a nonempty subset in Y. K is called balanced iff, Vk €
K,V\ € [-1,1],\k € K. K is called absorbent iff 0 € cor(K).



e-STRONG EFFICIENCY OF A SET AND ITS APPLICATIONS 569

Definition 2.6 ([23]). Let B be a nonempty convex subset in Y. B is a base of C iff
C = cone(B) and there exists a balanced, absorbent and convex set V such that 0 ¢ B+ V
inY.

Let B be a base of C. Write B := {y* € Y*|there exists ¢ > 0 such that (b,y*) >
t,Vb € B} and B% := {y* € Y"|there exists t > 0 such that (b,y*) > ¢,Vb € B}.

Remark 2.7. Let y* € Y*\ {0}. Then, y* € B*" iff there exists a balanced, absorbent and
convex set V such that (y,y*) < 0 for any y € V — B.

Remark 2.8. By the definitions of CT and B*, it is easy to verify that B + C*T = B¢,
Let K CY be a nonempty set. Write (K, y*) := {{k,y*)|k € K}.

Lemma 2.9 ([8]). Let Cy and Cy be two convex cones in'Y and y* € Y*. Then, the
following two statements are equivalent:

(1) y*ECf—C;;

(2) There exist a balanced, absorbent and convex set U CY and a real number o > 0 such
that (y,y*) > —a for any y € C1 N (U — Cy).

Lemma 2.10 ([2]). Let K be a nonempty subset in Y. Then K+ = (vcl(K))™T.

Remark 2.11. Let K C Y. It follows from Lemma 2.10 that y* € Y* \ {0} is bounded on
K iff y* is bounded on vcl(K).

Lemma 2.12 ([15]). Let {p;}icr be a family of seminorms on the linear space Y, where I is
an index set. Then, there exists a most coarse topology defined on'Y , which coincides with
the linear structure and makes every p; be continuous on the Y. For the above topology, Y
is locally convex and the sets with the form {y € Y| max pi, (y) < 8} formulate an open

neighborhood basis of 0, where 6 > 0,n € N,i, € I(k =1,2,...,n).

e-Strongly Efficient Point

In [3], Cheng and Fu investigated strong efficiency in a locally convex space. Now, we
introduce a new notion of e-strongly efficient point of a set in the ordered linear space.
From now on, we suppose that B is a basis of C unless otherwise specified.

Definition 3.1. Let K C Y ande € C. 5§ € K is called an e-strongly efficient point of K with
respect to B (denoted by 7 € e-GE(K, B)) iff, for any y* € Y*¢, there exist two balanced,
absorbent and convex sets U and V such that (vcl(cone(K +¢e—7)) N (U —cone(V + B)), y*)
is bounded.

Remark 3.2. By Remarks 2.4 and 2.11, §j € eGE(K, B) iff , for any y* € Y?, there exist
two balanced, absorbent and convex sets U and V such that (cone(K +¢—7)N (U —cone(V +
B)),y*) is bounded.

Definition 3.3 ([23]). Let K CY and ¢ € C. § € K is called an e-weakly efficient point of
K (denoted by 7 € e WE(K, () iff (K + € —7) N (—corC) = 0.

Remark 3.4. It is easy to verify that e-GE(K, B) C eWE(K, C'). However, the following
example shows that the inclusion relation e WE(K, C) C e-GE(K, B) does not hold.
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Example 3.5. Let K = {(y1,y2)|y1 < 2,92 > 0},e = (1,0),7 = (2,0),C := {(y1,92)|y1 >
0,y2 > 0} and B := {(y1,y2)|y1 + y2 = 1,51 > 0,y2 > 0}. It is easy to check that 7 € e
WE(K,C). However, there exists y* = (—1,1) € Y*® such that (vcl(cone(K + ¢ — 7)) N
(U — cone(V + B)), y*) is unbounded for any balanced, absorbent and convex sets U and V.
Hence, 7 ¢ e-GE(K, B). Thus, the inclusion relation e-WE(K, C) C e-GE(K, B) does not
hold.

The following proposition will be used to derive the scalarization theorem of the set-
valued optimization problem in Section 4.

Proposition 3.6. Let ¢ € C,y € e-GE(K, B) and y* € B*.. Then, there exist two balanced,
absorbent and convex sets U and V such that (vcl(cone( K +C+e—75))N(U—cone(V+B)), y*)
is bounded.

Proof. We suppose that, for any balanced, absorbent and convex sets U and V', (vel(cone( K+
C+e—7))N (U —cone(V + B)),y*) is unbounded. According to Remarks 2.4 and 2.11,

(cone(K +C +e€—75)N (U — cone(V + B)),y*) (3.1)

is unbounded for any balanced, absorbent and convex sets U and V. Let V = U in (3.1).
Then, (cone(K + C + ¢ —g) N (U — cone(U + B)),y*) is unbounded for any balanced,
absorbent and convex set U. Since § € e-GE(K, B), there exist two balanced, absorbent
and convex sets U’ and V' such that (cone(K +¢e—7) N (U’ —cone(V' + B)),y*) is bounded.
Write W := U’ NV’'. Clearly, (cone(K + ¢ —g) N (W — cone(W + B)),y*) is bounded.
Let p(y) := |{y,y*)| for any y € Y. It is easy to check that p is a seminorm on Y. By
Lemma 2.12, there exists a topology 7 induced by the seminorm p such that (7,Y) is locally
convex and {y € Y|(y,y*) € 6U"}5>0 formulates an open neighborhood basis of 0, where
U" = (-1,1). Write U, := {y € Y|(y,y*) € 2U"} for any n € N. Therefore,

(cone(K + C + ¢ —9) N (U, — cone(U,, + B)),y™)

is unbounded for any n € N. Thus, for any n € N, there exists r,, € {(cone(K +C +¢—7) N
(Up, — cone(U,, + B)), y*) such that |r,| > n. Hence, there exists

yn € cone(K + C + e —7) N (U,, — cone(U,, + B)) (3.2)

such that [(y,y*)| = |rn| > n. Thus, we have
Jim [(yn, y")| = +oo. (3.3)
By (3.2), there exist A\,, > 0,k,, € K, ¢, € C,u,, € Uy, B > 0,0, € U, and b,, € B such that
Yn = An(kn + ¢ +€—7) = up — Bn(vn + bp),¥n € N, (3.4)

It follows from (3.4) that

(Yns¥") = (Uns ¥*) = Bn((Un, y*) + (bny y™)), V0 € N (3.5)
Clearly,
nlgr;Q(un,y )= nh_)rr;Q(vn,y ) =0. (3.6)

Since y* € B and B is an ordering-bounded basis of C, it follows from (3.3),(3.5) and (3.6)
that the sequence {8} is unbounded.
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Because ¢,, € C, there exist p, > 0 and ], € B such that ¢, = p,b],. Thus, it follows
from (3.4) that

An(kn +€—=7) = up — Bn(vn +bn) — Apppbl,,¥n € N. (3.7
Case one. If some 3, = 0, it follows from (3.7) that
An(kn +€—79) €U, — C =U, — cone(B) C U, — cone(U,, + B).

Case two. If some 3, # 0, we write a, : > 1. Since B is a convex set and

T a "”” =1, it follows from (3.7) that

— BntAnpn
Brn

Ml + € = 3) =t — o[ v+ (b 222 )]

n nﬁn
€ Up—PBnan(U,+B) C U, —cone(U, +B). (3.8)
Cases one and two show that
An(kn +€—7) € Uy — cone(U,, + B),¥n € N. (3.9)
Clearly,
An(kn +€—7) € cone(K +€—7),¥n € N. (3.10)

According to (3.9) and (3.10), we have
An(kn + € —7) € cone(K + e —7) N (U, — cone(U, + B)),Vn € N. (3.11)
On the other hand, there exists N € N such that
U, C W,¥n > N. (3.12)

Since (cone(K + € — ) N (W — cone(W + B)),y*) is bounded, it follows from (3.11) and
(3.12) that the sequence {{\,(kn +€—T7),y*)} is bounded.
As the sequence {3, } is unbounded, there exists N’ € N such that

Bn > 0,¥Yn > N'.

Therefore, there exists b, € B such that

Anbn s N (3.13)

b;{——b + L

y (3.8) and (3.13), we have

1
)\n(kn+6_y):un_ﬁnan( Up +
«

n

b;;),vn > N (3.14)
Since y* € B and the sequence {f3,,} is unbounded, it follows from (3.6) and (3.14) that

1
lim (A, (kn +€—7),y") = nh_{r;o <un — Bnan(a—vn + bZ>7y*> = 00,

n— oo

which contradicts that the sequence {(\,,(k, +€—7),y*)} is bounded. Hence, (vcl(cone(K +
C+e—7))N (U — cone(V + B)),y*) is bounded. O
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Remark 3.7. Though (vcl(cone(K + C + € —7)) N (U — cone(V + B)),y*) is bounded in
Proposition 3.6, we cannot assert that ¥ € e-GE(K + C, B). The following two examples
shows that both e-GE(K, B) C -GE(K + C, B) and e-GE(K + C, B) C -GE(K, B) do not
hold.

Example 3.8. Let K :=[1,2] x [1,2],C := {(y1,y2)|y1 € R,y2 > 0} U{(0,0)} and B :=
{(y1,92)|y1 € R,y2 = 1}. Take e = (0,1) and y¥ = (1,1). For any y* € Y there exist
balanced, absorbent and convex sets U := {(y1,¥2)|y? + y3 = 0.01} and V = U such that
<vc1(cone(K +e—7)) N (U — cone(V 4+ B)),y*) is bounded. Hence, § € e-GE(K,B). On
the other hand, there exists y* = (—1,0) € Y*®\ B% such that (vcl(cone(K +C +¢€—7)) N
(U —cone(V + B)), y*) is unbounded for any balanced, absorbent and convex sets U and V.
Therefore, 5 ¢ e-GE(K + C, B). Thus, the inclusion relation e-GE(K, B) C e-GE(K + C, B)
does not hold.

Example 3.9. Let K := {(1,1)},e = (1,1),7 = (2,2),C := {(y1,¥2)|y1 > 0,92 > 0} and
B :={(y1,y2)ly1 + y2 = 1,1 > 0,y2 > 0}. It is easy to check that § € e-GE(K + C, B).
However, § ¢ e-GE(K, B). Hence, the inclusion relation e-GE(K + C, B) C e-GE(K, B)
does not hold.

Theorem 3.10. Let ¢ € C and K be a nonempty convex set in' Y. Let § € e-GE(K, B).
Then, for any y* € Y@\ (vel(cone(K + € —7)))*, there exist y} € (vcl(cone(K +e—7)))T
and y3 € B% such that y* = yi — y3.

Proof. Since 7 € -GE(K, B) and y* € Y, there exist two balanced, absorbent and convex
sets U and V such that (vcl(cone(K +¢€—7)) N (U —cone(V + B)), y*) is bounded. It follows
from Lemma 2.9 that there exist y; € (vcl(cone(K + € —%)))* and y; € (cone(V + B))™
such that
y =y — o (3.15)
Now, we will show that y3 € B*'. According to y3 € (cone(V + B))™, we have
(b+wv,y5) >0,Vbe B,Yv e V. (3.16)
Since V' is balanced, it follows from (3.16) that
(b,y3) > (v,y5),¥b € B,Yv € V. (3.17)

As y* € Y\ (vel(cone(K + € — %)), it follows from (3.15) that y3 # 0. Since V is
absorbent, there exists v’ € V such that

(v',y3) > 0. (3.18)
Using (3.17) and (3.18), we obtain

(b,y5) = sug{<v,y§>} > (v',y3) > 0,vb € B,
ve

which implies y3 € B

Let K C Y,e € C and y* € YT. Write e-Min(K,y*) := {7 € K|{7,y*) < {y,y*) +
(e,y*),Vy € K}.

Theorem 3.11. Let ¢ € C and K be a nonempty convex set in' Y. Let § € e-GE(K, B).
Then, for any y* € Y4\ (vcl(cone(K + e —7%)))F, there exists yi € (vel(cone(K +e—7)))T
such that y} € y* + B and y € e-Min(K, y})
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Proof. Since § € «-GE(K, B) and y* € Y, it follows from Theorem 3.10 that, for any
y* € YP4\ (vel(cone(K + ¢ —7)))T, there exist y; € (vcl(cone(K + € — 7))t and y35 € B!
such that (3.15) holds. Hence, y} € y* + B*" and (vcl(cone(K + € — 7)), y;) > 0. Clearly,
(K+e—1,y7) >0, ie.,

@91) < (v, 91) + (6 01), Vy € K,

which implies § € e-Min(K, y7). O

Theorem 3.12. Lete € C,5 € Y and K be a nonempty convex set in' Y. For any y* € Y9,
there exist yi € (vcl(cone(K + € —7)))" and y5 € B such that y* = yi —y5. Then, J € e-
GE(K, B).

Proof. Since y3 € B%t, it follows from Remark 2.7 that there exists a balanced, absorbent
and convex set V7 such that
(y,y3) <0,¥y € V1 — B. (3.19)

As Vj is balanced, it follows from (3.19) that
(y,y3) 2 0,¥y € V1 + B,

ie., ys € (Vi+B)t C (cone(V1+B))". Hence, y* € (vel(cone(K +e—7))) " —(cone(Vi+B))+.
By Lemma 2.9, there exist a balanced, absorbent and convex set U; and a real number a > 0
such that

(y,y*) > —a,Vy € (vel(cone(K + e —7))) N (Uy — cone(Vy + B)). (3.20)

On the other hand, —y* € Y®¥. Therefore, there exist two balanced, absorbent and
convex set Uy and V5 and a real number 8 > 0 such that

(y,—y*) > —B,Vy € (vcl(cone(K + € —7))) N (Uz — cone(Va + B)). (3.21)
Write U :=U; N Uz and V := Vi N V,. Using (3.20) and (3.21), we obtain

—a < (y,y") < B,Vy € (vcl(cone(K + ¢ —7))) N (U — cone(V + B)).
Hence, § € e-GE(K, B). O

Theorem 3.13. Let e € C and K be a nonempty convex set in' Y. For any y* € Y, there
exists yf € Y* such that yi € y* + B*" and y € e-Min(K, y}). Then, y € e-GE(K, B).

Proof. By 7 € e-Min(K,y7), we have
<y+€_§7yik> 207vy €K7

which implies that
Ay +e—7),ui) = 0,94 > 0,y € K. (3.22)

It follows from (3.22) that
yi € (cone(K +e—7)*. (3.23)

According to (3.23) and Lemma 2.10, yi € (vcl(cone(K + ¢ —7)))*. On the other hand,
yi € y* + B, (3.24)

By (3.24), there exists y5 € B! such that y* = y} — y3. Thus, the conditions of Theorem
3.12 are satisfied. Therefore, § € e-GE(K, B). O
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Theorem 3.14. Let e € C,y € Y and K be a nonempty conver set in Y. Let B be an
ordering-bounded basis of C. If (vcl(cone(K + € — 7))t N B #£ 0, then y € e-GE(K, B).

Proof. Since (vcl(cone(K +e—7)))TNB* £ (), there exists y; € (vel(cone(K +e—7)))TNBsE.
By vy} € (vel(cone(K + € —7)))™", it is easy to verify that

7 € e-Min(K, y7). (3.25)
According to yi € B*, we assert that, for any y* € Y*¢ there exists N € N such that

1
Y — Ny* cCt. (3.26)

Otherwise, there exists y3 € Y9, for any n € N, we have yi — Ly3 ¢ C". Thus, there exists
Yn € C such that

1
<yn,yf — ﬁy§> <0,Vn € N. (3.27)

Since y,, € C, there exist A, > 0 and b,, € B such that y,, = \,b,. It follows from (3.27)
that

1
<Anbn,y; - Ey§> <0,¥n € N.
Clearly,
1
<bn,y; - ﬁy§> <0,¥n € N. (3.28)

Because y3 € Y% and B is an ordering-bounded basis of C,
I <b 1 *>—1’ Lo ys) =0 (3.29)
nLH;O nany2 _nl—{%on nyYa) =Y. .

It follows from y; € B*! that there exists ¢ > 0 such that

(b,yy) > t, Vb € B. (3.30)

For the above ¢, it follows from (3.29) that there exists N; € N such that
1 *
<bn, 5y2> <t¥n> N (3.31)

According to (3.28) and (3.31), we obtain

1
<bn7yi> < <bn7 Ey§> <t,Vn > Ny,

which contradicts (3.30). Therefore, our assertion is correct. By (3.26) and Remark 2.8, we
have
(N +1)yi —y* = (Nyj —y*) +y; € CT + B = B,

ie.,
(N + 1)y; € y* + B*™. (3.32)
By (3.25), we have
7y € e —Min(K, (N + 1)y7). (3.33)

By (3.32) and (3.33), the conditions of Theorem 3.13 are satisfied. Hence, § € e-GE(K, B).
O
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Remark 3.15. The following example shows that Theorem 3.14 does not hold when the
conditions that B is an ordering-bounded basis of C' is deleted.

Example 3.16. Let K := {(y1,92)[y1 < 2,92 > 0},e = (1,1),7 = (2,1),C := {(y1,y2)ly1 >
0,92 > 0} U {(0,0)} and B = {(y1,92)ly1 > 0,y2 = 2}. Clearly, ¢ € C and K is a
nonempty convex set in Y. Moreover, (0,2) € (vcl(cone(K + ¢ —7)))™ N B**. Obviously, B
is not an ordering-bounded basis of C. However, there exists y* = (—1,0) € Y such that
(vel(cone(K + € — 7)) N (U — cone(V + B)), y*) is unbounded for any balanced, absorbent

and convex sets U and V. Hence, 7 ¢ e-GE(K, B).

Scalarization

In this section, we will establish the scalarization theorems of an unconstrainted set-valued
optimization problem in the sense of e-strong efficiency.

From now on, let A be a nonempty set in X. Let F': A =Y be a set-valued map on A.
Weite (F(z).y) = {{y.97)ly € F@)}. F(4) = U F@) and (F(4).9°) 1= U (F@).v").
Definition 4.1 ([5]). A set-valued map F : A = Y is called generalized C-subconvexlike
on A iff cone(F(A)) + cor(C) is a convex set in Y.

Remark 4.2. When cor(C) # ), the set-valued map F is generalized C-subconvexlike on
A iff vel(cone(F'(A) 4+ C)) is a convex set in Y (see Proposition 3.1 in [21]).

Let F: A =Y a set-valued map from A to Y. we consider the following set-valued
optimization problem:
(VP) Min F(z) subject to x € A.

Definition 4.3. Let ¢ € C. T € A is called an e-strongly efficient solution of (VP) iff there
exists ¥ € F(T) such that 7 € eGE(F(A), B). The pair (Z,7) is called an e-strongly efficient
element of (VP).

The scalar minimization problem of (VP) is defined as follows:
(VP),~ Min (F(z),y*) subject to z € A,
where y* € Y*\ {0}.

Definition 4.4 ([13]). Let e € C. T € A is called an e-optimal solution of (VP),- iff there
exists 7 € F(T) such that

@,y") < (yy") + (e.y"), Vo € A, Vy € F(a).
The pair (Z,7) is called an e-optimal element of (VP),-.

Theorem 4.5. Let e € C,7 € A, 5 € F(Z) and B # (). The set-valued map F + ¢ —7 is
generalied C-subconvexlike on A. If (T,7) is an e-strongly efficient element of (VP), then
there exists y* € B such that (Z,7) is an e-optimal element of (VP),-.

Proof. Since (Z,7) is an e-strongly efficient element of (VP), 5 € e-GE(F(A), B). Let y} €
B, According to Proposition 3.6, there exist two balanced, absorbent and convex sets
U; and V; such that (vcl(cone(F(A) + C + e —7)) N (Uy — cone(Vy + B)),y7) is bounded.
Thus, it follows from Lemma 2.9 that there exist y5 € (vcl(cone(F(A) +C +e—17)))t and
y3 € (cone(Vy + B))* such that y3 = yi +y35. Now, we prove that y5 € B*. It follows from
the absorption of V; that

B C cone(V; + B). (4.1)
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4.1 an(] y € (cone L + B lmply tllat
3
<E ? y3> >— ’ € ’

which means that
(b,yz) = (b,y7) + (b,y3) > (b,y7),Vb € B. (4.2)

Since y; € B it follows from (4.2) that y5 € B%!. According to Remark 2.7, there exists
a balanced, absorbent and convex set U such that

(y,y5) < 0,Vy € Us — B. (4.3)
Because y3 € (vel(cone(F(A) + C + e —7)))T, it follows from (4.3) that
vel(cone(F(A)+ C +e—7))N(Uz — B) = 0.

Clearly,
vel(cone(F(A) + C + e —7)) Necor(Us — B) = 0.

Since Us is absorbent and convex, Us — B is a convex set with cor(Us — B) # ) according
to Lemma 2.1 in [6]. On the other hand, as the set-valued map F' + € — 7 is generalied
C-subconvexlike on A, it follows from Remark 4.2 that vcl(cone(F(A) + C + € —7)) is a
convex set in Y. Thus, the conditions of the separation theorem of the convex sets are
satisfied. Therefore, there exists y* € Y* \ {0} such that

(y1,y*) > (y2,y*),Vy1 € vcl(cone(F(A) +C +€—7)),Vys € Uy — B. (4.4)
As vel(cone(K + C + € — 7)) is a cone in Y, it follows from (4.4) that
(y1,y™) > 0,YVy; € vcl(cone(F(A) +C + e —7)). (4.5)
Since 0 € C, it follows from (4.5) that
@ y") < (,y") + (ey"), Ve € A,Vy € F(z). (4.6)

By (4.4), we obtain
<y27y*> < 07vy2 c€U; - B. (47)

Since Uy is absorbent and y* € Y* \ {0}, there exists v’ € Uz such that (u/,y*) > 0.
According to (4.7), we have

(b,y™) > sup (u,y*) > (u',y*) > 0,¥b € B,
ueUs

which means y* € B*'. (4.6) shows that (Z,7) is an e-optimal element of (VP),«. O

The following example is used to illustrate Theorem 4.5.

Example 4.6. Let Y :=R?, A:=1[0,2] x {0} CR? and C := {(y1,%2)|y1 > 0,42 > 0} C Y.
The set-valued map F' : A = Y is defined as follows:
Fa1,20) = { {wy)lyn = 21,1 <yo <2—a1} if (z1,22) € [0,1[x{0},
’ {yi,y2)ly1 = 21,0 <yp <2 -1} if (21,22) € [1,2] x {0}.
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Let ¢ = (1,0),7 = (1,0) and 5§ = (1,0) € F(x). Clearly, the set-valued map F +¢ — 7
is generalied C-subconvexlike on A. Now, let B := {(y1,92)|y1 + 2 = 2,91 > 0,32 > 0}.
Obviously, (1,1) € B # (). For any y* € Y%, there exist two balanced, absorbent and
convex sets U = V =: {(y1,%2)|y? + y5 < 0.01} such that (vcl(cone(K + e —7%)) N (U —

cone(V + B)),y*) is bounded. So, (Z,7) is an e-strongly efficient element of (VP). Thus,
all conditions of Theorem 4.5 are satisfied. Hence, there exists y* = (1,2) € B** such that
(Z,7) is an e-optimal element of (VP),-.

Theorem 4.7. Let e € C,T € A,y € F(Z). Let B be an ordering-bounded basis of C. The
set-valued map F + ¢ — 7 is generalied C-subconvezlike on A. If there exists y* € Bt such
that (Z,7) is an e-optimal element of (VP),-, then (T,7) is an e-strongly efficient element

of (VP).
Proof. Since (Z,7) is an e-optimal element of (VP),+, we have
@,y") < (yy") + (e.9"), Vo € A,Vy € F(a). (4.8)

By y* € B, we obtain
(¢,y*) > 0,Vec e C. (4.9)

According to (4.8) and (4.9), we have
(y,y*) > 0,Vy € cone(F(A) + C + € —7),

ie.,

y* € (cone(F(A) +C+e—7)* . (4.10)
It follows from (4.10) and Lemma 2.10 that

y* € (vcl(cone(F(A) + C +e—7)))". (4.11)

Since y* € B!, it follows from the proof of Theorem 3.14 that, for any y; € Y?%¢ there
exists N € N such that y* — +y; € C*t. Clearly, Ny* — yi € C*. By Remark 2.8,

ya = (N + 1)y* —yi € B*". (4.12)
According to Remark 2.4, there exists a balanced, absorbent and convex set V; such that
(y,95) < 0,Vy € V1 — B. (4.13)
Since V4 is balanced, it follows from (4.13) that
ys € (cone(Vy + B))™. (4.14)
(4.11) implies that
(N + 1)y* € (vel(cone(F(A) + C + € —7))*. (4.15)
Using (4.12),(4.14) and (4.15), we obtain
y; € (vcl(cone(F(A) +C+e—7)))t — (cone(V; + B))*. (4.16)

Since the set-valued map F + ¢ — ¥ is generalied C-subconvexlike on A, it follows from
Remark 4.2 that vcl(cone(F(A) + C + € — 7)) is a convex cone in Y. It follows from (4.16)
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and Lemma 2.9 that there exist a balanced, absorbent and convex set U; C Y and a real
number a > 0 such that

(y,y7) > —a,Vy € vcl(cone(F(A) + C + € —g)) N (Uy — cone(V; + B)). (4.17)

Clearly, —y; € Y?. Therefore, there exist two balanced, absorbent and convex sets Uy C
Y, V5 CY and a real number 8 > 0 such that

(y, —yy) = —B,Vy € vel(cone(F(A) + C + e —5)) N (Uz — cone(Va + B)). (4.18)
Let U:=U; NUs and V := V3 N V,. Tt follows from (4.17) and (4.18) that
—a < (y,y7) < B,Vy € vcl(cone(F(A) + C+¢—7)) N (U — cone(V + B)),

which means that (Z,7) is an e-strongly efficient element of (VP). O

Conclusions

In this paper, we extend e-strongly efficient point of the set from topological spaces to or-
dered linear spaces. Some properties and existence conditions of strongly efficient points are
investigated. Under the generalized cone subconvexlikeness of set-valued maps, we establish
the relationship between the e-strongly efficient element of an unconstrainted set-valued op-
timization problem and the e-optimal solution of the scalarization problem. Note that we
only establish linear scalarization theorems of the e-strongly efficient element of an uncon-
strainted set-valued optimization problem. Following the line of [7], whether the nonlinear
scalarization theorems of the e-strongly efficient element can be obtained is interesting.
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