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local and global convergence properties of the quasi–Newton techniques, Andrei [3] intro-
duced a scaled BFGS preconditioned CG method. Also, based on a penalization strategy,
Fatemi [16] suggested effective choices for parameters of the search direction (1.2). Recently,
employing quasi–Newton aspects as well as parameter determination scheme of [11], Jian et
al. [23] introduced another approach for computing the spectral parameter which ensures
global convergence for uniformly convex objective functions. Their method has been then
improved by Faramarzi and Amini [15] using the modified secant condition proposed by
Li and Fukushima [26], especially in the sense of achieving global convergence for noncon-
vex objective functions. By constructing a restrictive relationship, Liu et al. [27] proposed
another spectral CG method which possesses the effective sufficient descent property, i.e.

dTk gk ≤ −c||gk||2, k ≥ 0, (1.3)

independent to the line search. More recently, Aminifard and Babaie–Kafaki [2] used a
spectral parameter to modify the efficient PRP method [29, 30], achieving the sufficient
descent property as well as the global convergence for general functions.

Here, based on the quasi–Newton aspects [28] as well as using the singular value analysis
conducted in [6], we suggest adaptive choices for the parameters θk and βk in (1.2). Our
formula for βk can be considered as an extension of the essential CG parameter proposed
by Dai and Liao (DL) [12]; that is

βDL
k =

gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
, (1.4)

derived based on an extended conjugacy condition, where t is a nonnegative parameter and
yk = gk+1 − gk. Note that if the line search fulfills the popular Wolfe conditions [28], i.e.

f(xk+1)− f(xk) ≤ δαkd
T
k gk, (1.5)

∇f(xk + αkdk)
T dk ≥ σgTk dk, (1.6)

with 0 < δ < σ < 1, then we have dTk yk > 0, and so βDL
k is well–defined. It is worth noting

that performance of the DL method is closely dependent on the choice of t for which the
best formula has not been achieved yet [4]. Nevertheless, some choices for the DL parameter
can be listed as follows:

t = tk1 = 0.1, proposed in [12]; (1.7)

t = tk2 =
sTk yk
||sk||2

+
||yk||
||sk||

, proposed in [6]; (1.8)

t = tk3
=

sTk yk
||sk||2

, proposed in [5, 7]; (1.9)

t = tk4
=
||sk||2||yk||2

(sTk yk)
2

, proposed in [8]; (1.10)

t = tk5
=

√
||yk||(sTk yk)
||sk||3

, proposed in [7]; (1.11)

t = tk6 =

√
||yk||1
||sk||1

(
sTk yk + ||sk||∞||yk||1
||sk||2 + ||sk||∞||sk||1

)
, proposed in [1]; (1.12)

where here ||.|| stands for the Euclidean norm.
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This work is organized as follows. In Section 2, based on the quasi–Newton aspects as
well as conducting a singular value analysis, we propose a modified family of spectral CG
methods. Then, using the approach of Zhang et al. [35], we suggest a descent three–term
extension of the given family of CG methods and discuss the global convergence as well.
We provide a test bed to shed light on the merits of our modification schemes in Section
3. Finally, in Section 4 we come out with concluding remarks. Hereafter, we assume that
dTk yk > 0, as guaranteed by the Wolfe conditions (1.5) and (1.6).

2 A Class of Spectral Conjugate Gradient Methods

In this section, we deal with computing parameters of the spectral CG method with the
search directions (1.2). Inspired by the features of quasi–Newton methods, here we let

dk+1 = −B−1
k+1gk+1,

where Bk+1 is a symmetric approximation of the Hessian ∇2f(xk+1) satisfying the secant
condition Bk+1sk = yk [28]. Now, we can write

−B−1
k+1gk+1 = −θkgk+1 + βkdk,

and so,
−sTk gk+1 = −θksTkBk+1gk+1 + βks

T
kBk+1dk,

which under the secant condition yields

βk = θk
yTk gk+1

dTk yk
− sTk gk+1

dTk yk
. (2.1)

Now, based on the approach of [12], we suggest the following extended version of (2.1):

βθ,t
k = θk

yTk gk+1

dTk yk
− t

sTk gk+1

dTk yk
, (2.2)

where t is a nonnegative parameter, being also a two–parameter extension of (1.4). In what
follows, based on the singular value analysis carried out in [6], we deal with finding an
appropriate value for the parameter θk in terms of t.

Firstly, note that from (1.2) and (2.2), search directions of the spectral CG method can
be written as

dk+1 = −Pk+1gk+1,

in which the matrix Pk+1, called the search direction matrix, is defined by

Pk+1 = θkI − θk
sky

T
k

sTk yk
+ t

sks
T
k

sTk yk
.

Since Pk+1 presents a rank–two update, its determinant can be computed by

det(Pk+1) = θn−1
k t

||sk||2

sTk yk
. (2.3)

So, if t > 0, then Pk+1 is nonsingular. In light of the similar discussion presented in [6],
Pk+1 has n− 2 singular values equal to θk. Next, we find the two remaining singular values
of the matrix Pk+1, namely σ+

k and σ−
k .
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Since ||Pk+1||2F is equal to tr(PT
k+1Pk+1) as well as to sum of squares of all the singular

values of Pk+1 [34], we get

σ+
k

2
+ σ−

k

2
= t2

||sk||4

(sTk yk)
2
+ θ2k

||sk||2||yk||2

(sTk yk)
2

, (2.4)

where ||.||F stands for the Frobenius norm. Also, from (2.3) and since |det(Pk+1)| is equal
to product of all the singular values of Pk+1 [33], we have

σ+
k σ

−
k = tθk

||sk||2

sTk yk
. (2.5)

Now, from (2.4) and (2.5), after some algebraic manipulations we get

σ±
k =

θk
2

√
( t
θk
||sk||2 + sTk yk)

2 + ||sk||2||yk||2 − (sTk yk)
2

sTk yk

±θk
2

√
( t
θk
||sk||2 − sTk yk)

2 + ||sk||2||yk||2 − (sTk yk)
2

sTk yk
.

Next, to make Pk+1 be a well–conditioned matrix which is advantageous in matrix com-
putations [34], we aim to minimize an upper bound of κ(Pk+1) where κ(.) stands for the
spectral condition number.

Following carefully the analyses conducted in [6], it can be seen that 0 ≤ σ−
k ≤ θk ≤ σ+

k .

Thus, ||Pk+1|| = σ+
k and ||P−1

k+1|| = σ−
k

−1
. Hence,

κ(Pk+1) =
σ+
k

σ−
k

=
σ+
k

2

σ+
k σ

−
k

≤
σ+
k

2
+ σ−

k

2

σ+
k σ

−
k

, (2.6)

and so, from (2.4) and (2.5) we can write

κ(Pk+1) ≤
t

θk

||sk||2

sTk yk
+

θk
t

||yk||2

sTk yk
.

Now, to compute an optimal value for the spectral parameter θk in our method, we obtain
minimizer of the upper bound of κ(Pk+1) given by (2.6); that is

θ∗k = t
||sk||
||yk||

= arg min
θk>0

{
t

θk

||sk||2

sTk yk
+

θk
t

||yk||2

sTk yk

}
. (2.7)

Here, a spectral CG method of the form (1.1)–(1.2) with the parameter βθ,t
k given by

(2.2) in which θk is computed by (2.7) is called the SDL method. That is,

dSDL
k+1 = −θ∗kgk+1 +

(
θ∗k

gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk

)
dk, ∀k ≥ 0. (2.8)

As known, descent condition may be crucial in convergence analysis of the CG methods,
also being considered as a desirable effective feature of the methods [10, 20]. Based on this
fact and using the approach of [35], here we suggest a descent three–term extension of the
given family of CG methods, namely DSDL, in which

dDSDL
k+1 = dSDL

k+1 − τkθ
∗
k

gTk+1dk

dTk yk
yk, ∀k ≥ 0, (2.9)
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in which τk = 0 if gTk+1d
SDL
k+1 < 0, and τk = 1, otherwise. So, when gTk+1d

SDL
k+1 < 0, since

τk = 0 we have gTk+1d
DSDL
k+1 = gTk+1d

SDL
k+1 < 0. Also, when gTk+1d

SDL
k+1 ≥ 0, since τk = 1 we

have

gTk+1d
DSDL
k+1 = −θ∗k||gk+1||2 + θ∗k

gTk+1yk

dTk yk
(gTk+1dk)− t

gTk+1sk

dTk yk
(gTk+1dk)

−θ∗k
gTk+1dk

dTk yk
(gTk+1yk) ≤ −θ∗k||gk+1||2 − tαk

(gTk+1dk)
2

dTk yk
< 0,

ensuring descent property of the DSDL method. Next, we discuss global convergence of the
DSDL method. In this context, the following standard assumptions are needed [32].

Assumption 2.1. (i) The level set L = {x : f(x) ≤ f(x0)} at x0 is bounded, namely, there
exists a constant â such that

||x|| ≤ â, ∀x ∈ L.
(ii) In some open convex neighborhood N of L, the objective function f is continuously
differentiable and its gradient is Lipschitz continuous; that is, there exists a positive constant
L such that

||∇f(x)−∇f(x̃)|| ≤ L||x− x̃||, ∀x, x̃ ∈ N .

Lemma 2.1 ([32]). Suppose that Assumptions 2.1 hold. Consider any iterative method in
the form (1.1), where dk and αk satisfy the sufficient descent condition (1.3) and the Wolfe
conditions (1.5) and (1.6), respectively. If

∞∑
k=0

1

||dk||2
=∞,

then the method converges globally in the sense that

lim inf
k→∞

||gk|| = 0.

Theorem 2.2. Suppose that Assumptions 2.1 hold. Consider the DSDL method and for
which assume that θ∗k and t are bounded above by a positive constant M . If the objective
function f is uniformly convex on N , the search directions satisfy the sufficient descent
condition (1.3) and the step lengths are determined to fulfill the Wolfe conditions (1.5) and
(1.6), then the method converges in the sense that lim

k→∞
||gk|| = 0.

Proof. Under Assumptions 2.1, there exists a positive constant γ̄ such that

||gk|| ≤ γ̄, ∀x ∈ L. (2.10)

Uniform convexity of the differentiable function f ensures that there exists a positive con-
stant µ such that

dTk yk ≥ µαk||dk||2, ∀k ≥ 0.

(See Theorem 1.3.16 of [33].) By (1.2), (2.2) and (2.10) we have

||dk+1|| ≤ |θ∗k| ||gk+1||+
(2L|θ∗k|+ t)||gk+1|| ||sk||

µαk||dk||2
||dk||

≤ µ−1γ̄(µ|θ∗k|+ 2L|θ∗k|+ t) ≤ µ−1γ̄M(µ+ 2L+ 1).

Now, since {||dk||}k≥0 is bounded above, from Lemma 2.1 the proof is complete.

To make θ∗k and t to be bounded above, we can let t← min{t,M} and θ∗k ← min{θ∗k,M}
where M is an enough large positive constant.
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3 Numerical Experiments

In this section, we investigate computational efficiency of the SDL and DSDL methods
respectively with the search directions (2.8) and (2.9), with the different six adaptive choices
(1.7)–(1.12) for t. Here, for i = 1, 2, ..., 6, the method with θk = 1 in (2.8) which is called

DLi is compared by its spectral versions with θ∗ki
= tki

||sk||
||yk||

which is called SDLi. Similarly,

DSDLi is compared by the descent version of the corresponding DL method (the method
with θk = 1 in (2.9)), called DDLi, i = 1, 2, ..., 6.

The runs were performed on a set of 81 unconstrained optimization test problems of the
CUTEr collection [18] with the minimum dimension being equal to 50, as given in Table 1.
In hardware point of view, we used a computer Intel(R) Core(TM)2 Duo CPU 2.3 GHz with
8 GB of RAM. Also, in software point of view we applied MATLAB 7.7.0.471 (R2008b) on
a Centos 6.2 server Linux operation system.

Table 1: Test problems data

Function n Function n Function n
ARGLINA 200 DIXMAANK 3000 MANCINO 100
BDEXP 5000 DIXMAANL 3000 MOREBV 5000
BIGGSB1 5000 DIXON3DQ 10000 MSQRTALS 1024
BQPGABIM 50 DMN15103 99 MSQRTBLS 1024
BQPGASIM 50 DQDRTIC 5000 NCB20 5010
BROYDN7D 5000 DQRTIC 5000 NCB20B 5000
BRYBND 5000 DRCAV1LQ 4489 NONCVXU2 5000
CHAINWOO 4000 DRCAV2LQ 4489 NONDQUAR 5000
CHENHARK 5000 DRCAV3LQ 4489 PENALTY2 200
CHNROSNB 50 EDENSCH 2000 POWELLSG 5000
CLPLATEB 5041 EG2 1000 POWER 10000
COSINE 10000 EIGENALS 2550 QUARTC 5000
CRAGGLVY 5000 EIGENBLS 2550 SCHMVETT 5000
CURLY10 10000 EIGENCLS 2652 SENSORS 100
CURLY20 10000 ENGVAL1 5000 SINQUAD 5000
CURLY30 10000 ERRINROS 50 SPARSQUR 10000
DECONVU 63 EXTROSNB 1000 SPMSRTLS 4999
DIXMAANA 3000 FLETCBV2 5000 SROSENBR 5000
DIXMAANB 3000 FLETCBV3 5000 TESTQUAD 5000
DIXMAANC 3000 FLETCHBV 5000 TOINTGOR 50
DIXMAAND 3000 FLETCHCR 1000 TOINTGSS 5000
DIXMAANE 3000 FMINSRF2 5625 TOINTPSP 50
DIXMAANF 3000 FMINSURF 5625 TOINTQOR 50
DIXMAANG 3000 FREUROTH 5000 TRIDIA 5000
DIXMAANH 3000 GENHUMPS 5000 VARDIM 200
DIXMAANI 3000 GENROSE 500 VAREIGVL 50
DIXMAANJ 3000 LIARWHD 5000 WOODS 4000
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In the line search procedure, the strong Wolfe conditions have been employed, consisting
of (1.5) and the following strengthened version of (1.6):

|dTk gk+1| ≤ −σdTk gk,

using Algorithm 3.5 of [28] with δ = 0.0001 and σ = 0.99. The algorithms were stopped
by reaching a maximum of 10000 iterations or achieving a solution with ||gk|| < 10−5(1 +
|f(xk)|). Moreover, efficiency comparisons were drawn using the Dolan–Moré performance
profile [14] on the running time and the total number of function and gradient evaluations
being equal to Nf +3Ng [21], where Nf and Ng respectively denote the number of function
and gradient evaluations. Performance profile gives, for every ω ≥ 1, the proportion p(ω) of
the test problems that each considered algorithmic variant has a performance within a factor
of ω of the best. Figures 1–4 illustrate the results of comparisons (based on the considerations
of [19]). As seen, generally the given spectral CG methods as well as their descent versions
are practically promising (except the case where DDL6 slightly outperforms DSDL6 in part
(f) of Figures 3 and 4). Also, the experiments showed that DSDL2 outperforms the other
methods.

In the second part of our numerical experiments, we compared performance of DSDL2
with some recent efficient CG methods suggested by Kou and Dai (KD) [25] as well as
the methods IFR (improved Fletcher–Reeves (FR) method [17]), IDY (improved Dai–Yuan
method [13]) and IFD (a hybridization of FR and IDY methods) proposed by Jiang and
Jian [24]. Results of comparisons are illustrated by Figure 5. As seen, although IFR and
IDY outperform DSDL2, performance of DSDL2 is preferable to IFD and KD. So, our
descent spectral CG method can be regarded as being somewhat intermediate between the
methods of IFR, IDY, IFD and KD.

4 Conclusions

In this study, firstly features of the quasi–Newton method has been employed to achieve a
general structure for the spectral conjugate gradient method (as an extension of the Dai–Liao
method [12]) and then, following singular value analysis conducted in [6], an optimal value
for parameter of the method has been suggested. In order to achieve descent property, an
extended version of the method has been proposed based on the approach of Zhang et al. [35].
A brief convergence analysis has been conducted when the line search fulfills the Wolfe
conditions. To investigate practical effect of our approach, several pairwise comparisons
have been done on a set of CUTEr test problems, using the Dolan–Moré performance profile.
They showed the proposed class of spectral conjugate gradient methods can be considered
as an appropriate practical tool for solving unconstrained optimization problems.
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Figure 1: Total number of function and gradient evaluations performance profiles for the
SDL and DL methods
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Figure 2: CPU time performance profiles for the SDL and DL methods
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Figure 3: Total number of function and gradient evaluations performance profiles for the
DSDL and DDL methods
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Figure 4: CPU time performance profiles for the DSDL and DDL methods



592 Z. AMINIFARD AND S. BABAIE–KAFAKI

Figure 5: Performance profiles of the total number of function and gradient evaluations (a)
and the CPU time (b) for the DSDL2, IFR, IDY, IFD and KD methods
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