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the user is aware of these magnitudes and rectifies the constraints, the scaling differences may
create an imbalance between the constraints. This can give more importance to constraints
compared to others. The problem{

min
x∈X

f(x)

subject to ci(x)
ai

≤ 0, ∀i ∈ J1,mK
where 0 < a ∈ Rm is equivalent to the previous problem.

The MADS algorithm was expanded [8] to take into account the scaling of the input
variables x ∈ Rn. However, no scaling was performed for the constraints. This is the main
focus of the present work.

MADS is a direct search algorithm based on a discretization of the space of variables
called“mesh”. MADS performs two different types of steps at a given iteration. The
first is called the search. It can be any user-defined strategy: a quadratic model [13], latin
hypercube sampling [11], or a Nelder-Mead search [9] for example. The second one is the
poll step, a local exploration on the mesh. The convergence analysis of MADS relies on that
step. Unlike pattern search algorithms, there is not only one parameter that describes the
mesh, but two: the mesh size parameter (δk) that defines the resolution of the mesh and
the frame size parameter (∆k) that defines the resolution of the frame where the points can
be evaluated in the poll step.

At iteration k ∈ Rn of a poll step, the set of points that can be evaluated at this iteration
is:

Pk = {xk + δkd : d ∈ Dk}
where Dk is a positive spanning set in Rn.

During a search or a poll step, a finite list of elements Lk ⊂ Rn is given for evaluation of
the blackbox. But in order to accelerate the convergence, the list Lk is not fully evaluated. As
soon as a new incumbent solution is found, then the other elements of Lk are not evaluated.
This is called the“ opportunistic strategy”. It is preferable to identify this solution as
early as possible in order to save many function evaluations. To achieve this, the elements
of Lk are sorted from most to least promising using an ordering strategy. The importance
of ordering the elements of Lk in the opportunistic strategy is quantified in [22].

The present work is structured as follows. Section 2 describes the progressive barrier
to handle the constraints. Section 3, which is the main focus of this work, defines three
weightings and how they will impact the progressive barrier. Section 4 shows the numerical
results. The different weightings apply on both analytical problems and blackboxes. Section
5 concludes and discusses the theoretical aspect, the numerical results and describes future
work.

2 Progressive Barrier in MADS

In [6], MADS handles the constraints using the extreme barrier by simply rejecting infeasible
points by optimizing the function:

fΩ(x) =

{
f(x) if x ∈ Ω
+∞ if x /∈ Ω.

In [5], MADS-PB offers a different way to handle the constraints using the constraint
violation function, which is an adaptation from [14]. For this function called h, if x /∈ X
then one of the unrelaxable constraints is not satisfied and thus the other values cannot be
trusted. So the constraint violation function takes the value +∞.
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Definition 2.1. The constraint violation function h is defined as:

h(x) =


m∑
i=1

max(0, ci(x))
2 if x ∈ X

+∞ otherwise.

The function h aggregates all the constraint violations. It also satisfies the following
property: for every x ∈ Rn: h(x) = 0 if and only if x belongs to Ω = {x ∈ X : ci(x) ≤
0, ∀i ∈ J1,mK}.

The progressive barrier does not reject all infeasible points. Let V k ⊆ X be the set of
points previously evaluated by the beginning of iteration k that satisfy all non-relaxable
constraints. Considered the bi-objective optimization problem where the functions are the
objective f and the constraint violation h. In the progressive barrier, the only feasible points
that are kept are the ones with the lowest value of f . Let

Fk = Argmin
x∈V k

{f(x) : h(x) = 0}

be the set of the best feasible points. The best value of f among the feasible points is

fF
k =

{
+∞ if Fk = ∅
f(x) for any x ∈ Fk otherwise.

A partial order relation is created amongst the infeasible points, and the non-dominated
points are kept according to the following order relation.

Definition 2.2. Let x, y ∈ V k be two evaluated points. It is said that x dominates y,
denoted x ≺ y, if h(x) < h(y) and f(x) ≤ f(y), or if h(x) ≤ h(y) and f(x) < f(y).

Amongst all infeasible points of V k, only the non-dominated ones are kept. Let us define
Uk = {x ∈ V k − Ω : ∄y ∈ V k − Ω, y ≺ x} the set of non-dominated infeasible points.

A positive scalar called hk
max is also defined at each iteration k. Rather than rejecting

all the infeasible points, as with the extreme barrier, the progressive barrier rejects those
whose constraint violation function value exceeds the threshold hk

max. At iteration k, every
point x from the cache that verifies h(x) > hk

max is rejected. The key to this method is that
as k increases, the threshold hk

max progressively decreases. The progressive barrier keeps all
the infeasible elements from the set

Ik = Argmin
x∈Uk

{f(x) : 0 < h(x) < hk
max}.

The rules to update hk
max, as described in [5], guarantee that the sequence {hk

max}k∈N

is non-increasing. Furthermore, the sequence is bounded below by 0 so it converges. The
progressive barrier has also been adapted in a trust region context [4].

The notion of a refined subsequence [5] also needs to be defined to analyze the convergence
of the method. Let U ⊆ N the subset of the indices of unsuccessful iterations. If the poll
was performed around an element xF

k ∈ Fk, with k ∈ U, then xF
k is called“ feasible minimal

frame center” and if the poll was done around xI
k ∈ Ik, with k ∈ U, then xI

k is called
“ infeasible minimal frame center”.

Definition 2.3. A subsequence of the MADS-PB minimal frame centers {xk}x∈K , with
K ⊆ U is a refining subsequence if {∆k}k∈K converges to 0. The limit of a convergent
refining subsequence x̂ is called a refined point. If limk∈L

dk

||dk|| converges (to say v ∈ Rn),

with L ⊆ K and poll direction dk ∈ Dk(xk), and if xk + δkdk ∈ X for infinitely k ∈ L, then
the limit v is said to be a refining direction of x̂.
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The analysis of the progressive barrier also uses the definition of the hypertangent cone.
We use the definition from [6], but an equivalent one is found in [16].

Definition 2.4. Let A ⊆ Rn and x̂ ∈ A. Then v ∈ Rn in an hypertangent vector to the set
A at the point x̂ if there exists ε ∈ R∗

+ such that

y + tw ∈ A for all y ∈ A ∩Bε(v), w ∈ Bε(v) and 0 < t < ε}.

TH
A (x̂) is the set of all the hypertangent vectors to A at x̂ and is called the hypertangent

cone of A at x̂.

Jahn [16] generalizes derivative the Clarke derivative [12] to take the domain X into
account:

Definition 2.5. The generalized gradient of Clarke of f : X 7→ R at x̂ ∈ X in the direction
d ∈ Rn is the following limit, if it exists:

f◦(x; d) = lim
y→x̂,y∈X

sup
t↓0,y+tv∈X

f(y + td)− f(y)

t
.

Two assumptions are made.
Assumption A1: There exists some x0 provided by the user in V 0 such that x0 ∈ X, f(x0),

h(x0) are both finite.
Assumption A2: All trial points generated by the algorithm lie in a compact set.

It is now possible to describe two of the main convergence results of the progressive
barrier. Both assumptions come directly from [5].

Theorem 2.6. Let assumptions A1 and A2 hold and assume that the algorithm generates
a refining subsequence {xF

k }k∈K , with xF
k ∈ Fk converging to a refined point x̂F in X near

which f is lipschitz. If v ∈ TH
X (xF ) is a refining direction for x̂F , then f◦(x̂F ; v) ≥ 0.

The second result is a similar theorem but on h with a refining subsequence of infeasible
elements.

Theorem 2.7. Let assumptions A1 and A2 hold, and assume that the algorithm generates
a refining subsequence {xI

k}k∈K , with xI
k ∈ Ik converging to a refined point x̂I in X near

which h is lipschitz. If v ∈ TH
X (xI) is a refining direction for x̂I , then h◦(x̂I ; v) ≥ 0.

Since the union of all normalized refining MADS directions is dense in the unit sphere [1],
Theorem 2.6 gives conditions ensuring that the method produces a limit point that satisfies
nonsmooth necessary optimality conditions for the minimization of f over Ω, and Theo-
rem 2.7 gives nonsmooth necessary optimality conditions for the minimization of h over
X.

3 Scaling of the Output: Impact on the Constraint Violation Func-
tion

Section 2 described the progressive barrier technique. The definition of the constraint viola-
tion function is impacted by the constraint scaling. In the introduction, two formulations of
an equivalent optimization problem were given, leading to two formulations of the constraint
violation function:

h(x) =

m∑
i=1

max (0, ci(x))
2

or h(x) =

m∑
i=1

max

(
0,

ci(x)

ai

)2

.
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In this section, we analyze three different weights to scale the constraints and study its
impact on the progressive barrier.

In order to do that, we generalize the constraint violation function definition by adding
a second argument containing the weights.

Definition 3.1. Let 0 < a ∈ Rn be a scaling parameter. The constraint violation function
h : Rn × Rn 7→ R ∪ {+∞} is defined by

h(x; a) =


m∑
i=1

max

(
0,

ci(x)

ai

)2

if x ∈ X

+∞ otherwise.

Since a has positive components, then for x ∈ Rn, x is feasible if and only if h(x; a) =
0. Also if the vector from Rn with only ones as components is denoted 1, then h(·;1)
corresponds to the constraint violation function from Definition 2.1.

3.1 Three different weights

Three weightings are used, based on a sequence {ak}k∈N of vectors with positive elements to
create the sequence of constraint violation functions {h(·; ak)}k∈N. All sequences {ak}k∈N

are initialized by a0 = 1.

First violation. The first weighting aims to correct the scaling as soon as possible. In
order to do that, for a given constraint, the weight will be set to value of the first encountered
violation of that constraint. More formally, let i ∈ J1;mK be the index of a constraint. The
value ai is set equal to ci(x) where x is the first point found in V k such that ci(x) > 0.
Thus, the weighting is done as soon as it matters, so when a candidate point x that violates
the constraint: ci(x) > 0. Moreover, when it has been modified once, all subsequent aki will
keep the same value throughout the rest of the optimization process.

Recalculating the values of h(x; ak), for all x ∈ V k is a problem that is asked at most
once per constraint. However, two drawbacks are anticipated: (i) The value of the weighting
is entirely dependant of the value found by the first violation, which can be very different
by the usual values returned by that constraint. This can create an unbalance with respect
to the other constraints. (ii) if aki is very small, computational difficulties may arise due to
divisions by small numbers.

A second weighting uses the median in order to avoid those drawbacks.

Median violation. The second option is to wait until the constraint is violated a total of n
times, where n is the dimension of the problem. This strategy provides a more representative
sample. At iteration k ∈ N, let j ∈ N denote the number of time the constraint ci was
violated. Let {x1, . . . , xj} ⊆ Rn be the corresponding points that violate the constraint ci,
ordered by increasing values of ci(x

j), j ∈ J1;nK. Then, let
aki =

{
1 if j < n

ci(x
⌈n

2 ⌉) if j ≥ n

be the violation associated to the median. Just like for the weighting with the first violation,
the changes of weighting occurs only once per constraint.

Even if the risks of having a weighting that is not adapted are reduced, because the
median is used, it is always possible that the n first violations are not representative of the
values usually taken by that constraint.
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Maximum violation. The third weighting takes the value of the largest violation of the
constraint. More precisely, the sequence {aki }k∈N of general term

aki =

{
1 if {ci(x) : x ∈ V k, ci(x) > 0} = ∅
max
x∈V k

ci(x) otherwise

for all i ∈ J1;mK. As a consequence, 0 ≤ ci(x)

ak
i

≤ 1 for every x ∈ V k. This makes the con-

straints’ magnitude comparable. This dynamic scaling is well adapted to binary constraints
since the coefficient is then equal to 1.

That way to calculate the aki may lead to three drawbacks. (i) if a very high value
is found compared to the other typical valued found for that constraint, aki risks to lower

significantly ci(x)

ak
i

and lower too strongly the importance given to that constraint. (ii) an

arbitrarily high value (such as 1020) is returned for some blackbox problems, when there is
an error (provoked for example by a hidden constraint). In that case, it has a direct impact
on the value of aki and on the calculation of hk. (iii) we have to update aki each time a new
higher positive value is found for that constraint. Thus, it is required to check every time
if the weights need to be updated, when the other methods had only at most one change of
the weight by constraint.

3.2 Impact on the progressive barrier

When there is no scaling of the output, the function h remains the same throughout the
algorithm. The constraint violation functions are calculated with the same formula, so there
is no need to recalculate for elements that have been evaluated previously. This is no longer
the case with scaling of the output, since the weightings change the way to calculate h
(through the sequence {hk}k∈N). This leads to many changes on the progressive barrier
when one of the coefficients changes.

Firstly, hk
max should be updated accordingly to {h(·; ak)}k∈N. For example, it is possible

that, at iteration k ∈ N, if hk
max does not have a different update rule when h(·; ak) changed,

that all the points be on the other side of the barrier, which means that for all x ∈ V k that
are infeasible, h(x; ak) > hk

max. But, in that case, all the points from the cache could be
rejected from the progressive barrier. Lacking of points, MADS terminates. So, an update
of hk

max becomes necessary.
Figure 1 illustrates how hk

max is determined when a coefficient changes.
At iteration k ∈ N of MADS, if there is at least one infeasible point then hk

max is
chosen such that it has the line of equation h = hk

max go through one of the points in
the corresponding diagram h vs f from the traditional progressive barrier. This point is
denoted by xk

max ∈ Rn, and represented by the triangle X in the left diagram h(·; ak) vs f
of Figure 1. So after the change of one of the coefficient and the update on hk+1 compared
to h(·; ak), the point X changes position on the h(·; ak+1) vs f , as seen on the right image
of the figure. When h(·; ak) ̸= h(·; ak+1), it is decided to choose hk+1

max such that the line of
equation h( · ; ak+1 ) = hk+1

max still goes through the point X in the diagram h ( · ; ak+1)
vs f . So, it gives the guarantee that at least one point will not be cut by the progressive
barrier, which is the point xk

max. This will be called“ the update of hk
max”.

3.3 Convergence analysis

The scaling of the output impacts the progressive barrier and its convergence analysis.
Several weightings have been developed and they do not all have the same impact. Those
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Figure 1: Update of h(·; ak) and hk
max.

weightings are analysed separately.

First and median violation. The two first weightings are grouped because they have
identical convergence analyses. Firstly, in both cases, there is at most one change in the
weights per constraint, that weight being equal to 1 initially and taking a value noted
ai ∈ R∗

+. That means that, for all i ∈ J1;mK, there is an iteration number ki ∈ N such that
for all k ∈ J0; kiJ, aki = 1 and for all k ∈ Jki; +∞J, aki = ai > 0. So {aki }k∈N converges
to a positive value. Then, by construction h(·; ak) = h(·; akmax) for every k ≥ kmax where
kmax = max{ki : i ∈ J1;mK}. So, from the iteration kmax, the sequence {h(·; ak)}k∈N always
takes the same value, and thus the convergence analysis of the progressive barrier mentioned
in 2 and described in [5] is still valid from that iteration number.

Maximum violation. The reasoning for the convergence analysis of the first violation
and the median weighting is not possible for the weighting using the maximum. This is
because there are cases where the algorithm will converge to the optimal solution with an
infinite number of updates if an infinite budget of evaluation is given. For example, consider
f : [0; 2] 7→ R defined by its general term f(x) = −x and c : [0; 2] 7→ R defined by

c(x) =

{
0 if x ∈ [0; 1]
3− x if x ∈]1; 2].

The optimization problem 
min
x∈R

f(x)

subject to c(x) ≤ 0
0 ≤ x ≤ 2

has a single optimal solution x∗ = 1.
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If MADS is used with the starting point x0 = 0.9, points will be generated from either
side of x∗. As the algorithm progresses, the mesh size will diminish and points higher and
closer to 1 will be generated, which will produce higher values of the constraint c. Thus,
there will be an infinite number of points which will lead to a new scaling of h. However,
some properties can be proven.

Theorem 3.2. The sequence of functions {h(·; ak)}k∈N converges.

Proof. For all i ∈ J1;mK, it should be noted that the sequence {aki }k∈N is non-decreasing
from a certain rank (either from the first violation of the i-th constraint, if this constraint is
violated at least once, or from the rank 0 if the constraint is never violated), by construction
of the weighting.

Since {aki }k∈N is a positive sequence non-decreasing from a certain rank, two cases can
occur. Either that sequence is majored and it converges to a real number ai > 0, either it

is not majored and it diverges to +∞. In both cases,
{

1
ak
i

}
k∈N

converges to a non-negative

value. The convergence of that last sequence implies the convergence of {h(·; ak)}k∈N, which
proves the theorem.

In the case where the sequence {aki }k∈N for a i ∈ J1;mK diverges to +∞, the conventions
ai = +∞ and 1

ai
= 0 are adopted.

The next theorem is about the non-increasing aspect of the sequence {hk
max}k∈N. It was

one of the properties the convergence analysis of the progressive barrier [5].

Theorem 3.3. The sequence {hk
max}k∈N is non-increasing from a certain rank.

Proof. The proof of the previous theorem showed that, for all i ∈ J1;mK the sequence
{aki }k∈N is non-decreasing from a certain rank. Let note ki that rank, and define kmax =
max{ki : i ∈ J1;mK}. From the rank kmax, either the value h

k
max changes because of a change

in the weighting as explained in section 3.2, or it changes because of the way the progressive
works originally as explained in 2 and in [5]. In the second case, it is known that hk

max is
updated with a lower value. In the first case, let k ∈ N, k ≥ kmax and let x̄ the element
that was used for the update of hk

max. Then hk
max = hk(x̄) and hk+1

max = h(x̄; ak+1). It is
just needed to show that h(x̄; ak+1) ≤ h(x̄, ak). But since, k ≥ kmax, then for all i ∈ J1;mK,
0 < aki ≤ ak+1

i , so 0 < 1

ak+1
i

≤ 1
ak
i

. This is true for all i ∈ J1;mK so h(x̄; ak+1) ≤ h(x̄; ak).

Thus, hk+1
max ≤ hk

max. This shows that from the rank kmax, whatever the way the barrier has
been updated, hk+1

max ≤ hk
max, which proves the theorem 3.3.

A similar proof can be used to show that, for any given x ∈ X, the sequence {h(x; ak)}k∈N

is non-increasing from the certain rank kmax. Furthermore, by construction, the sequence
{hk

max}k∈N is minored by 0. And since it is non-increasing from a certain rank, then it
converges.

There is a property close from the non-increasing property of {h(x; ak)}k∈N for all x ∈ X
from the rank kmax. In fact, as soon as an element x ∈ R is evaluated by the blackbox,
the value of {h(x; ak)} cannot increase. This is summarized with Theorem 3.4.

Theorem 3.4. Let k0 ∈ N. For any x ∈ V k0 ∩ X, the sequence {h(x; ak)}k≥k0 is non-
increasing.

Proof. Let k0 ∈ N and A = {i ∈ J1;mK : ∀x ∈ V k0 ci(x) ≤ 0}. A is the set of the constraints
that have not been violated at the beginning of the iteration k0. Let x ∈ V k0 ∩X. Then,
for all k ∈ J1;mK:
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h(x; ak) =

m∑
i=1

max

(
0,

ci(x)

aki

)2

=
∑
i/∈A

max

(
0,

ci(x)

aki

)2

(by definition of A)

Furthermore, for all i /∈ A, there exists xi ∈ V k0 , such that ci(x
i) > 0. But the sequence

{aki }k∈N is non-decreasing from the first violation of the constraint ci. So, for all i /∈ A,
{aki }k≥k0

is non-decreasing and has positive values. Thus, i /∈ A, { 1
ak
i

}k≥k0
is non-decreasing

and has positive values. It leads to the fact that {h(x; ak)}k≥k0 is non-decreasing, which
proves the theorem.

Theorem 3.4 shows that the only elements x ∈ X for which the sequence {h(x; ak)}k≥k0

is not non-increasing are among the points that have not been evaluated yet. It shows also
that from the diagram h(·; ak0) vs f , a point will never move to the right on the diagram
h(·; ak0+1) vs f .

In the progressive barrier (see Section 2), there are convergence analysis results both on
f and h. The results on f remain unchanged. However, since h has been substituted by
{h(·; ak)}k∈N. Ideally, the best would be if the same results remain for

h(·; a) = lim
k→+∞

h(·; ak).

In [5], the results on h relies on the hypothesis that h is lipschitz at the convergent point.
The same hypothesis could be made on h(·; a). Another assumption needs to be made.
Assumption A3: For all i ∈ J1;mK, ci is bounded above on X.

Theorem 3.5. Under assumptions A1, A2 and A3, {h(·; ak)}k∈N converges uniformly to
h(·; a) on X.

Proof. Let x ∈ X and k ∈ N. Since for all i ∈ J1;mK, ci is upper-bounded on X, then

C = max
i∈J1;mK{supmax(0, ci(x)), x ∈ X}

is well defined.

∣∣h(x; ak)− h(x; a)
∣∣ =

∣∣∣∣∣
m∑
i=1

(max(0,
ci(x)

aki
)2 −max(0,

ci(x)

ai
)2

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

(
1

(aki )
2
− 1

(ai)2
)max(0, ci(x))

2

∣∣∣∣∣
≤ C2

m∑
i=1

∣∣∣∣ 1

(aki )
2
− 1

(ai)2

∣∣∣∣
This last inequality is true for all x ∈ X, so

sup
x∈X

∣∣h(x; ak)− h(x; a)
∣∣ ≤ C2

m∑
i=1

∣∣∣∣ 1

(aki )
2
− 1

(ai)2

∣∣∣∣ → 0

Which proves the theorem 3.5.

The next section will analyse how weightings can be used for the surrogate function of
the constraint violation function.



604 C. AUDET, G. CAPOROSSI AND S. JACQUET

3.4 Impact of a surrogate on the constraint violation function h̃

As described in the introduction, MADS uses the opportunistic strategy. In order to help
the opportunistic strategy, it is possible to use a surrogate for each constraint.

In this work, for all i ∈ J1;mK, the surrogate of the constraint ci is noted c̃i and is a
quadratic model [13] (default choice in Nomad, the optimization software based on MADS).
With those surrogates, another surrogate of h (which is equal to h(·;1) with current nota-
tions) can be built:

h̃(x;1) =


m∑
i=1

max (0, c̃i(x))
2

if x ∈ X

+∞ otherwise.

Currently, if it is supposed that a surrogate f̃ for f and h̃(·;1) for h is at disposal, the
ordering strategy is the following: let x and y, then x is given to the blackbox before y if
and only if (f̃(x) ≤ f̃(y) and h̃(x;1) < h̃(y;1)) or (f̃(x) < f̃(y) and h̃(x;1) ≤ h̃(y;1)).

Since h̃(·;1) is important in the way MADS works, a weighting on h̃(·;1) seems fair. h̃
is chosen as

h̃(x; ak) =


m∑
i=1

max

(
0,

c̃i(x)

aki

)2

if x ∈ X

+∞ otherwise.

The weightings on h and h̃ can be considered independently. It is possible to test the
weighting on h, with {h(·; ak)}k∈N, without doing it on {h̃(·; ak)}k∈N and vice versa. It is
also possible to use both weightings together. So when surrogates are available, it will be
possible to compare the default version (no weightings), and a version with weightings on
{h̃(.; ak)}k∈N.

4 Numerical Results

The numerical results are divided in two sections. Section 4.1 studies cases for which no
surrogate functions are used. The absence of surrogates allows to study the numerical impact
of the weightings on the progressive barrier. Adding surrogate functions might compensate
some flaws, so this section focuses on the progressive barrier. In addition, experimental
results compare the three proposed weightings. Section 4.2 uses the best weighting for
problems where surrogates are available.

All numerical results are done on Nomad 3.8.0 with the directions generated by Or-
thoMADS [1] and the budget of evaluation is set to 1500. Data profiles [19] are generated
to compare different versions. For each problem and for each algorithm the following test
of convergence is performed:

f(x0)− f(x) ≤ (1− τ)(f(x0)− fL), (4.1)

where x0 ∈ Rn is the feasible starting point (all algorithms start with the same starting
point), fL the best value found by all the algorithms compared given a budget of evaluation
and τ ∈ R+ the wished precision. If, for some problem, an algorithm produces a point
x ∈ Rn that verifies equation (4.1), this algorithm is said to solve the problem at precision
τ . The ordinate of data profiles show the ratio of problem verifying the test convergence at
a given precision.
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4.1 Without surrogates

In this section, no surrogates for the objective function and the constraints are used. Nu-
merical results are divided in two groups. The first one contains analytical problems and
the second contains blackbox problems, described in Tables 1 and 2, respectively.

# Name Source n m Bounded

1 PIGACHE [20] 4 11 yes
2 PVMC [10] 4 3 no
3 RCBM [15] 3 2 yes
4 SRMMC [10] 7 11 yes
5 SMMC [21] 3 4 yes

Table 1: Five analytical optimization problems from the literature.

# Name Source n m Bounded

1 Styrene [3] 8 11 yes
2 MDO [23] 7 4 yes
3 Lockwood [18] 6 4 yes

Table 2: Three blackbox optimization problem from the literature.

In order to test badly scaled problems, a modified version of each problem, called “un-
balanced”, is created by multiplying the i-th constraint by the coefficient 10ji , ji ∈ Z. The
coefficient ji are listed in Table 3.

For each problem, feasible points are generated using a latin hypercube, either on the
entire domain, or around a known feasible point.

Name j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11

PIGACHE 2 4 -7 -5 -3 1 3 -2 -1 5 7
PVMC 0 3 -3
RCBM 3 -3
SRMMC -1 -2 -3 -4 -5 0 1 2 3 4 5
SMMC -4 -2 2 4
Styrene 0 0 0 0 -3 -2 -1 0 1 2 3
MDO 3 0 0

Lockwood 3 0 0 0

Table 3: Coefficient ji for the unbalanced variants of the problems

Analytical problems. The first tests are on the 5 unmodified analytical problems from
100 feasible starting points. This makes a total of 500 instances. The same starting points
are used on the “unbalanced”problems.

Figure 2 contains the data profiles from the 500 instances on the unmodified analytical
problems. The weighting that uses the maximum violation dominates the other methods
on the profiles. In particular, at precision τ = 10−5, it solves 58% of the problems, and all
other strategies solve less than 35% of them.

Figure 3 shows the data profiles from the 500 instances on the “unbalanced”analytical
problems. These problems appear to be more difficult, as all the curves are slighly lower
than the corresponding ones in Figure 2. Once again, the graphs show a domination of
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Figure 2: Data profiles for unmodified analytical problems.

the weighting that uses the maximum violation. The two other weightings seem to perform
slightly worst than the default strategy that does not alter the weights of the constraints.

Figure 3: Data profiles for “unbalanced”analytical problems.

The analytical problems show a clear domination of the weighting that uses the maximum
violation.

Blackbox problems The blackbox problems are “Styrene”, “MDO” and “Lockwood”,
and their descriptions are found in [3, 7, 9]. For each blackboxes 30 feasible starting points
are used.

Figure 4 shows the data profiles on those 90 instances from the 3 unmodified blackboxes
at precision τ = 10−1, τ = 10−3 and τ = 10−5. The scaling methods, or even having a
scaling or not, does not seem to be an important impact. All curves are very close to each
other.

Tests are then made on instances from “unbalanced”blackboxes from the same starting
points. Figure 5 shows that the weighting that uses the first violation is outperformed
by the others. This is the case at precision τ = 10−2 et τ = 10−3. Unlike the plots
on the unmodified blackboxes, where it had worst results than the default version, the
weighting with the median violation performs as well as the default version. Concerning
the weighting with the maximum violation, it performs as well as the default variation at
precision τ = 10−1 and τ = 10−3 but performs slightly better at τ = 10−2. However, this is
not very significant as all curves are very close to each other.

The blackbox problems do not show a clear domination of the scaling strategies.
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Figure 4: Data profiles for unmodified blackbox problems.

Figure 5: Data profiles with for “unbalanced”blackbox problems.

4.2 With surrogates

This last subsection on numerical experiments compares the scaling strategies on the black-
box problems using surrogate functions (the quadratic models described in [13]) for the
objective function and the constraints. The first one, represented by circles on the profiles,
is the default version that does not rescale the output. The second one, represented by
squares, only adds weights on the surrogate constraint violation function h̃. The third one,
represented by triangles, only adds weights on both the constraint violation h and on its
surrogate h̃. The weightings are done using the maximum violation of each constraint.

Figure 6 looks at unmodified blackboxes. At the weighting τ = 10−1, the weightings
show no improvements and the tested blackboxes. At precision τ = 10−2 and τ = 10−3,
the weighting done only on h̃ shows slightly better results than a weighting both on h and
h̃ and the default version. However, the differences are very small and the results in the
sub-section 4 showed very few satisfactory results on unmodified blackboxes.

The “unbalanced”blackboxes are also tested. They were unbalanced the same way as
in sub-section 4. Figure 7 shows the results for the “unbalanced”blackboxes. It shows that
the version where the weighting is made both on h and h̃ dominates the two other versions.
It is interesting to note that at precision τ = 10−2, the weighting on h̃ only dominates the
default version but is dominated by the other one. This shows the cumulative effects of the
weighting on constraints. Even if it better to have a weighting on h or h̃, the best is to have
the weighting on both functions h and h̃.

Compared to Figure 6, Figure 7 shows the advantages of weighting of constraints on
problems where constraints are not well scaled.
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Figure 6: Data profiles for unmodified blackboxes

Figure 7: Data profiles for “unbalanced”blackboxes.

5 Discussion

This work offers several weightings techniques of the constraints in order to compensate
scaling issues in the formulation of a blackbox optimization problem. These weightings rely
on the values taken by the constraints: the first violation, the median violation on the n
first violations and the highest violation.

From a theoretical point of view, the convergence analysis followed that of the progressive
barrier. It was shown that the two first weightings had no impact on the convergence analysis
from the rank where all the weightings were calculated. For the last weighting, the properties
of {hk

max}k∈N were preserved.

Numerical experiments on the analytical problems suggest that the strategy with the
maximum violation is preferable to the others on both the unmodified and the unbalanced
problems. The results on the blackbox problems were inconclusive. None of the method
clearly dominates the others. A final set of experiments were conducted on these blackbox
problems, with the utilization of a surrogate. Here, the results on the unbalanced blackboxes
revealed a dominant strategy. Applying the weighting with the maximal violation on both
the constraint violation function h and its surrogate h̃ is more efficient than the other
strategies.

This work focused on weighting the constraints so that they have all approximately
the same importance. However, other choices can be made. Learning the importance of
the constraints through the optimization process is a possibility. A selection of the most
influential variables in a context of blackbox optimization problem was achieved in [2]. A
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similar analysis for the constraints could be considered in future work.
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Stéphane Jacquet
UQAC
E-mail address: stephane.jacquet@gerad.ca


